Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38642759

ABSTRACT

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Subject(s)
Charcoal , Composting , Humic Substances , Nitrogen , Phosphorus , Phosphorus/analysis , Charcoal/chemistry , Nitrogen/analysis , Composting/methods , Soil Microbiology , Drugs, Chinese Herbal/chemistry , Soil/chemistry
2.
Environ Int ; 186: 108615, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582061

ABSTRACT

Compost is widely used in agriculture as fertilizer while providing a practical option for solid municipal waste disposal. However, compost may also contain per- and polyfluoroalkyl substances (PFAS), potentially impacting soils and leading to PFAS entry into food chains and ultimately human exposure risks via dietary intake. This study examined how compost affects the bioavailability and uptake of eight PFAS (two ethers, three fluorotelomer sulfonates, and three perfluorosulfonates) by lettuce (Lactuca sativa) grown in commercial organic compost-amended, PFAS spiked soils. After 50 days of greenhouse experiment, PFAS uptake by lettuce decreased (by up to 90.5 %) with the increasing compost amendment ratios (0-20 %, w/w), consistent with their decreased porewater concentrations (by 30.7-86.3 %) in compost-amended soils. Decreased bioavailability of PFAS was evidenced by the increased in-situ soil-porewater distribution coefficients (Kd) (by factors of 1.5-7.0) with increasing compost additions. Significant negative (or positive) correlations (R2 ≥ 0.55) were observed between plant bioaccumulation (or Kd) and soil organic carbon content, suggesting that compost amendment inhibited plant uptake of PFAS mainly by increasing soil organic carbon and enhancing PFAS sorption. However, short-chain PFAS alternatives (e.g., perfluoro-2-methoxyacetic acid (PFMOAA)) were effectively translocated to shoots with translocation factors > 2.9, increasing their risks of contamination in leafy vegetables. Our findings underscore the necessity for comprehensive risk assessment of compost-borne PFAS when using commercial compost products in agricultural lands.


Subject(s)
Composting , Fluorocarbons , Lactuca , Soil Pollutants , Soil , Soil Pollutants/metabolism , Soil Pollutants/analysis , Composting/methods , Soil/chemistry , Fluorocarbons/metabolism , Fluorocarbons/analysis , Lactuca/metabolism , Biological Availability , Agriculture/methods
3.
Waste Manag ; 169: 137-146, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37433257

ABSTRACT

Black soldier fly (BSF) and thermophilic composting (TC) treatments are commonly adopted to manage food waste. In this study, 30 days of TC of food waste following seven days BSF pretreatment (BC) was compared to 37 days of TC of food waste (TC, the control). Fluorescence spectrum and 16S rRNA high-throughput sequencing analysis were used to compare the BC and TC treatments. Results showed that BC could decrease protein-like substances and increase humus substances more quickly, and that the humification index of compost products was 106.8% higher than that of TC, suggesting that the humification process was accelerated by BSF pretreatment resulting in a 21.6% shorter maturity time. Meanwhile, the concentrations of total and available phosphorus rose from 7.2 and 3.3 g kg-1 to 44.2 and 5.5 g kg-1, respectively, which were 90.5% and 118.8% higher in compost products from BC as compared to those in TC. Furthermore, BC had higher richness and diversity of humus synthesis and phosphate-solubilizing bacteria (PSB), with Nocardiopsis (53.8%) and Pseudomonas (47.0%) being the dominant PSB. Correlation analysis demonstrated that the introduction of BSF gut bacteria contributed to the effectiveness of related functional bacteria, resulting in a rapid humification process and phosphorus activation. Our findings advance understanding of the humification process and provide novel perspectives on food waste management.


Subject(s)
Composting , Diptera , Refuse Disposal , Animals , Composting/methods , Food , Phosphorus , RNA, Ribosomal, 16S/genetics , Diptera/genetics , Soil , Bacteria/genetics , Phosphates
4.
Sci Total Environ ; 891: 164608, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37286002

ABSTRACT

The conversion of organic matter and P in the waste composting process affects the efficiency of the composted product. However, the addition of microbial inoculants may improve the conversion characteristics of organic matter and P. In this study, straw-decomposing microbial inoculant (SDMI) was added to investigate its effects on the organic matter stabilization and phosphorus activation during the composting of vegetable waste (VWs). Aliphatic carboxyl-containing compounds were degraded during composting, but the stability of the organic matter and P was improved. The addition of SDMI promoted the degradation of dissolved organic carbon by 81.7 % and improved P stability and thermal stability of organic matter. Hedley sequential P fractionation showed a decrease in the H2O-P proportion by >12 % and increased in the HCl-P proportion by >4 % by the end of composting. Stable forms of P, such as AlPO4 and iron-containing phosphate, were the main forms of P in the final compost. The results provide a basis for producing high-quality vegetable compost products and improving the reutilization potential of VWs.


Subject(s)
Agricultural Inoculants , Composting , Composting/methods , Phosphorus/metabolism , Vegetables/metabolism , Agricultural Inoculants/metabolism , Soil
5.
Sci Total Environ ; 846: 157487, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35870587

ABSTRACT

This study investigated the effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions and compost maturity during pig manure composting. The results indicated that the addition of dicyandiamide and phosphorus additives had no negative effect on organic matter degradation, and could improve the compost maturity. Adding dicyandiamide alone reduced the emissions of ammonia (NH3), methane (CH4) and nitrous oxide (N2O) by 9.37 %, 9.60 % and 31.79 %, respectively, which was attributed that dicyandiamide effectively inhibited nitrification to reduce the formation of N2O. Dicyandiamide combined with phosphogypsum or superphosphate could enhance mitigation of the total greenhouse gas (29.55 %-37.46 %) and NH3 emission (18.28 %-21.48 %), which was mainly due to lower pH value and phosphoric acid composition. The combination of dicyandiamide and phosphogypsum exhibited the most pronounced emission reduction effect, simultaneously decreasing the NH3, CH4 and N2O emissions by 18.28 %, 38.58 % and 36.14 %, respectively. The temperature and C/N content of the compost were significantly positively correlated with greenhouse gas emissions.


Subject(s)
Composting , Greenhouse Gases , Ammonia/analysis , Animals , Calcium Sulfate , Composting/methods , Diphosphates , Guanidines , Manure , Methane/analysis , Nitrous Oxide/analysis , Phosphorus/metabolism , Soil/chemistry , Swine
6.
J Biosci Bioeng ; 133(4): 382-389, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35115228

ABSTRACT

Hydrothermal treatment (HTT) as a pretreatment method for compost raw material has multiple benefits such as enhanced solubility of organic material, improved bioaugmentation, and reduced biohazard by killing harmful microorganisms. In this study, we pretreated food waste via HTT at 180 °C for 30 min to investigate its effect on food waste composting. HTT generated 8.98 mg/g-dry solid (g-ds) of 5-hydroxymethylfurfural and 4.32 mg/g-ds furfural. These furan compounds were completely decomposed in the early stage of composting, subsequently the organic matter in the food waste started to be degraded. The HTT-pretreated experiment demonstrated less organic matter degradation during composting as well as lower compost phytotoxicity compared to the non-HTT-pretreated experiment, where the conversion of carbon was 25.2% and the germination index value was 55%. HTT probably denatured part of the organic matter and making it more difficult to decompose, thereby preventing the rapid release of high concentrations of phytotoxic compounds such as organic acids and ammonium ions during composting. High-throughput microbial community analysis revealed that only Firmicutes appeared in the HTT-pretreated experiment, however, other bacterial groups also appeared in the non-HTT-pretreated experiment. This was possibly influenced by furan compounds and the changes of easily degradable organic matter to hardly degradable. Bacillus and Lysinibacillus were dominant in both composting experiments during vigorous organic matter degradation, suggesting that these bacterial groups were the main contributors to food waste composting. This study suggests that HTT is advantageous for the pretreatment of easily degradable food waste, as compost with less phytotoxicity was produced.


Subject(s)
Composting , Microbiota , Refuse Disposal , Composting/methods , Food , Soil
7.
J Antibiot (Tokyo) ; 75(3): 164-171, 2022 03.
Article in English | MEDLINE | ID: mdl-35058576

ABSTRACT

The use of livestock manure is an important way for antibiotic resistance genes (ARGs) to enter the environment, and composting is an effective method for removing ARGs from livestock manure. In this study, different volume ratios of Chinese medicinal herbal residues (CMHRs) were added to laboratory-scale chicken manure composting to evaluate their effects, if any, on the behavior of ARGs, mobile genetic elements (MGEs), and the bacterial community. At the end of the composting period, the composition of the microbial community changed. Firmicutes decreased and Bacteroidetes increased. The most striking effect was that the relative abundance of the 21 ARGs and 5 MGEs detected decreased by varying degrees in the different treatments (except for sulI and intI1). The removal rate of the ARGs increased with the increased addition of CMHRs. The correlations between transferase genes (tnpA and tnpA-02) and ARGs were significant (p < 0.05); therefore, transposons play an important role in the horizontal gene transfer of ARGs in chicken manure. The results imply that CMHRs would be an effective bulking agent for the removal of ARGs from chicken manure composting.


Subject(s)
Anti-Bacterial Agents/adverse effects , Composting/methods , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Drugs, Chinese Herbal/pharmacology , Genes, Bacterial/drug effects , Manure/microbiology , Microbiota/drug effects , Animals , Bacteria/genetics , Chickens , Gene Transfer, Horizontal/genetics , Genes, Bacterial/genetics , Livestock/microbiology , Medicine, Chinese Traditional/methods , Microbiota/genetics
8.
Bioengineered ; 13(1): 1073-1089, 2022 01.
Article in English | MEDLINE | ID: mdl-35001798

ABSTRACT

This review investigates the findings of the most up-to-date literature on bioremediation via composting technology. Studies on bioremediation via composting began during the 1990s and have exponentially increased over the years. A total of 655 articles have been published since then, with 40% published in the last six years. The robustness, low cost, and easy operation of composting technology make it an attractive bioremediation strategy for organic contaminants prevalent in soils and sediment. Successful pilot-and large-scale bioremediation of organic contaminants, e.g., total petroleum hydrocarbons, plasticizers, and persistent organic pollutants (POPs) by composting, has been documented in the literature. For example, composting could remediate >90% diesel with concentrations as high as 26,315 mg kg-a of initial composting material after 24 days. Composting has unique advantages over traditional single- and multi-strain bioaugmentation approaches, including a diverse microbial community, ease of operation, and the ability to handle higher concentrations. Bioremediation via composting depends on the diverse microbial community; thus, key parameters, including nutrients (C/N ratio = 25-30), moisture (55-65%), and oxygen content (O2 > 10%) should be optimized for successful bioremediation. This review will provide bioremediation and composting researchers with the most recent finding in the field and stimulate new research ideas.


Subject(s)
Composting/methods , Geologic Sediments/chemistry , Soil Pollutants/chemistry , Biodegradation, Environmental , Hydrocarbons/analysis , Periodicals as Topic/trends , Pesticides/analysis , Petroleum/analysis
9.
Ecotoxicol Environ Saf ; 214: 111994, 2021 May.
Article in English | MEDLINE | ID: mdl-33711576

ABSTRACT

This study investigated the vermicomposting of spent drilling fluid (SDF) from the nature-gas industry mixed with cow dung in 0% (T1), 20% (T2), 30% (T3), 40% (T4), 50% (T5), and 60% (T6) ratio employing Eisenia fetida under a 6 weeks trial. Eisenia. fetida showed better growth and reproduction performances in the first three vermireactors (T1-T3), and the mortality was higher in the vermireactors that contained more spent drilling fluid (≥40%). Vermicomposting results in a decrease in total organic carbon, C/N ratio, and an increase in EC, total nitrogen, total phosphorous, total potassium compared to their initial values. The RadViz and VizRank showed that vermicomposting results in a greater impact on the C/N ratio (15.24-35.48%) and EC (7.29-26.45%) compared to other parameters. Activities of urease and alkaline phosphatase during vermicomposting initially increased and then declined suggesting vermicompost maturity. Also, seed germination, mitotic index and chromosomal abnormality assays using cowpea signified that the vermicomposts T2 is suitable for agricultural use due to the lower phytotoxicity and cytotoxicity. The results indicated that SDF could be converted into good quality manure by vermicomposting if mixed up to 20% with cow dung.


Subject(s)
Composting/methods , Oligochaeta , Animals , Biodegradation, Environmental , Cattle , Feasibility Studies , Feces , Female , Manure , Nitrogen , Phosphorus , Reproduction , Soil
10.
J Appl Microbiol ; 130(4): 1208-1216, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32916018

ABSTRACT

AIMS: To suggest microbial inoculation as a tool to shorten organic residues stabilization and increase rock phosphate (RP) solubilization through vermicomposting, thus increasing nutrient content in plants and making it more appealing to farmers. Two Trichoderma strains were inoculated alone or combined in a RP apatite-enriched vermicompost. Stability and plant-available phosphorus levels were monitored for 120 days. METHODS AND RESULTS: Observable higher total organic carbon reduction in the treatment with the combined Trichoderma strains, followed by the inoculation with T. asperellum and T. virens. Combined Trichoderma and inoculation with T. virens increased humic acids (HA) content in 38·2 and 25·0%, respectively; non-inoculated vermicompost with T. asperellum increased it by 15·0%. The combined Trichoderma strains and T. virens achieved the stability index based on the humic/fulvic acids (HA/FA) ratio after 120 days. T. asperellum, combined Trichoderma and T. virens increased the citric acid soluble-P content in 83·2, 62·2 and 49·5%, respectively, compared to the non-inoculated vermicompost. CONCLUSIONS: Inoculation with combined T. asperellum and T. virens efficiently accelerated vermicompost stabilization; T. asperellum increased the citric acid soluble-P in the final product. SIGNIFICANCE AND IMPACT OF THE STUDY: Combined Trichoderma inoculation and RP enrichment improves the vermicompost quality, increasing HA and citric acid soluble-P, recycling organic waste nutrients and reducing agricultural dependence on phosphate fertilizers.


Subject(s)
Agricultural Inoculants/metabolism , Composting/methods , Phosphates/metabolism , Phosphorus/pharmacokinetics , Trichoderma/metabolism , Agriculture/methods , Biological Availability , Fertilizers/analysis , Fertilizers/microbiology , Humic Substances/analysis , Nutrients/analysis , Phosphorus/analysis
11.
Sci Rep ; 10(1): 16632, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024251

ABSTRACT

This study aims to investigate the relationship between key physicochemical parameters related to composting process and bioavailability of Cd, As and Cr during swine manure composting through regulating different initial carbon to nitrogen (C/N) ratios (15:1, 20:1, 25:1) and bulking agent types (straw, green waste). Results showed that higher initial C/N ratio of 20:1 or 25:1 and straw as bulking agent were optimal to reduce the bioavailability of Cd, As and Cr (62.4%, 20.6% and 32.2% reduction, respectively). Redundancy analysis implied that the bioavailability of Cd was significantly associated with total phosphorus and total nitrogen, deducing the formation of phosphate precipitation and biosorption might participated in the reaction process, while that of As and Cr were mainly influenced by organic matter (OM), cation exchange capacity (CEC) and OM, CEC, electric conductivity, respectively. A total of 48.5%, 64.6% and 62.2% of Cd, As and Cr redistribution information could be explained by the above parameters. Further correlation analysis revealed that bioavailable As and Cr were negatively correlated with humic acid to fulvic acid ratio. In summary, this study confirms that the mechanisms of phosphate precipitation, biosorption and humification played critical role in reducing Cd, As and Cr bioavailability during swine manure composting.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Chromium/analysis , Composting/methods , Manure , Animals , Biological Availability , Carbon/analysis , Manure/analysis , Nitrogen/analysis , Phosphorus/analysis , Swine
12.
Ecotoxicol Environ Saf ; 198: 110645, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32344266

ABSTRACT

Finding a sound ecological-based approach for the removal of petroleum hydrocarbons (PHCs) from petroleum oily sludge (POS) generated in oil refinery plants is still a challenge. This study investigated the removal of total petroleum hydrocarbons (TPHs) using bioaugmentated composting (BC) by hydrocarbon-degrading bacteria (HDB) and vermicomposting (VC) by Eisenia fetida, individually and in combination (BCVC). After isolating two native bacterial strains from POS prepared from an oil refinery plant in Iran, the degradation capability of their consortium was initially assessed in mineral Bushnell-Haas medium (MBHM). Then, the biodegradation rates of POS in the BC, VC, and BCVC treatments containing different concentrations of TPHs (5, 10, and 20 g/kg) were determined by measuring TPHs before and after the biodegradation. The results showed that the consortium degraded 20-62% of TPHs contents of Kerosene (1-5%) in the MBHM after 7 days. After 12 weeks, the TPHs removal percentages in the BC, VC, and BCVC treatments were respectively found to be 81-83, 31-49, and 85-91 indicating the synergistic effect of bacteria and worms in bioremediation of POS. The PHCs biodegradation in the BC, VC, and BCVC experiments was fitted to 1st order model kinetics. The results of toxicity tests indicated that the values of the no observed lethal concentration (NOLC) and median lethal concentration (LC50) of TPHs were 2-5 and 14.64 g/kg, respectively after 28 days of earthworm exposure. Morphological impairments such as swelling, coiling, and curling were observed when TPHs concentration was even lower than NOLC. The study verified the effectiveness of vermicomposting bioaugmentated with the indigenous bacterial consortium for POS bioremediation.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Composting/methods , Hydrocarbons/metabolism , Petroleum/metabolism , Petroleum/microbiology , Iran , Minerals/metabolism , Sewage/microbiology , Soil Pollutants/metabolism
13.
J Hazard Mater ; 389: 122116, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31972527

ABSTRACT

This study evaluated the effect of integrated bacterial culture and biochar on heavy metal (HM) stabilization and microbial activity during pig manure composting. High-throughput sequencing was carried out on six treatments, namely T1-T6, where T2 was single application of bacteria culture (C), T3 and T5 were supplemented with 12 % wood (WB) and wheat-straw biochar (WSB), respectively, and T4 and T6 had a combination of bacterial consortium mixed with biochar (12 % WB and 12 % WSB, respectively). T1 was used as control for the comparison. The results show that the populations of bacterial phyla were significantly greater in T6 and T4. The predominate phylum were Proteobacteria (56.22 %), Bacteroidetes (35.40 %), and Firmicutes (8.38 %), and the dominant genera were Marinimicrobium (53.14 %), Moheibacter (35.22 %), and Erysipelothrix (5.02 %). Additionally, the correlation analysis revealed the significance of T6, as the interaction of biochar and bacterial culture influenced the HM adsorption efficiency and microbial dynamics during composting. Overall, the integrated bacterial culture and biochar application promoted the immobilization of HMs (Cu and Zn) owing to improved adsorption, and enhanced the abundance and selectivity of the bacterial community to promote degradation and improving the safety and quality of the final compost product.


Subject(s)
Bacteria/metabolism , Charcoal/chemistry , Composting/methods , Copper/metabolism , Manure/microbiology , Zinc/metabolism , Animals , Copper/analysis , Copper/isolation & purification , Hydrogen-Ion Concentration , Microbiota/physiology , Swine , Temperature , Zinc/analysis , Zinc/isolation & purification
14.
Environ Geochem Health ; 42(6): 1517-1529, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31214844

ABSTRACT

Composting is an efficient and cost-effective technology for sewage sludge treatment, and bulking agents are essential in sewage sludge composting. In this study, perlite was chosen as inorganic bulking agent to partially substitute for the organic bulking agent. Variations in the temperature, bulk density, moisture content, pH, electrical conductivity, organic carbon, nitrogen, phosphorus and potassium were detected during sewage sludge composting. The treatment with a mass ratio of spent mushroom substrate to perlite at 3:1 exhibited the highest pile temperature and the best effect on reducing bulk density and moisture content. In addition, Fourier transform infrared spectra showed that perlite promotes the degradation of organic matter during the composting process, and the germination index showed that the compost from all treatments was safe for agricultural application. When the mass ratios of spent mushroom substrate and perlite at 3:1 and 2:2 were chosen as bulking agents, the sewage sludge compost product could be used to produce plant cultivation substrate, and economic benefits could be obtained from sewage sludge composting according to comprehensive cost analysis.


Subject(s)
Aluminum Oxide , Composting/methods , Sewage/chemistry , Silicon Dioxide , Composting/instrumentation , Electric Conductivity , Hydrogen-Ion Concentration , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Potassium/analysis , Potassium/metabolism , Temperature
15.
Article in English | MEDLINE | ID: mdl-31783522

ABSTRACT

Population growth and social changes have recently contributed to an exaggerated increase in kitchen wastes in China. Vermicomposting has recently been recognized as an effective and eco-friendly method of organic waste treatment through the combination of earthworms and microbes. However, the influence of salt in kitchen wastes on vermicomposting have been unknown. The goal of this study was to analyze the influence of different salinities on earthworms (Eisenia fetida) and the products during the vermicomposting of kitchen wastes. In our research, kitchen wastes were divided into four different salinities: 0% (A), 0.1% (B), 0.2% (C) and 0.3% (D). The chemical characters of substrates and earthworm growth were measured on the 14th day and the 28th day of composting. Our results show that the high salinity (measured >0.2%) prevented earthworms from properly growing and had negative effects on quality of products in composting. T2 (measured salinity = 0.2%) had the highest average body weight, nitrate nitrogen, and available phosphorus. Thus, the salinity of kitchen wastes should be pretreated to less than 0.2% before vermicomposting.


Subject(s)
Composting/methods , Oligochaeta/drug effects , Salinity , Soil/chemistry , Animals , China , Nitrogen/analysis , Phosphorus/analysis
16.
Environ Sci Pollut Res Int ; 26(30): 30921-30929, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31446594

ABSTRACT

Previous studies revealed that superphosphate fertilizer (SSP) as an additive in compost can reduce the nitrogen loss and improve the effectiveness of phosphorus during composting. However, few studies have explored the influence of adding SSP with high levels on ammonia and greenhouse gas emission and the suitable amount for SSP addition according to a combined assessment of the composting process and product. The present study aimed to evaluate the impact of SSP with high additive amounts on NH3, CO2, CH4, and N2O emission and organic carbon loss. All piles were mixtures of pig manure and cornstalks with different levels of SSP addition including 10%, 14%, 18%, 22%, 26%, and 30% dry weight basis of raw materials. Compared with the control without SSP, the amount of NH3 cumulative emissions was decreased by 23.8-48.1% for the treatments with 10-30% SSP addition, and the emission of greenhouse gas including CO2, CH4, and N2O by 20.9-35.5% (CO2 equivalent) was reduced by 20.9-35.5%. Adding SSP with the amount exceeding 14% to compost could reduce CO2 emissions by 32.0-38.4% and more than 30% carbon loss at the end of composting but exceeding 26% had an adverse impact on maturity of the composts. Therefore, considering the maturity and safety of compost and gas emission reduction, 14-26% SSP was the optimum amount for composting addition, which is an effective and economical way to increase the nutrient level of carbon, nitrogen, and phosphorus in compost and reduce environmental risks.


Subject(s)
Ammonia/metabolism , Composting/methods , Diphosphates/metabolism , Fertilizers , Greenhouse Gases/metabolism , Animals , Carbon/analysis , Carbon/metabolism , Carbon Dioxide/metabolism , Manure , Methane/analysis , Methane/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Swine
17.
Molecules ; 24(13)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31324066

ABSTRACT

Examining the kinetics of solids' thermal decomposition with multiple overlapping steps is of growing interest in many fields, including materials science and engineering. Despite the difficulty of describing the kinetics for complex reaction processes constrained by physico-geometrical features, the kinetic deconvolution analysis (KDA) based on a cumulative kinetic equation is one practical method of obtaining the fundamental information needed to interpret detailed kinetic features. This article reports the application of KDA to thermal decomposition of clay minerals and indigo-clay mineral hybrid compounds, known as Maya blue, from ancient Mayan civilization. Maya blue samples were prepared by heating solid mixtures of indigo and clay minerals (palygorskite and sepiolite), followed by purification. The multistep thermal decomposition processes of the clay minerals and Maya blue samples were analyzed kinetically in a stepwise manner through preliminary kinetic analyses based on a conventional isoconversional method and mathematical peak deconvolution to finally attain the KDA. By comparing the results of KDA for the thermal decomposition processes of the clay minerals and the Maya blue samples, information about the thermal decomposition steps of the indigo incorporated into the Maya blue samples was extracted. The thermal stability of Maya blue samples was interpreted through the kinetic characterization of the extracted indigo decomposition steps.


Subject(s)
Composting , Indigo Carmine/chemistry , Plant Extracts/chemistry , Temperature , Clay/chemistry , Composting/methods , Kinetics , Minerals/chemistry
18.
Ecotoxicol Environ Saf ; 174: 445-454, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30852309

ABSTRACT

In this study we evaluated the microbiological and biochemical impact of iron-based water treatment residuals (Fe-WTRs) and municipal solid waste compost (MSWC), alone and combined, on three different soils co-contaminated with arsenic (As) and trace-metals (TM), i.e. Pb, Cu and Zn. Overall, all the amendments considered significantly increased the abundance of culturable heterotrophic bacteria, with MSWC showing the greatest impact across all soils (up to a 24% increase). In most of treated soils this was accompanied by a significant reduction of both the (culturable) fungal/bacterial ratio, and the proportion of culturable As(V)- and As(III)-resistant bacteria with respect to total bacterial population. The catabolic potential and versatility of the resident microbial communities (assessed by community level physiological profile) was highly soil-dependent and substantial increases of both parameters were observed in the amended soils with the higher total As concentration (from approx. 749 to 22,600 mg kg-1). Moreover, both carbon source utilisation profile and 16S rRNA soil metagenome sequencing indicated a significant impact of MSWC and Fe-WTRs on the structure and diversity of soil microbial communities, with Proteobacteria, Actinobacteria and Firmicutes being the most affected taxa. The assessment of selected soil enzyme activities (dehydrogenase, urease and ß-glucosidase) indicated an increase of metabolic functioning especially in soils treated with MSWC (e.g. dehydrogenase activity increased up to 19.5-fold in the most contaminated soil treated with MSWC). Finally, the microbial and biochemical features of treated (and untreated) contaminated soils (i.e. total bacterial counts, catabolic potential and versatility and soil enzyme activities) were highly correlated with the concentrations of labile As and TM in these latter soils and supported a clear role of the tested amendments (especially MSWC) as As- and TM-immobilising agents.


Subject(s)
Arsenic/analysis , Composting/methods , Metals, Heavy/analysis , Microbiota/drug effects , Soil Pollutants/analysis , Solid Waste/analysis , Trace Elements/analysis , Water Purification/methods , Adsorption , Italy , RNA, Ribosomal, 16S , Soil/chemistry , Soil Microbiology/standards
19.
Chemosphere ; 218: 42-51, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30469003

ABSTRACT

Composting is a major sludge-treatment method and bulking agents are very important in sludge composting. In this study, ceramsite and activated alumina balls were chosen as recyclable bulking agents for sludge composting. Variations in the temperature, pH, electrical conductivity, organic matter, dissolved organic carbon, moisture content, and heavy metals were detected during composting with different bulking-agent treatments as well as differences in the germination index values. The results showed that both bulking agents could ensure the maturity of the compost; further, ceramsite treatment resulted in the best water removal efficiency. According to the sequential extraction procedure, both ceramsite and activated alumina balls could stabilize Cd but they also increased the mobility of Zn. After comparing the effects of different particle sizes of ceramsite on composting, 20 mm was determined to be the most optimal value. Additionally, the recovery rates of ceramsite and activated alumina balls were 96.9% and 99.9%, respectively.


Subject(s)
Aluminum Oxide/chemistry , Composting/methods , Sewage/chemistry , Desiccation , Environmental Restoration and Remediation/methods , Metals, Heavy/analysis , Particle Size , Recycling , Temperature
20.
J Air Waste Manag Assoc ; 69(6): 710-716, 2019 06.
Article in English | MEDLINE | ID: mdl-30513268

ABSTRACT

The present study revealed the role of earthworm-effective microorganisms (EM) in converting sewage sludge and cassava dregs into a valuable product. Sewage sludge was toxic to earthworm, therefore it was mixed with cassava dregs in 80:20 proportions (dry weight). Treatments included mixed substrate inoculated versus not inoculated with EM and treated with or without earthworms. The pH, total organic carbon, total nitrogen, and C:N ratio decreased from the initial measurements in the range of 17.43-18.46%, 25.48-33.82%, 19.60-25.37%, and 6.68-14.05% respectively; but electrical conductivity and available phosphorus increased in the range of 113.47-158.16% and 42.42-57.58%, respectively. In addition, they interactively increased total phosphorus from 19.84-63.01% and potassium from 16.41-50.78%, and decreased the polycyclic aromatic hydrocarbons content of substrate from 21.17% to 32.14% with an increase in earthworms from 51.71 to 57.69, respectively. Earthworms and EM could be used together as an efficient method for co-composting sewage sludge plus cassava dregs in the tropics. This could be expected to result in stabilization of waste, increase in nutrients, and reduction of pollutant content. Implications: The first reports of interaction of earthworms and effective microorganisms in the treatment of sewage sludge and cassava dregs in the tropics. Co-composting was an efficient technology for treating sewage sludge and cassava dregs at the same time, in the tropics. The survival rate of the earthworms both> 95%, the highest number of cocoons (640.33) and hatchlings (4694.33) both in EW+EM (Earthworms added and EM inoculated) treatment. Earthworms and EM (Only EM inoculated) interactively increased total phosphorus and potassium content, and decreased the PAH content of substrate with increase in earthworms.


Subject(s)
Composting/methods , Oligochaeta/physiology , Polycyclic Aromatic Hydrocarbons/metabolism , Sewage/microbiology , Animals , Manihot/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Sewage/chemistry , Soil/chemistry , Soil Microbiology , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL