Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.013
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Animal ; 18(4): 101113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492538

ABSTRACT

Copper is routinely supplemented to weanling pig diets at concentrations above nutritional requirements to enhance growth performance. We hypothesised that this effect depends on the source of Cu and its dietary concentration. We tested this in weaned pigs (26 d of age) over a 35-d period using a 2 × 3 factorial arrangement with two Cu-sources (CuSO4 and Cu2O, monovalent copper oxide, CoRouge®) and three supplementary dietary Cu-levels (15, 80 and 160 mg Cu/kg) as respective factors. Increasing Cu level linearly increased (P < 0.001) final BW and daily gain. These effects tended (P = 0.09) to be greater with Cu2O than CuSO4. Feed conversion ratio decreased linearly (P < 0.001) with increasing dietary Cu content, independent of Cu source. Plasma Cu, Zn and Fe levels were unaffected, whereas liver Cu content increased quadratically (P < 0.001) with increasing dietary Cu content, with a larger increase (P < 0.001) with CuSO4 than Cu2O. Bile Cu content increased quadratically (P = 0.025) with increasing Cu content, irrespective of Cu source. RT-qPCR analysis revealed that increasing Cu content quadratically (P = 0.009) increased duodenal but not ileal metallothionein 1A (MT1A) mRNA, with greater effect (P = 0.010) of CuSO4. Regardless of the Cu source, increasing Cu dose linearly increased (P = 0.006) duodenal DMT1/SLC11A2 mRNA but decreased ZIP4/SLC39A4 mRNA in duodenum (P < 0.001) and ileum (P < 0.005). ZnT10/SLC30A10 mRNA was significantly (P = 0.021) and numerically (P = 0.061) greater with Cu2O compared to CuSO4, in duodenum and ileum, respectively. Copper content quadratically modulated duodenal but not ileal transferrin receptor (P = 0.029) and ferric reductase CYBRD1 mRNA (P = 0.022). In hypothalamus, high Cu dose (P = 0.024) and Cu2O as source (P = 0.028) reduced corticotropin-releasing hormone (CRH) mRNA. Low versus high CuSO4 increased corticotropin-releasing hormone receptor (CRHR2) mRNA, while low Cu2O had the opposite effect (P = 0.009). In conclusion, incremental Cu intake enhanced growth performance, with a tendency for a greater effect of Cu2O. The lower increase in duodenal MT1A mRNA and liver Cu content indicates that less Cu from Cu2O was absorbed by gut and sequestered in liver. Thus, high Cu absorption is not essential for its growth-promoting effect and dietary Cu may affect intestinal Fe and Zn absorption via the active, transcellular route. The effects on hypothalamic CRH and CRHR2 expression indicate a role for the hypothalamus in mediating the effects of Cu on growth performance.


Subject(s)
Copper , Trace Elements , Swine , Animals , Copper/pharmacology , Trace Elements/metabolism , Corticotropin-Releasing Hormone/metabolism , Diet/veterinary , Dietary Supplements , Duodenum , RNA, Messenger/genetics , Animal Feed/analysis
2.
Zhongguo Zhong Yao Za Zhi ; 49(1): 208-215, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403353

ABSTRACT

This study aimed to investigate the regulatory effects of Zuogui Jiangtang Jieyu Formula(ZJJ) on the intestinal flora, short chain fatty acids(SCFAs), and neuroinflammation in rats with diabetes mellitus complicated depression(DD). The DD model was established in rats and model rats were randomly divided into a model group, a positive drug(metformin + fluoxetine) group, a ZJJ low-dose group, and a ZJJ high-dose group, with eight rats in each group. Another eight rats were assigned to the blank group. Subsequently, depressive-like behavior test was conducted on the rats, and cerebrospinal fluid samples were collected to measure pro-inflammatory cytokines [interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)]. Blood serum samples were collected to measure proteins related to the hypothalamic-pituitary-adrenal axis(HPA axis), including corticotropin-releasing hormone(CRH), adrenocorticotropic hormone(ACTH), and cortisol(CORT), as well as glucose metabolism. Gut contents were collected from each group for 16S rRNA sequencing analysis of intestinal flora and SCFAs sequencing. The results indicated that ZJJ not only improved glucose metabolism in DD rats(P<0.01) but also alleviated depressive-like behavior(P<0.05) and HPA axis hyperactivity(P<0.05 or P<0.01). Besides, it also improved the neuroinflammatory response in the brain, as evidenced by a significant reduction in pro-inflammatory cytokines in cerebrospinal fluid(P<0.05 or P<0.01). Additionally, ZJJ improved the intestinal flora, causing the intestinal flora in DD rats to resemble that of the blank group, characterized by an increased Firmicutes abundance. ZJJ significantly increased the levels of SCFAs(acetic acid, butyric acid, valeric acid, and isovaleric acid)(P<0.01). Therefore, it is deduced that ZJJ can effectively ameliorate intestinal flora dysbiosis, regulate SCFAs, and thereby improve both glucose metabolism disturbances and depressive-like behavior in DD.


Subject(s)
Diabetes Mellitus , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats , Animals , Hypothalamo-Hypophyseal System/metabolism , Depression/drug therapy , RNA, Ribosomal, 16S , Pituitary-Adrenal System/metabolism , Corticotropin-Releasing Hormone/metabolism , Cytokines/genetics , Cytokines/metabolism , Glucose/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology
3.
J Affect Disord ; 351: 870-877, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38341156

ABSTRACT

The hypothalamus is a well-established core structure in the sleep-wake cycle. While previous studies have not consistently found whole hypothalamus volume changes in chronic insomnia disorder (CID), differences may exist at the smaller substructural level of the hypothalamic nuclei. The study aimed to investigate the differences in total and subfield hypothalamic volumes, between CID patients and healthy controls (HCs) in vivo, through an advanced deep learning-based automated segmentation tool. A total of 150 patients with CID and 155 demographically matched HCs underwent T1-weighted structural magnetic resonance scanning. We utilized FreeSurfer v7.2 for automated segmentation of the hypothalamus and its five nuclei. Additionally, correlation and causal mediation analyses were performed to investigate the association between hypothalamic volume changes, insomnia symptom severity, and hypothalamus-pituitary-adrenal (HPA) axis-related blood biomarkers. CID patients exhibited larger volumes in the right anterior inferior, left anterior superior, and left posterior subunits of the hypothalamus compared to HCs. Moreover, we observed a positive association between blood corticotropin-releasing hormone (CRH) levels and insomnia severity, with anterior inferior hypothalamus (a-iHyp) hypertrophy mediating this relationship. In conclusion, we found significant volume increases in several hypothalamic subfield regions in CID patients, highlighting the central role of the HPA axis in the pathophysiology of insomnia.


Subject(s)
Corticotropin-Releasing Hormone , Sleep Initiation and Maintenance Disorders , Humans , Corticotropin-Releasing Hormone/metabolism , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Hypothalamus/diagnostic imaging
4.
Transl Psychiatry ; 14(1): 8, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191479

ABSTRACT

Impaired motivational drive is a key feature of depression. Chronic stress is a known antecedent to the development of depression in humans and depressive-like states in animals. Whilst there is a clear relationship between stress and motivational drive, the mechanisms underpinning this association remain unclear. One hypothesis is that the endocrine system, via corticotropin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN; PVNCRH), initiates a hormonal cascade resulting in glucocorticoid release, and that excessive glucocorticoids change brain circuit function to produce depression-related symptoms. Another mostly unexplored hypothesis is that the direct activity of PVNCRH neurons and their input to other stress- and reward-related brain regions drives these behaviors. To further understand the direct involvement of PVNCRH neurons in motivation, we used optogenetic stimulation to activate these neurons 1 h/day for 5 consecutive days and showed increased acute stress-related behaviors and long-lasting deficits in the motivational drive for sucrose. This was associated with increased Fos-protein expression in the lateral hypothalamus (LH). Direct stimulation of the PVNCRH inputs in the LH produced a similar pattern of effects on sucrose motivation. Together, these data suggest that PVNCRH neuronal activity may be directly responsible for changes in motivational drive and that these behavioral changes may, in part, be driven by PVNCRH synaptic projections to the LH.


Subject(s)
Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone , Animals , Humans , Motivation , Pituitary Hormone-Releasing Hormones , Optogenetics , Hypothalamus , Glucocorticoids , Neurons , Sucrose
5.
Zhen Ci Yan Jiu ; 49(1): 47-56, 2024 Jan 25.
Article in English, Chinese | MEDLINE | ID: mdl-38239138

ABSTRACT

OBJECTIVES: To observe the effect of moxibustion intervention on the hypothalamus-spinal cord-colon axis of rats with irritable bowel syndrome with diarrhea (IBS-D) and explore the mechanism of moxibustion in improving visceral hypersensitivity in rats with IBS-D. METHODS: A total of 36 SD rats were randomly divided into normal, model, and moxibustion groups, with 12 rats in each group. The IBS-D model was established by maternal separation + acetic acid stimulation + chronic restraint. Rats of the moxibustion group received bilateral moxibustion on "Tianshu" (ST25) and "Shangjuxu" (ST37) for 15 min, once a day for 7 consecutive days. The body weight, loose stool rate, and minimum threshold volume of abdominal withdrawal reflex (AWR) were measured before and after moxibustion intervention, respectively. The histopathological changes in the colon tissue were observed after HE staining. The number of colonic mucosal mast cells (MCs) was measured by toluidine blue staining. The activation of MCs was determined by tryptase positive expression level and examined by immunohistochemical staining. The content, protein and mRNA expression levels and positive expression levels of corticotropin releasing factor (CRF), substance P (SP), and calcitonin gene-related peptide (CGRP) in the hypothalamus, spinal cord and colon tissues were measured by ELISA, Western blot, real-time fluorescent quantitative PCR and immunofluorescence staining, respectively. RESULTS: Compared with the normal group, the loose stool rate was increased (P<0.01);the body weight and minimum threshold volume of AWR were decreased (P<0.01);the inflammatory infiltration of colon tissues was obvious;the number of MCs and positive expression level of tryptase in the colon tissue were increased (P<0.01);the contents, positive expression le-vels, protein and mRNA expression levels of CRF, SP and CGRP in the hypothalamus, spinal cord and colon tissues were increased (P<0.01, P<0.05) in the model group. After the intervention, compared with the model group, all these indicators showed opposite trends (P<0.01, P<0.05) in the moxibustion group. CONCLUSIONS: Moxibustion can improve visceral hypersensitivity in rats with IBS-D, and its mechanism may be related to regulating the hypothalamic-spinal-colon axis to reduce the release of CRF, SP and CGRP, and thus to inhibite MC in colon tissue.


Subject(s)
Irritable Bowel Syndrome , Moxibustion , Rats , Animals , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/metabolism , Rats, Sprague-Dawley , Corticotropin-Releasing Hormone/metabolism , Tryptases/metabolism , Calcitonin Gene-Related Peptide/metabolism , Maternal Deprivation , Diarrhea/genetics , Diarrhea/therapy , Hypothalamus/metabolism , Substance P/metabolism , Spinal Cord , Body Weight , RNA, Messenger/metabolism
6.
Curr Biol ; 34(2): 389-402.e5, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38215742

ABSTRACT

Aversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVNCRF neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVNCRF neurons in an operant chamber, indicating a reinforcing nature of these neurons. The reinforcing property of these neurons is not mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis. We found that PVNCRF neurons send direct projections to the ventral tegmental area (VTA), and selective activation of these projections induced robust self-stimulation behaviors, without activation of the HPA axis. Similar to the PVNCRF cell bodies, self-stimulation of PVNCRF-VTA projection was dramatically attenuated by systemic pretreatment of CRF receptor 1 or dopamine D1 receptor (D1R) antagonist and augmented by corticosterone synthesis inhibitor metyrapone, but not altered by dopamine D2 receptor (D2R) antagonist. Furthermore, we found that activation of PVNCRF-VTA projections increased c-Fos expression in the VTA dopamine neurons and rapidly triggered dopamine release in the nucleus accumbens (NAc), and microinfusion of D1R or D2R antagonist into the NAc decreased the self-stimulation of these projections. Together, our findings reveal an unappreciated role of PVNCRF neurons and their VTA projections in driving reward-related behaviors, independent of their core neuroendocrine functions. As activation of PVNCRF neurons is the final common path for many stress systems, our study suggests a novel mechanism underlying the positive reinforcing effect of stressful stimuli.


Subject(s)
Corticotropin-Releasing Hormone , Pituitary Hormone-Releasing Hormones , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Pituitary Hormone-Releasing Hormones/pharmacology , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Dopaminergic Neurons/metabolism
7.
Exp Neurol ; 372: 114616, 2024 02.
Article in English | MEDLINE | ID: mdl-38007208

ABSTRACT

Corticotrophin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) play a critical role in the modulation of the hypothalamic-pituitary-adrenal (HPA) axis. Early-life exposure to di-(2-ethylhexyl) phthalate (DEHP) has been associated with an increased risk of developing psychiatric disorders in adulthood. The present work was designed to explore the impact of neonatal exposure to DEHP on adult PVN CRH neuronal activity. DEHP or vehicle was given to male rat pups from PND16 to PND22. Then, anxiety-like behaviors, serum corticosterone and testosterone, immunohistochemistry, western blotting, fluorescence in situ hybridization and acute ex vivo slice electrophysiological recordings were used to evaluate the influence of DEHP on adult PVN secretory CRH neurons. Neonatal DEHP-exposed rats exhibited enhanced anxiety-like behaviors in adults, with an increase in CORT. Secretory CRH neurons showed higher spontaneous firing activity but could be inhibited by GABAAR blockers. CRH neurons displayed fewer firing spikes, prolonged first-spike latency, depolarizing shifts in GABA reversal potential and strengthened GABAergic inputs, as indicated by increases in the frequency and amplitude of sIPSCs. Enhancement of GABAergic transmission was accompanied by upregulated expression of GAD67 and downregulated expression of GABABR1, KCC2 and GAT1. These findings suggest that neonatal exposure to DEHP permanently altered the characteristics of secretory CRH neurons in the PVN, which may contribute to the development of psychiatric disorders later in life.


Subject(s)
Corticotropin-Releasing Hormone , Diethylhexyl Phthalate , Humans , Rats , Male , Animals , Corticotropin-Releasing Hormone/metabolism , In Situ Hybridization, Fluorescence , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Hypothalamus , Paraventricular Hypothalamic Nucleus , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Corticosterone
8.
Front Endocrinol (Lausanne) ; 14: 1288282, 2023.
Article in English | MEDLINE | ID: mdl-38116320

ABSTRACT

Introduction: Physical activity is recommended as an alternative treatment for depression. Myokines, which are secreted from skeletal muscles during physical activity, play an important role in the skeletal muscle-brain axis. Musclin, a newly discovered myokine, exerts physical endurance, however, the effects of musclin on emotional behaviors, such as depression, have not been evaluated. This study aimed to access the anti-depressive effect of musclin and clarify the connection between depression-like behavior and hypothalamic neuropeptides in mice. Methods: We measured the immobility time in the forced swim (FS) test, the time spent in open arm in the elevated-plus maze (EPM) test, the mRNA levels of hypothalamic neuropeptides, and enumerated the c-Fos-positive cells in the paraventricular nucleus (PVN), arcuate nucleus (ARC), and nucleus tractus solitarii (NTS) in mice with the intraperitoneal (i.p.) administration of musclin. Next, we evaluated the effects of a selective corticotropin-releasing factor (CRF) type 1 receptor antagonist, selective CRF type 2 receptor antagonist, melanocortin receptor (MCR) agonist, and selective melanocortin 4 receptor (MC4R) agonist on changes in behaviors induced by musclin. Finally we evaluated the antidepressant effect of musclin using mice exposed to repeated water immersion (WI) stress. Results: We found that the i.p. and i.c.v. administration of musclin decreased the immobility time and relative time in the open arms (open %) in mice and increased urocortin 2 (Ucn 2) levels but decreased proopiomelanocortin levels in the hypothalamus. The numbers of c-Fos-positive cells were increased in the PVN and NTS but decreased in the ARC of mice with i.p. administration of musclin. The c-Fos-positive cells in the PVN were also found to be Ucn 2-positive. The antidepressant and anxiogenic effects of musclin were blocked by central administration of a CRF type 2 receptor antagonist and a melanocortin 4 receptor agonist, respectively. Peripheral administration of musclin also prevented depression-like behavior and the decrease in levels of hypothalamic Ucn 2 induced by repeated WI stress. Discussion: These data identify the antidepressant effects of musclin through the activation of central Ucn 2 signaling and suggest that musclin and Ucn 2 can be new therapeutic targets and endogenous peptides mediating the muscle-brain axis.


Subject(s)
Corticotropin-Releasing Hormone , Urocortins , Mice , Male , Animals , Corticotropin-Releasing Hormone/genetics , Urocortins/pharmacology , Depression/prevention & control , Receptor, Melanocortin, Type 4 , Hypothalamus/metabolism , Solitary Nucleus/metabolism , Antidepressive Agents/pharmacology , Proto-Oncogene Proteins c-fos
9.
Nat Commun ; 14(1): 8522, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129411

ABSTRACT

Recalling a salient experience provokes specific behaviors and changes in the physiology or internal state. Relatively little is known about how physiological memories are encoded. We examined the neural substrates of physiological memory by probing CRHPVN neurons of mice, which control the endocrine response to stress. Here we show these cells exhibit contextual memory following exposure to a stimulus with negative or positive valence. Specifically, a negative stimulus invokes a two-factor learning rule that favors an increase in the activity of weak cells during recall. In contrast, the contextual memory of positive valence relies on a one-factor rule to decrease activity of CRHPVN neurons. Finally, the aversive memory in CRHPVN neurons outlasts the behavioral response. These observations provide information about how specific physiological memories of aversive and appetitive experience are represented and demonstrate that behavioral readouts may not accurately reflect physiological changes invoked by the memory of salient experiences.


Subject(s)
Corticotropin-Releasing Hormone , Paraventricular Hypothalamic Nucleus , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Stress, Physiological
10.
Curr Biol ; 33(24): R1296-R1298, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38113842

ABSTRACT

A neuropeptide called corticotropin-releasing hormone (CRH) is known for stress signaling in the brain. A study now shows that a small population of CRH-expressing neurons situated in the lateral hypothalamus area are involved in sensing olfactory food cues and promoting food consumption in mice.


Subject(s)
Hypothalamus , Neuropeptides , Mice , Animals , Hypothalamus/metabolism , Corticotropin-Releasing Hormone/metabolism , Neurons/metabolism , Brain/metabolism
11.
Peptides ; 170: 171112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918484

ABSTRACT

Growth differentiation factor-15 (GDF15) is a stress-activated cytokine that regulates cell growth and inflammatory and stress responses. We previously reported the role and regulation of GDF15 in pituitary corticotrophs. Dexamethasone increases Gdf15 gene expression levels and production. GDF15 suppresses adrenocorticotropic hormone synthesis in pituitary corticotrophs and subsequently mediates the negative feedback effect of glucocorticoids. Here, we analyzed corticotropin-releasing factor (Crf) promoter activity in hypothalamic 4B cells transfected with promoter-driven luciferase reporter constructs. The effects of time and GDF15 concentration on Crf mRNA levels were analyzed using quantitative real-time polymerase chain reaction. Glial cell-derived neurotrophic factor family receptor α-like (GFRAL) protein is expressed in 4B cells. GDF15 increased Crf promoter activity and Crf mRNA levels in 4B cells. The protein kinase A and C pathways also contributed to the GDF15-induced increase in Crf gene expression. GDF15 stimulates GFRAL, subsequently increasing the phosphorylation of AKT, an extracellular signal-related kinase, and the cAMP response element-binding protein. Therefore, GDF15-dependent pathways may be involved in regulating Crf expression under stressful conditions in hypothalamic cells.


Subject(s)
Corticotropin-Releasing Hormone , Growth Differentiation Factor 15 , Hypothalamus , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Promoter Regions, Genetic , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , RNA, Messenger/metabolism , Animals , Rats , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/pharmacology , Humans
12.
Zhen Ci Yan Jiu ; 48(11): 1142-1150, 2023 Nov 25.
Article in English, Chinese | MEDLINE | ID: mdl-37984912

ABSTRACT

OBJECTIVES: To observe the effect of acupuncture on the expressions of neuropeptides and related inflammatory factors in rats with diarrhea-predominant irritable bowel syndrome(IBS-D), so as to explore the mechanism of acupuncture in the treatment of IBS-D. METHODS: Male Wistar rats were randomly divided into blank group, model group, medication group, and acupuncture group, with 6 rats in each group. Except for the blank group, the other groups were subjected to 14-day "acetic acid enema + restraint stress" to establish the IBS-D rat model. After successful modeling, the medication group received gavage of pinaverium bromide(15 mg/kg) once a day, and the acupuncture group received acupuncture at "Baihui"(GV20) and bilateral "Tianshu"(ST25), "Shangjuxu"(ST37), "Zusanli"(ST36), and "Taichong"(LR3) for 20 min every day, both groups were treated continuously for 14 days. The general state of the rats in each group was observed, and the body weight of the rats was measured. The open-field experiment was conducted to measure the horizontal and vertical movements, and the number of fecal pellets of rats. The histopathological morphology of hypothalamus and colon of rats was observed by HE staining. Toluidine blue staining was used to observe and count the mast cells(MCs) in the colon tissue of rats. ELISA was used to detect the serum contents of tumor necrosis factor-α(TNF-α) and interleukin(IL)-10. Real-time fluorescence quantitative PCR was performed to detect the mRNA expressions of calcitonin gene-related peptide(CGRP) in the hypothalamus and colon tissue. Western blot was used to detect the expressions of corticotropin-releasing factor(CRF) in the hypothalamus and colon tissue. RESULTS: HE staining showed that there was inflammatory cell infiltration in the lamina propria of colon in the model group, and it was reduced in the other groups. Compared with the blank group, the model group showed significantly decreased body weight, decreased walking distance and upright times in open field experiment, decreased serum IL-10 contents(P<0.05, P<0.01), increased fecal pellet number (P<0.01), increased MC number in the colon tissue, serum TNF-α contents, and CGRP mRNA expressions and CRF expressions in the hypothalamus and colon tissue(P<0.01). Compared with the model group, both medication and acupuncture groups showed significantly increased body weight, walking distance and upright times in the open-field experiment, and serum IL-10 contents(P<0.01, P<0.05), significantly decreased fecal pellet number (P<0.05), significantly decreased MC number in the colon tissue, serum TNF-α contents, and CGRP mRNA expressions in the hypothalamus and colon tissue(P<0.01);at the same time, the acupuncture group showed significantly decreased CRF expressions in the hypothalamus and colon tissue(P<0.01, P<0.05). There was no significant difference in the above indicators between the medication group and the acupuncture group. CONCLUSIONS: Acupuncture can improve the general and emotional state, inflammatory response, and neuropeptide expression in rats with IBS-D, and alleviate the symptoms of IBS-D, which may be related to the regulation of neuropeptides and inflammatory factors levels.


Subject(s)
Acupuncture Therapy , Irritable Bowel Syndrome , Rats , Male , Animals , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/therapy , Irritable Bowel Syndrome/metabolism , Interleukin-10 , Diarrhea/genetics , Diarrhea/therapy , Corticotropin-Releasing Hormone , Calcitonin Gene-Related Peptide , Tumor Necrosis Factor-alpha/genetics , Rats, Sprague-Dawley , Rats, Wistar , Body Weight , RNA, Messenger , Acupuncture Points
13.
Neurotoxicology ; 99: 244-253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944760

ABSTRACT

Misused volatile solvents typically contain toluene (TOL) as the main psychoactive ingredient. Cyclohexane (CHX) can also be present and is considered a safer alternative. Solvent misuse often occurs at early stages of life, leading to permanent neurobehavioral impairment and growth retardation. However, a comprehensive examination of the effects of TOL and CHX on stress regulation and energy balance is lacking. Here, we compared the effect of a binge-pattern exposure to TOL or CHX (4,000 or 8,000 ppm) on body weight, food intake, the hypothalamus-pituitary-adrenal (HPA) and hypothalamus-pituitary-thyroid (HPT) axes in male adolescent Wistar rats. At 8,000 ppm, TOL decreased body weight gain without affecting food intake. In addition, TOL and CHX altered the HPA and HPT axes' function in a solvent- and concentration-dependent manner. The highest TOL concentration produced HPA axis hyperactivation in animals not subjected to stress, which was evidenced by increased corticotropin-releasing-factor (CRF) release from the median eminence (ME), elevated adrenocorticotropin hormone (ACTH) and corticosterone serum levels, and decreased CRF mRNA levels in the hypothalamic paraventricular nucleus (PVN). TOL (8,000 ppm) also increased triiodothyronine (T3) serum levels, decreased pro-thyrotropin-releasing-hormone (pro-TRH) mRNA transcription in the PVN, pro-TRH content in the ME, and serum thyroid stimulating hormone (TSH) levels. CHX did not affect the HPA axis. We propose that the increased HPT axis activity induced by TOL can be related to the impaired body weight gain associated with inhalant misuse. These findings may contribute to a better understanding of the effects of the misused solvents TOL and CHX.


Subject(s)
Corticotropin-Releasing Hormone , Hypothalamo-Hypophyseal System , Rats , Male , Animals , Rats, Wistar , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Toluene/toxicity , Pituitary-Adrenal System/metabolism , Hypothalamus/metabolism , Body Weight , RNA, Messenger , Solvents/toxicity , Corticosterone
14.
J Neuroendocrinol ; 35(12): e13351, 2023 12.
Article in English | MEDLINE | ID: mdl-37901949

ABSTRACT

Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.


Subject(s)
Corticotropin-Releasing Hormone , Serotonin , Mice , Animals , Serotonin/metabolism , Corticotropin-Releasing Hormone/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Synaptic Transmission/physiology , Neurons/metabolism , Hypothalamus/metabolism
15.
J Neurosci ; 43(45): 7657-7667, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37833068

ABSTRACT

Worldwide, alcohol use and abuse are a leading risk of mortality, causing 5.3% of all deaths (World Health Organization, 2022). The endocrine stress system, initiated by the peripheral release of corticotropin releasing hormone (CRH) from primarily glutamatergic neurons in the paraventricular nucleus of the hypothalamus (PVN), is profoundly linked with alcohol use, abuse, and relapse (Blaine and Sinha, 2017). These PVN CRH-releasing (PVNCRH) neurons are essential for peripheral and central stress responses (Rasiah et al., 2023), but little is known about how alcohol affects these neurons. Here, we show that two-bottle choice alcohol consumption blunts the endocrine-mediated corticosterone response to stress during acute withdrawal in female mice. Conversely, using slice electrophysiology, we demonstrate that acute withdrawal engenders a hyperexcitable phenotype of PVNCRH neurons in females that is accompanied by increased glutamatergic transmission in both male and female mice. GABAergic synaptic transmission was unaffected by alcohol history. We then tested whether chemogenetic inhibition of PVNCRH neurons would restore stress response in female mice with a history of alcohol drinking in the looming disk test, which mimics an approaching predator threat. Accordingly, inhibition of PVNCRH neurons reduced active escape in hM4Di alcohol history mice only. This study indicates that stress-responsive PVNCRH neurons in females are particularly affected by a history of alcohol consumption. Interestingly, women have indicated an increase in heavy alcohol use to cope with stress (Rodriguez et al., 2020), perhaps pointing to a potential underlying mechanism in alcohol-mediated changes to PVNCRH neurons that alter stress response.SIGNIFICANCE STATEMENT Paraventricular nucleus of the hypothalamus neurons that release corticotropin releasing hormone (PVNCRH) are vital for stress response. These neurons have been understudied in relation to alcohol and withdrawal despite profound relations between stress, alcohol use disorders (AUD), and relapse. In this study, we use a variety of techniques to show that acute withdrawal from a history of alcohol impacts peripheral stress response, PVNCRH neurons, and behavior. Specifically, PVNCRH are in a hyperactive state during withdrawal, which drives an increase in active stress coping behaviors in female mice only. Understanding how alcohol use and withdrawal affects stress responding PVNCRH neurons may contribute to finding new potential targets for the treatment of alcohol use disorder.


Subject(s)
Alcoholism , Corticotropin-Releasing Hormone , Humans , Female , Male , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone , Pituitary Hormone-Releasing Hormones , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Neurons/physiology , Alcohol Drinking , Recurrence
16.
Front Endocrinol (Lausanne) ; 14: 1266081, 2023.
Article in English | MEDLINE | ID: mdl-37900150

ABSTRACT

The hypothalamic type 2 corticotropin releasing hormone receptor (CRH-R2) plays critical roles in homeostatic regulation, particularly in fine tuning stress recovery. During acute stress, the CRH-R2 ligands CRH and urocortins promote adaptive responses and feeding inhibition. However, in rodent models of chronic stress, over-exposure of hypothalamic CRH-R2 to its cognate agonists is associated with urocortin 2 (Ucn2) resistance; attenuated cAMP-response element binding protein (CREB) phosphorylation and increased food intake. The molecular mechanisms involved in these altered CRH-R2 signalling responses are not well described. In the present study, we used the adult mouse hypothalamus-derived cell line mHypoA-2/30 to investigate CRH-R2 signalling characteristics focusing on gene expression of molecules involved in feeding and circadian regulation given the role of clock genes in metabolic control. We identified functional CRH-R2 receptors expressed in mHypoA-2/30 cells that differentially regulate CREB and AMP-activated protein kinase (AMPK) phosphorylation and downstream expression of the appetite-regulatory genes proopiomelanocortin (Pomc) and neuropeptide Y (Npy) in accordance with an anorexigenic effect. We studied for the first time the effects of Ucn2 on clock genes in native and in a circadian bioluminescence reporter expressing mHypoA-2/30 cells, detecting enhancing effects of Ucn2 on mRNA levels and rhythm amplitude of the circadian regulator Aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), which could facilitate anorexic responses in the activity circadian phase. These data uncover novel aspects of CRH-R2 hypothalamic signalling that might be important in regulation of circadian feeding during stress responses.


Subject(s)
Corticotropin-Releasing Hormone , Receptors, Corticotropin-Releasing Hormone , Mice , Animals , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Urocortins/genetics , Urocortins/metabolism , Gene Expression , Neurons/metabolism
17.
Endocrinology ; 164(11)2023 09 23.
Article in English | MEDLINE | ID: mdl-37823477

ABSTRACT

The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice. We found that fluorescent ghrelin mainly labels PVH neurons immunoreactive for nitric oxide synthase 1 (NOS1), which catalyze the production of nitric oxide [NO]). Centrally injected ghrelin increases c-Fos in NOS1 PVH neurons and NOS1 phosphorylation in the PVH. We also found that a high dose of systemically injected ghrelin increases the ghrelin level in the cerebrospinal fluid and in the periventricular PVH, and induces c-Fos in NOS1 PVH neurons. Such a high dose of systemically injected ghrelin activates a subset of NOS1 PVH neurons, which do not express oxytocin, via an arcuate nucleus-independent mechanism. Finally, we found that pharmacological inhibition of NO production fully abrogates ghrelin-induced increase of calcium concentration in corticotropin-releasing hormone neurons of the PVH whereas it partially impairs ghrelin-induced increase of plasma glucocorticoid levels. Thus, plasma ghrelin can directly target a subset of NO-producing neurons of the PVH that is involved in ghrelin-induced activation of the hypothalamic-pituitary-adrenal neuroendocrine axis.


Subject(s)
Corticotropin-Releasing Hormone , Ghrelin , Mice , Male , Animals , Corticotropin-Releasing Hormone/metabolism , Ghrelin/pharmacology , Ghrelin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Hypothalamo-Hypophyseal System/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Neurons/metabolism
18.
Int. j. morphol ; 41(5): 1527-1536, oct. 2023. ilus
Article in English | LILACS | ID: biblio-1521022

ABSTRACT

SUMMARY: The 12C6+ heavy ion beam irradiation can cause bystander effects. The inflammatory cytokines, endocrine hormones and apoptotic proteins may be involved in 12C6+ irradiation-induced bystander effects. This study characterized the protective effects and mechanisms of Huangqi decoction (HQD) against 12C6+ radiation induced bystander effects. Wistar rats were randomly divided into control, 12C6+ heavy ion irradiation model, and high-dose/medium-dose/low-dose HQD groups. HE staining assessed the pathological changes of brain and kidney. Peripheral blood chemical indicators as well as inflammatory factors and endocrine hormones were detected. Apoptosis was measured with TUNEL. Proliferating cell nuclear antigen (PCNA) expression was determined with real-time PCR and Western blot.Irradiation induced pathological damage to the brain and kidney tissues. After irradiation, the numbers of white blood cells (WBC) and monocyte, and the expression of interleukin (IL)-2, corticotropin-releasing hormone (CRH) and PCNA decreased. The damage was accompanied by increased expression of IL-1β, IL-6, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) as well as increased neuronal apoptosis. These effects were indicative of radiation-induced bystander effects. Administration of HQD attenuated the pathological damage to brain and kidney tissues, and increased the numbers of WBC, neutrophils, lymphocyte and monocytes, as well as the expression of IL-2, CRH and PCNA. It also decreased the expression of IL-1β, IL-6, CORT and ACTH as well as neuronal apoptosis. HQD exhibits protective effects against 12C6+ radiation-induced bystander effects. The underlying mechanism may involve the promotion of the production of peripheral blood cells, inhibition of inflammatory factors and apoptosis, and regulation of endocrine hormones.


La irradiación con haz de iones pesados 12C6+ puede provocar efectos secundarios. Las citoquinas inflamatorias, las hormonas endocrinas y las proteínas apoptóticas pueden estar involucradas en los efectos secundarios inducidos por la irradiación 12C6+. Este estudio caracterizó los efectos y mecanismos protectores de la decocción de Huangqi (HQD) contra los efectos externos inducidos por la radiación 12C6+. Las ratas Wistar se dividieron aleatoriamente en grupos control, modelo de irradiación de iones pesados 12C6+ y grupos de dosis alta/media/baja de HQD. La tinción con HE evaluó los cambios patológicos del cerebro y el riñón. Se detectaron indicadores químicos de sangre periférica, así como factores inflamatorios y hormonas endocrinas. La apoptosis se midió con TUNEL. La expresión del antígeno nuclear de células en proliferación (PCNA) se determinó mediante PCR en tiempo real y transferencia Western blot. La irradiación indujo daños patológicos en los tejidos cerebrales y renales. Después de la irradiación, disminuyó el número de glóbulos blancos (WBC) y monocitos, y la expresión de interleucina (IL)-2, hormona liberadora de corticotropina (CRH) y PCNA. El daño estuvo acompañado por una mayor expresión de IL-1β, IL-6, corticosterona (CORT) y hormona adrenocorticotrópica (ACTH), así como un aumento de la apoptosis neuronal. Estas alteraciones fueron indicativas de efectos inducidos por la radiación. La administración de HQD atenuó el daño patológico a los tejidos cerebrales y renales, y aumentó el número de leucocitos y monocitos, así como la expresión de IL-2, CRH y PCNA. También disminuyó la expresión de IL-1β, IL-6, CORT y ACTH, así como la apoptosis neuronal. HQD exhibe mecanismos protectores contra los efectos externos inducidos por la radiación 12C6+. El mecanismo subyacente puede implicar la promoción de la producción de células sanguíneas periféricas, la inhibición de factores inflamatorios y la apoptosis y la regulación de hormonas endocrinas.


Subject(s)
Animals , Female , Rats , Drugs, Chinese Herbal , Protective Agents/administration & dosage , Heavy Ions/adverse effects , Scutellaria baicalensis/chemistry , Brain/drug effects , Brain/radiation effects , Corticotropin-Releasing Hormone , Enzyme-Linked Immunosorbent Assay , Rats, Wistar , Apoptosis/drug effects , Apoptosis/radiation effects , Adrenocorticotropic Hormone , Proliferating Cell Nuclear Antigen , Endocrine System/drug effects , Endocrine System/radiation effects , Immunologic Factors/antagonists & inhibitors , Kidney/drug effects , Kidney/radiation effects
19.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762339

ABSTRACT

Memory deficit is one of the major negative outcomes of chronic stress. Cholinergic system modulates memory not only through the neuronal cells, but also via interactions with non-neuronal cells, suggesting that microglia can influence synaptic function and plasticity, contributing to cognition and memory function. Withania somnifera (L.) Dunal (WS) and Bacopa monnieri (L.) Wettst (BM), are traditional herbal medicinal products used for the temporary relief of symptoms of stress. The aim of this study was to investigate whether choline (CLN) activity could be enhanced via an association with adaptogens: WS and BM extracts. First, we optimized an in vitro model of corticotropin-releasing hormone (CRH)-induced oxidative stress on microglial BV2 cells. CRH 100 nM reduced BV2 cell viability and induced morphological changes and neurotoxicity after 24 h of microglia stimulation. Moreover, it induced an increase in the production of reactive oxygen species (ROS) and dysregulated antioxidant protein (i.e., SIRT-1 and NRF-2). The association between choline and adaptogens (CBW) 10 µg/mL counteracted the effect of CRH on BV2 cells and reduced the neurotoxicity produced by BV2 CRH-conditioned medium in the SH-SY5Y cell lines. CBW 200 mg/kg produced an ameliorative effect on recognition memory in the novel object recognition test (NORT) test in mice. In conclusion, combining choline with adaptogen plant extracts might represent a promising intervention in chronic stress associated with memory disturbances through the attenuation of microglia-induced oxidative stress.


Subject(s)
Bacopa , Neuroblastoma , Neurotoxicity Syndromes , Withania , Humans , Animals , Mice , Neuroprotection , Microglia , Oxidative Stress , Choline , Corticotropin-Releasing Hormone
20.
Endocrinology ; 164(8)2023 06 26.
Article in English | MEDLINE | ID: mdl-37450603

ABSTRACT

Patients with secondary adrenal insufficiency can present with impaired free water excretion and hyponatremia, which is due to the enhanced secretion of vasopressin (AVP) despite increased total body water. AVP is produced in magnocellular neurons in the paraventricular nucleus of the hypothalamus (PVH) and supraoptic nucleus and in parvocellular corticotropin-releasing factor (CRF) neurons in the PVH. This study aimed to elucidate whether magnocellular AVP neurons or parvocellular CRF neurons coexpressing AVP are responsible for the pathogenesis of hyponatremia in secondary adrenal insufficiency. The number of CRF neurons expressing copeptin, an AVP gene product, was significantly higher in adrenalectomized AVP-floxed mice (AVPfl/fl) than in sham-operated controls. Adrenalectomized AVPfl/fl mice supplemented with aldosterone showed impaired water diuresis under ad libitum access to water or after acute water loading. They became hyponatremic after acute water loading, and it was revealed under such conditions that aquaporin-2 (AQP2) protein levels were increased in the kidney. Furthermore, translocation of AQP2 to the apical membrane was markedly enhanced in renal collecting duct epithelial cells. Remarkably, all these abnormalities observed in the mouse model for secondary adrenal insufficiency were ameliorated in CRF-AVP-/- mice that lacked AVP in CRF neurons. Our study demonstrates that CRF neurons in the PVH are responsible for the pathogenesis of impaired water excretion in secondary adrenal insufficiency.


Subject(s)
Adrenal Insufficiency , Hyponatremia , Mice , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Adrenocorticotropic Hormone/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Hyponatremia/metabolism , Aquaporin 2/genetics , Aquaporin 2/metabolism , Arginine Vasopressin/metabolism , Hypothalamus/metabolism , Vasopressins/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Neurons/metabolism , Diuresis
SELECTION OF CITATIONS
SEARCH DETAIL