Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.851
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Mol Nutr Food Res ; 68(8): e2300820, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600874

ABSTRACT

Garlic is rich in bioactive compounds that are effective against colon cancer cells. This study tests the antioxidant and antiproliferative effects of cold-extracted white and black garlic extracts. Black garlic extracted in water (SSU) exhibits the highest antioxidant activity, phenolic content, and flavonoid content, while black garlic extracted in ethanol (SET) shows the lowest values. Caspase-3 activity is notably higher in the white garlic extracted in methanol (BME), white garlic extracted in methanol combines with 5-FU, black garlic extracted in ethanol (SET), black garlic extracted in ethanol combines with 5-fluorouracil (5-FU), and 5-FU treatments compare to the control group (p > 0.05). BME+5-FU displays the highest caspase-8 activity (p < 0.05). A decrease in NF-κB levels is observed in the SET+5-FU group (p>0.05), while COX-2 activities decrease in the BME, SET+5-FU, SET, and 5-FU groups (p>0.05). Wound healing increases in the BME, BME+5-FU, SET+5-FU, and 5-FU groups (p < 0.05). In conclusion, aqueous black garlic extract may exhibit pro-oxidant activity despite its high antioxidant capacity. It is worth noting that exposure to heat-treated food and increased sugar content may lead to heightened inflammation and adverse health effects. This study is the first to combine garlic with chemo-preventive drugs like 5-FU in Caco-2 cells.


Subject(s)
Antioxidants , Cell Proliferation , Fluorouracil , Garlic , Plant Extracts , Humans , Garlic/chemistry , Plant Extracts/pharmacology , Fluorouracil/pharmacology , Cell Proliferation/drug effects , Caco-2 Cells , Antioxidants/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , NF-kappa B/metabolism , Colorectal Neoplasms/drug therapy , Phenols/pharmacology , Phenols/analysis , Cyclooxygenase 2/metabolism , Caspase 3/metabolism , Flavonoids/pharmacology , Flavonoids/analysis
2.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38567463

ABSTRACT

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Subject(s)
Autophagy , Colorectal Neoplasms , Gold , Metal Nanoparticles , Humans , Gold/chemistry , Gold/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Autophagy/drug effects , Acetylation , Microtubules/metabolism , Microtubules/drug effects , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/drug therapy , HT29 Cells , Caspases/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin/metabolism , Tubulin/chemistry
3.
J Nanobiotechnology ; 22(1): 202, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658952

ABSTRACT

Multi-modal combination therapy is regarded as a promising approach to cancer treatment. Combining chemotherapy and phototherapy is an essential multi-modal combination therapy endeavor. Ivermectin (IVM) is a potent antiparasitic agent identified as having potential antitumor properties. However, the fact that it induces protective autophagy while killing tumor cells poses a challenge to its further application. IR780 iodide (IR780) is a near-infrared (NIR) dye with outstanding photothermal therapy (PTT) and photodynamic therapy (PDT) effects. However, the hydrophobicity, instability, and low tumor uptake of IR780 limit its clinical applications. Here, we have structurally modified IR780 with hydroxychloroquine, an autophagy inhibitor, to synthesize a novel compound H780. H780 and IVM can form H780-IVM nanoparticles (H-I NPs) via self-assembly. Using hyaluronic acid (HA) to modify the H-I NPs, a novel nano-delivery system HA/H780-IVM nanoparticles (HA/H-I NPs) was synthesized for chemotherapy-phototherapy of colorectal cancer (CRC). Under NIR laser irradiation, HA/H-I NPs effectively overcame the limitations of IR780 and IVM and exhibited potent cytotoxicity. In vitro and in vivo experiment results showed that HA/H-I NPs exhibited excellent anti-CRC effects. Therefore, our study provides a novel strategy for CRC treatment that could enhance chemo-phototherapy by modulating autophagy.


Subject(s)
Autophagy , Colorectal Neoplasms , Drug Repositioning , Ivermectin , Nanoparticles , Autophagy/drug effects , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Humans , Mice , Nanoparticles/chemistry , Ivermectin/pharmacology , Ivermectin/chemistry , Cell Line, Tumor , Indoles/chemistry , Indoles/pharmacology , Mice, Inbred BALB C , Mice, Nude , Photochemotherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phototherapy/methods , Hyaluronic Acid/chemistry , Hydroxychloroquine/pharmacology , Hydroxychloroquine/chemistry , Photothermal Therapy/methods
4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1455-1466, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621929

ABSTRACT

Ulcerative colitis is a chronic, recurrent, and nonspecific intestinal inflammatory disease, which is difficult to cure and has the risk of deterioration into related tumors. Long-term chronic inflammatory stimulation can increase the risk of cancerization. With the signaling pathway as a key link in the regulation of tumor microenvironments, nuclear factor-kappa B(NF-κB) is an important regulator of intestinal inflammation. It can also be co-regulated as downstream factors of other signaling pathways, such as TLR4, MAPK, STAT, PI3K, and so on. At present, a large number of animal experiments have proved that traditional Chinese medicine(TCM) can reduce inflammation by interfering with NF-κB-related signaling pathways, improve intestinal inflammation, and inhibit the progression of inflammation to tumors. This article reviewed the relationship between NF-κB-related signaling pathways and the intervention mechanism of TCM, so as to provide a reference for the clinical treatment of ulcerative colitis and the optimization of related cancer prevention strategies.


Subject(s)
Colitis, Ulcerative , Colorectal Neoplasms , Animals , Colitis, Ulcerative/complications , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Disease Models, Animal , Inflammation , Medicine, Chinese Traditional , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Tumor Microenvironment
5.
Phytomedicine ; 128: 155497, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640855

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE: This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90ß-STAT3-PD-L1 axis activity. METHODS: We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90ß (HSP90ß) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS: We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90ß's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90ß-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION: Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.


Subject(s)
Bufanolides , Colorectal Neoplasms , HSP90 Heat-Shock Proteins , STAT3 Transcription Factor , Xenograft Model Antitumor Assays , Bufanolides/pharmacology , Animals , Colorectal Neoplasms/drug therapy , Humans , Mice , STAT3 Transcription Factor/metabolism , T-Lymphocytes/drug effects , Cell Line, Tumor , B7-H1 Antigen , Mice, Nude , Mice, Inbred BALB C , Amphibian Venoms/pharmacology , Female
6.
Phytomedicine ; 128: 155385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569292

ABSTRACT

BACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of ß-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.


Subject(s)
Azoxymethane , Colorectal Neoplasms , Dextran Sulfate , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Colorectal Neoplasms/drug therapy , Mice , Male , Disease Models, Animal , Metabolome/drug effects , Colon/drug effects , Colon/pathology , Colon/microbiology
7.
J Ethnopharmacol ; 331: 118213, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38636576

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The sclerotium of Lignosus rhinocerus (Cooke) Ryvarden is used by the local communities in Southeast Asia and China to treat cancer, asthma, fever, and other ailments based on traditional knowledge. The sclerotial water extracts were previously reported to exhibit cytotoxic, apoptotic, and immunomodulatory activities - providing a scientific basis for its use in treating cancer; however, there is still a lack of evidence on its potential anti-angiogenic activity. AIM OF THE STUDY: This study aimed to investigate the toxicity, anti-angiogenic, and anti-tumour activities of the hot-water and cold-water extracts of L. rhinocerus using HCT116 human colorectal carcinoma cells implanted in the chick chorioallantoic membrane (CAM) model. MATERIALS AND METHODS: The toxicity of L. rhinocerus extracts towards the chick embryos was determined 24 h post-treatment. The anti-angiogenic activity of the extracts was then investigated at 0.1-10 µg/embryo (6.7-670 µg/mL) at targeted blood vessels. The anti-tumour effect of selected extracts against the HCT116 human colorectal carcinoma cells xenografted onto the chick embryos was also studied. RESULTS: The cold-water extracts of L. rhinocerus displayed strong in ovo toxicity (LC50: 1.2-37.7 µg/mL) while the hot-water extracts are non-toxic up to 670 µg/mL. Among the extracts, the hot-water extracts demonstrated the highest anti-angiogenic activity with 44.0 ± 17.7% reduction of capillary diameter (relative to the saline-treated control). Moreover, treatment of the HCT116 cells xenografted onto the chick embryos with the hot-water extracts resulted in smaller tumour size and lower number of blood vessels compared to the saline-treated control. CONCLUSIONS: The hot-water extracts of L. rhinocerus sclerotium demonstrated anti-angiogenic and anti-tumour activities but most of the cold-water extracts at similar concentrations were devoid of that. Our findings provide further scientific validation of the medicinal use of the sclerotium in treating cancer and thus, expanding our knowledge on the possible mechanism of its anti-cancer effect apart from direct cytotoxicity, induction of apoptosis and immunomodulation that have been studied thus far.


Subject(s)
Angiogenesis Inhibitors , Chorioallantoic Membrane , Colorectal Neoplasms , Animals , Chick Embryo , Humans , HCT116 Cells , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/toxicity , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Extracts/pharmacology , Plant Extracts/toxicity , Water/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Polyporaceae/chemistry
8.
Fitoterapia ; 175: 105959, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615754

ABSTRACT

Lysimachia capillipes Hemsl., a traditional Chinese medicine (TCM), is commonly prescribed for its anti-inflammatory and anti-tumor properties. Pharmacological studies have demonstrated that Lysimachia capillipes Hemsl. saponins (LCS) are the primary bioactive component. However, its mechanism for treating colorectal cancer (CRC) is still unknown. Increasing evidence suggests a close relationship between CRC, intestinal flora, and host metabolism. Thus, this study aims to investigate the mechanism of LCS amelioration of CRC from the perspective of the gut microbiome and metabolome. As a result, seven gut microbiotas and fourteen plasma metabolites were significantly altered between the control and model groups. Among them, one gut microbiota genera (Monoglobus) and six metabolites (Ureidopropionic acid, Cytosine, L-Proline, 3-hydroxyanthranilic acid, Cyclic AMP and Suberic acid) showed the most pronounced callback trend after LCS administration. Subsequently, the correlation analysis revealed significant associations between 68 pairs of associated metabolites and gut microbes, with 13 pairs of strongly associated metabolites regulated by the LCS. Taken together, these findings indicate that the amelioration of CRC by LCS is connected to the regulation of intestinal flora and the recasting of metabolic abnormalities. These insights highlight the potential of LCS as a candidate drug for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Primulaceae , Saponins , Saponins/pharmacology , Saponins/isolation & purification , Gastrointestinal Microbiome/drug effects , Animals , Mice , Primulaceae/chemistry , Colorectal Neoplasms/drug therapy , Male , Metabolome/drug effects , Mice, Inbred BALB C , Lysimachia
9.
J Ethnopharmacol ; 329: 118146, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38604512

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Agrimonia pilosa Ledeb. (Rosaceae, A. pilosa) has been used in traditional medicine in China, Japan, Korea, and other Asian countries for treatment of acute and chronic enteritis and diarrhea. Secondary metabolites have been isolated and tested for biological activities. It remains unclear in terms of its potential components of anti-colorectal cancer properties. AIM OF THE STUDY: The study aimed to how extracts from A. pilosa and their components influenced tumor microenvironment and the colorectal tumor growth in vivo on AOM/DSS induced colorectal cancer mice, the metabolites of A. pilosa was also been studied. MATERIALS AND METHODS: Different methods have been used to extract different parts of A. pilosa. And the anti-proliferation effect of these extracts on colon cancer cells have been tested. The components of A. pilosa and its metabolites in vivo were analyzed by UPLC-QTOF-MS/MS. The anti-colorectal cancer (CRC) effects of A. pilosa and its components in vivo were studied on AOM/DSS induced CRC mice. The effects of constituents of A. pilosa on the composition of immune cells in tumor microenvironment (TME) were analyzed by flow cytometry. 16 S rDNA technology was used to analyze the effect of administration on the composition of intestinal microflora. Pathological section staining was used to compare the morphological changes and molecular expression of intestinal tissue in different groups. RESULTS: The constituent exists in root of A. pilosa showed the strongest anti-proliferation ability on colon cancer cells in vitro. The extract from the root of A. pilosa could attenuate the occurrence of colorectal tumors induced by AOM/DSS in a concentration-dependent manner. Administration of the extract from the root of A. pilosa could affect the proportion of γδT cells, tumor associated macrophages and myeloid derived suppressor cells in TME, increasing the proportion of anti-tumor immune cells and decrease the immunosuppressive cells in the TME to promote the anti-tumor immune response. The administration of the extract adjusted the composition of gut microbiota and its components Agrimoniin and Agrimonolide-6-o-glucoside showed the strongest anti-CRC effect in vivo with adjusting the gut microbiota differently. CONCLUSIONS: The extract from root of A. pilosa showed anti-colorectal cancer effects in vivo and in vitro, affecting the composition of gut microbiota and the anti-tumor immune response. Within all components of A. pilosa, Agrimoniin and Agrimonolide-6-o-glucoside showed remarkable anti-CRC efficiency in vivo and in vitro. Besides, the metabolites of extract from root of A. pilosa in gastrointestinal tract mainly composed of two parts: Agrimonolide-related metabolites and Urolithins. The extract from root of A. pilosa could contribute to potential drugs for assisting clinical anti-colon cancer therapy.


Subject(s)
Agrimonia , Antineoplastic Agents, Phytogenic , Colorectal Neoplasms , Plant Extracts , Animals , Agrimonia/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Plant Extracts/pharmacology , Mice , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Male , Tumor Microenvironment/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Gastrointestinal Microbiome/drug effects
10.
Phytomedicine ; 129: 155615, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615493

ABSTRACT

BACKGROUND: Metastasis driven by epithelial-mesenchymal transition (EMT) remains a significant contributor to the poor prognosis of colorectal cancer (CRC), and requires more effective interventions. GPR81 signaling has been linked to tumor metastasis, while lacks an efficient specific inhibitor. PURPOSE: Our study aimed to investigate the effect and mechanism of Gentisic acid on colorectal cancer (CRC) metastasis. STUDY DESIGN: A lung metastasis mouse model induced by tail vein injection and a subcutaneous graft tumor model were used. Gentisic acid (GA) was administered by an intraperitoneal injection. HCT116 was treated with lactate to establish an in vitro model. METHODS: MC38 cells with mCherry fluorescent protein were injected into tail vein to investigate lung metastasis ability in vivo. GA was administered by intraperitoneal injection for 3 weeks. The therapeutic effect was evaluated by survival rates, histochemical analysis, RT-qPCR and live imaging. The mechanism was explored using small interfering RNA (siRNA), Western blotting, RT-qPCR and immunofluorescence. RESULTS: GA had a therapeutic effect on CRC metastasis and improved survival rates and pathological changes in dose-dependent manner. GA emerged as an GPR81 inhibitor, effectively suppressed EMT and mTOR signaling in CRC induced by lactate both in vivo and in vitro. Mechanistically, GA halted lactate-induce degradation of DEPDC5 through impeding the activation of Chaperone-mediated autophagy (CMA). CONCLUSION: CMA-mediated DEPDC5 degradation is crucial for lactate/GPR81-induced CRC metastasis, and GA may be a promising candidate for metastasis by inhibiting GPR81 signaling.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Lung Neoplasms , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Humans , Mice , Epithelial-Mesenchymal Transition/drug effects , Lung Neoplasms/secondary , Lung Neoplasms/drug therapy , HCT116 Cells , Signal Transduction/drug effects , Cell Line, Tumor , Male , TOR Serine-Threonine Kinases/metabolism
11.
Med Oncol ; 41(5): 123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652404

ABSTRACT

Colon cancer is on the rise in both men and women. In addition to traditional treatment methods, herbal treatments from complementary and alternative medicine are actively followed. Naturally derived from plants, thymoquinone (TQ) has drawn a lot of attention in the field of cancer treatment. MK-801, an N-methyl-D-aspartate agonist, is used to improve memory and plasticity, but it has also lately been explored as a potential cancer treatment. This study aimed to determine the roles of N-Methyl-D-Aspartate agonists and Thymoquinone on mitochondria and apoptosis. HT-29 cells were treated with different TQ and MK-801 concentrations. We analyzed cell viability, apoptosis, and alteration of mitochondria. Cell viability significantly decreased depending on doses of TQ and MK-801. Apoptosis and mitochondrial dysfunctions induced by low and high doses of TQ and MK-801. Our study emphasizes the need for further safety evaluation of MK-801 due to the potential toxicity risk of TQ and MK-801. Optimal and toxic doses of TQ and MK-801 were determined for the treatment of colon cancer. It should be considered as a possibility that colon cancer can be treated with TQ and MK-801.


Subject(s)
Apoptosis , Benzoquinones , Cell Survival , Colorectal Neoplasms , Dizocilpine Maleate , Mitochondria , Receptors, N-Methyl-D-Aspartate , Humans , Benzoquinones/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , HT29 Cells , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects
12.
Nutrients ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38613029

ABSTRACT

Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.


Subject(s)
Colorectal Neoplasms , Methionine , Humans , Methionine/pharmacology , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Vitamin B 12/pharmacology , Homocystine , Racemethionine , Cell Line , Homocysteine , Colorectal Neoplasms/drug therapy
13.
J Ethnopharmacol ; 330: 118195, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641080

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY: This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS: SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS: Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION: Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.


Subject(s)
Antineoplastic Agents, Phytogenic , Colorectal Neoplasms , Flavonoids , Glycyrrhiza , Mice, Nude , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , Glycyrrhiza/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Flavonoids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Allosteric Regulation/drug effects , Mice , Mice, Inbred BALB C , Apoptosis/drug effects , Male
14.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658096

ABSTRACT

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


Subject(s)
CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Ubiquitin Thiolesterase , Wnt Signaling Pathway , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , CD8-Positive T-Lymphocytes/drug effects , Mice , Humans , Wnt Signaling Pathway/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Cell Line, Tumor , Signal Transduction/drug effects , beta Catenin/metabolism , Mice, Inbred BALB C
15.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658095

ABSTRACT

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Subject(s)
Anthraquinones , Cell Proliferation , Colorectal Neoplasms , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Mice , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Anthraquinones/pharmacology , Cell Line, Tumor , Drug Repositioning , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Inbred BALB C , Mice, Nude
16.
Clin. transl. oncol. (Print) ; 26(4): 864-871, Abr. 2024. tab
Article in English | IBECS | ID: ibc-VR-49

ABSTRACT

Purpose: Clinical practice guidelines recommend that all patients with metastatic colorectal cancer (mCRC) should be tested for mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H). We aimed to describe the dMMR/MSI-H testing practice in patients with mCRC in Spanish centers.Methods: Multicenter, observational retrospective study that included patients newly diagnosed with mCRC or who progressed to a metastatic stage from early/localized stages. Results: Three hundred patients were included in the study from May 2020 through May 2021, with a median age of 68 years, and two hundred twenty-five (75%) had stage IV disease at initial diagnosis; two hundred eighty-four patients received first-line treatment, and dMMR/MSI-H testing was performed in two hundred fifty-one (84%) patients. The results of the dMMR/MSI-H tests were available in 61 (24%) of 251 patients before the diagnosis of metastatic disease and in 191 (81%) of 236 evaluable patients for this outcome before the initiation of first-line treatment. Among the 244 patients who were tested for dMMR/MSI-H with IHC or PCR, 14 (6%) were MMR deficient. The most frequent type of first-line treatment was the combination of chemotherapy and biological agent, that was received by 71% and 50% of patients with MMR proficient and deficient tumors, respectively, followed by chemotherapy alone, received in over 20% of patients in each subgroup. Only 29% of dMMR/MSI-H tumors received first-line immunotherapy. Conclusion: Our study suggests that a high proportion of patients with mCRC are currently tested for dMMR/MSI-H in tertiary hospitals across Spain. However, there is still room for improvement until universal testing is achieved.(AU)


Subject(s)
Humans , Male , Female , Neoplasm Metastasis , Microsatellite Instability , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Retrospective Studies
17.
EBioMedicine ; 102: 105041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484555

ABSTRACT

BACKGROUND: Chemoresistance is a critical factor contributing to poor prognosis in clinical patients with cancer undergoing postoperative adjuvant chemotherapy. The role of gut microbiota in mediating resistance to tumour chemotherapy remains to be investigated. METHODS: Patients with CRC were categorised into clinical benefit responders (CBR) and no clinical benefit responders (NCB) based on chemotherapy efficacy. Differential bacterial analysis using 16S rRNA sequencing revealed Desulfovibrio as a distinct microbe between the two groups. Employing a syngeneic transplantation model, we assessed the effect of Desulfovibrio on chemotherapy by measuring tumour burden, weight, and Ki-67 expression. We further explored the mechanisms underlying the compromised chemotherapeutic efficacy of Desulfovibrio using metabolomics, western blotting, colony formation, and cell apoptosis assays. FINDINGS: In comparison, Desulfovibrio was more abundant in the NCB group. In vivo experiments revealed that Desulfovibrio colonisation in the gut weakened the efficacy of FOLFOX. Treatment with Desulfovibrio desulfuricans elevates serum S-adenosylmethionine (SAM) levels. Interestingly, SAM reduced the sensitivity of CRC cells to FOLFOX, thereby promoting the growth of CRC tumours. These experiments suggest that SAM promotes the growth and metastasis of CRC by driving the expression of methyltransferase-like 3 (METTL3). INTERPRETATION: A high abundance of Desulfovibrio in the intestines indicates poor therapeutic outcomes for postoperative neoadjuvant FOLFOX chemotherapy in CRC. Desulfovibrio drives the manifestation of METTL3 in CRC, promoting resistance to FOLFOX chemotherapy by increasing the concentration of SAM. FUNDING: This study is supported by Wuxi City Social Development Science and Technology Demonstration Project (N20201005).


Subject(s)
Colorectal Neoplasms , Desulfovibrio desulfuricans , Humans , Apoptosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Desulfovibrio desulfuricans/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Methyltransferases , RNA, Ribosomal, 16S/genetics , Leucovorin , Organoplatinum Compounds , Antineoplastic Combined Chemotherapy Protocols
18.
Cancer Lett ; 589: 216828, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38521199

ABSTRACT

5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Minichromosome Maintenance Complex Component 3/genetics , Minichromosome Maintenance Complex Component 3/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
19.
Medicine (Baltimore) ; 103(12): e37477, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518016

ABSTRACT

The objective of this study was to investigate the potential targets and mechanism of Rheum palmatum L in the treatment of colorectal cancer based on the network pharmacology and molecular docking, which could provide the theoretical basis for clinical applications. The potential components were screened using TCMSP database and articles. The gene targets of colorectal cancer were screened through the Genecards database and Online Mendelian Inheritance in Man database. Then, the common targets of components and colorectal cancer were used to construct the network diagram of active components and targets in Cytoscape 3.7.0. The protein-protein interaction (PPI) diagram was generated using String database, and the targets were further analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular docking between gene targets and active components was analyzed via AutoDock, and visualized through PyMol. Among this study, main targets might be TP53, EGF, MYC, CASP3, JUN, PTGS2, HSP90AA1, MMP9, ESR1, PPARG. And 10 key elements might associate with them, such as aloe-emodin, beta-sitosterol, gallic acid, eupatin, emodin, physcion, cis-resveratrol, rhein, crysophanol, catechin. The treatment process was found to involve nitrogen metabolism, p53 signaling pathway, and various cancer related pathway, as well as the AGE-RAGE signaling pathway, estrogen signaling pathway, interleukin-17 signaling pathway and thyroid hormone signaling pathway. The molecular docking was verified the combination between key components and their respective target proteins. Network pharmacological analysis demonstrated that R palmatum was could regulated p53, AGE-RAGE, interleukin-17 and related signaling pathway in colorectal cancer, which might provide a scientific basis of mechanism.


Subject(s)
Colorectal Neoplasms , Drugs, Chinese Herbal , Emodin , Rheum , Humans , Molecular Docking Simulation , Interleukin-17 , Tumor Suppressor Protein p53 , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
20.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542344

ABSTRACT

Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Polyphenols/pharmacology , Dietary Supplements , Colorectal Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL