Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Braz. j. microbiol ; Braz. j. microbiol;48(4): 637-647, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-889185

ABSTRACT

ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O) and catechol 2,3 dioxygenase (C23O) was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH) in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.


Subject(s)
Soil Pollutants/metabolism , Surface-Active Agents/metabolism , Bacterial Proteins/metabolism , Petroleum/microbiology , Actinobacteria/metabolism , Corynebacterium/metabolism , Acinetobacter baumannii/metabolism , Dioxygenases/metabolism , Phylogeny , Soil Microbiology , Surface-Active Agents/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Petroleum/analysis , Petroleum Pollution/analysis , Actinobacteria/growth & development , Actinobacteria/enzymology , Actinobacteria/genetics , Corynebacterium/growth & development , Corynebacterium/enzymology , Corynebacterium/genetics , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Dioxygenases/genetics , India
2.
Braz J Microbiol ; 48(4): 637-647, 2017.
Article in English | MEDLINE | ID: mdl-28629972

ABSTRACT

Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O) and catechol 2,3 dioxygenase (C23O) was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH) in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.


Subject(s)
Acinetobacter baumannii/metabolism , Actinobacteria/metabolism , Bacterial Proteins/metabolism , Corynebacterium/metabolism , Dioxygenases/metabolism , Petroleum/microbiology , Soil Pollutants/metabolism , Surface-Active Agents/metabolism , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/growth & development , Actinobacteria/enzymology , Actinobacteria/genetics , Actinobacteria/growth & development , Bacterial Proteins/genetics , Biodegradation, Environmental , Corynebacterium/enzymology , Corynebacterium/genetics , Corynebacterium/growth & development , Dioxygenases/genetics , India , Petroleum/analysis , Petroleum Pollution/analysis , Phylogeny , Soil Microbiology , Surface-Active Agents/chemistry
3.
Appl Microbiol Biotechnol ; 63(2): 200-6, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12827320

ABSTRACT

Corynebacterium glutamicum CCTCC M201005 produces a novel polygalacturonic acid bioflocculant, REA-11, consisting of galacturonic acid as the main structural unit. A biosynthetic pathway of REA-11 in C. glutamicum CCTCC M201005 was proposed. Evidence for the biosynthetic pathway was provided by: (1) analyzing the response upon addition of UDP-glucose to the culture medium; (2) detecting the presence of several key intermediates in the pathway; and (3) correlating the activities of several key enzymes involved in the pathway with the yields of polygalacturonic acid. The production of polygalacturonic acid was improved by 24%, while the activities of UDP-galactose epimerase and UDP-galactose dehydrogenase were improved by 200% and 50%, respectively, upon addition of 100 microM UDP-glucose. In addition, the key intermediates in the proposed biosynthetic pathway, such as UDP-glucose, UDP-galactose, and UDP-glucuronic acid, were detected in cell-free extracts. Furthermore, the activities of UDP-glucose pyrophosphorylase (R2=0.97), UDP-galactose epimerase (R2=0.75) and UDP-galactose dehydrogenase (R2=0.89) were well correlated with the yields of polygalacturonic acid when different sugars were used as sole carbon sources. Therefore, the biosynthetic pathway of REA-11 in C. glutamicum CCTCC M201005 starts from phosphate-1-glucose, which was then converted to UDP-glucose by UDP-pyrophosphorylase. Predominantly, the UDP-glucose was converted to UDP-galactose by UDP-galactose epimerase; the latter was further converted to UDP-galacturonic acid by UDP-galactose dehydrogenase, which was presumably polymerized to polygalacturonic acid bioflocculant REA-11 by an unknown glucosyltransferase and a polymerase.


Subject(s)
Corynebacterium/metabolism , Corynebacterium/physiology , Pectins/metabolism , Corynebacterium/enzymology , Corynebacterium/growth & development , Culture Media , Flocculation , Uridine Diphosphate Galactose/metabolism , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Sugars/metabolism
4.
Appl Microbiol Biotechnol ; 61(1): 61-8, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12658516

ABSTRACT

The relationship between changes in mRNA abundance and enzyme activity was determined for three genes over a span of nearly 3 h during amino acid production in Corynebacterium glutamicum. Gene expression changes during C. glutamicum fermentations were examined by complementary DNA (cDNA) microarrays and by a second method for quantitating RNA levels, competitive reverse transcriptase-PCR (RT-PCR). The results obtained independently by both methods were compared and found to be in agreement, thus validating the quantitative potential of DNA microarrays for gene expression profiling. Evidence of a disparity between mRNA abundance and enzyme activity is presented and supports our belief that it is difficult to generally predict protein activity from quantitative transcriptome data. Homoserine dehydrogenase, threonine dehydratase, and homoserine kinase are enzymes involved in the biosynthesis of l-isoleucine and other aspartate-derived amino acids in C. glutamicum. Our data suggest that different underlying regulatory mechanisms may be connected with the expression of the genes encoding each of these three enzymes. Indeed, whereas in one case the increases in enzyme activity exceeded those in the corresponding mRNA abundance, in another case large increases in the levels of gene expression were not congruent with changes in enzyme activity.


Subject(s)
Corynebacterium/enzymology , Corynebacterium/genetics , Oligonucleotide Array Sequence Analysis , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Aspartic Acid/metabolism , Corynebacterium/growth & development , Fermentation , Gene Expression Profiling , Homoserine Dehydrogenase/metabolism , Oligonucleotide Array Sequence Analysis/methods , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Polymerase Chain Reaction/methods , RNA, Messenger/analysis , Threonine Dehydratase/metabolism , Time Factors
5.
J Exp Bot ; 52(362): 1785-803, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11520867

ABSTRACT

To improve the efficiency of CO(2) fixation in C(3) photosynthesis, C(4)-cycle genes were overexpressed in potato and tobacco plants either individually or in combination. Overexpression of the phosphoenolpyruvate carboxylase (PEPC) gene (ppc) from Corynebacterium glutamicum (cppc) or from potato (stppc, deprived of the phosphorylation site) in potato resulted in a 3-6-fold induction of endogenous cytosolic NADP malic enzyme (ME) and an increase in the activities of NAD-ME (3-fold), NADP isocitrate dehydrogenase (ICDH), pyruvate kinase (PK), NADP glycerate-3-P dehydrogenase (NADP-GAPDH), and PEP phosphatase (PEPP). In double transformants overexpressing cppc and chloroplastic NADP-ME from Flaveria pringlei (fpMe1), cytosolic NADP-ME was less induced and pleiotropic effects were diminished. There were no changes in enzyme pattern in single fpMe1 overexpressors. In cppc overexpressors of tobacco, the increase in endogenous cytosolic NADP-ME activity was small and changes in other enzymes were less pronounced. Determinations of the CO(2) compensation point (Gamma*) as well as temperature and oxygen effects on photosynthesis produced variational data suggesting that the desired decline in photorespiration occurred only under certain experimental conditions. Double transformants of potato (cppc/fpMe1) exhibited the most consistent attenuating effect on photorespiration. In contrast, photorespiration in tobacco plants appeared to be diminished most in single cppc overexpressors rather than in double transformants (cppc/fpMe1). In tobacco, introduction of the PEP carboxykinase (PEPCK) gene from the bacterium Sinorhizobium meliloti (pck) had little effect on photosynthetic parameters in single (pck) and double transformants (cppc/pck). In transgenic potato plants, increased PEPC activities resulted in a decline in UV protectants (flavonoids) in single cppc or stppc transformants, but not in double transformants (cppc/fpMe1). PEP provision to the shikimate pathway inside the plastids, from which flavonoids derive, might be restricted only in single PEPC overexpressors.


Subject(s)
Malate Dehydrogenase/metabolism , Nicotiana/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Solanum tuberosum/metabolism , Asteraceae/genetics , Carbon Dioxide/metabolism , Cell Respiration , Chloroplasts/enzymology , Cloning, Molecular , Corynebacterium/enzymology , Corynebacterium/genetics , Cytosol/enzymology , Gene Expression , Malate Dehydrogenase/genetics , Phosphoenolpyruvate Carboxylase/genetics , Photochemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Plant Leaves/enzymology , Plants, Genetically Modified , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sinorhizobium meliloti/genetics , Solanum tuberosum/enzymology , Solanum tuberosum/genetics , Nicotiana/enzymology , Nicotiana/genetics , Ultraviolet Rays
6.
Epidemiol Mikrobiol Imunol ; 50(2): 71-3, 2001 Apr.
Article in Czech | MEDLINE | ID: mdl-11329730

ABSTRACT

Arcanobacterium haemolyticum was isolated from 8,641 throat swabs in 49 cases (0.56%), from patients aged 16 to 24 years only, twice more often from men than from women. The isolation was achieved on sheep blood agar supplemented with streak with Staphylococcus aureus strain producing beta-lysine. In all cases the presence of A. haemolyticum colonies was disclosed by the irregular periphery of haemolysis around the staphylococcal streak after the 48-hour incubation. The technique described should be used as a standard procedure for examining throat swabs.


Subject(s)
Bacteriological Techniques , Corynebacterium/isolation & purification , Lysine/analogs & derivatives , Acute Disease , Adolescent , Adult , Corynebacterium/enzymology , Female , Hemolysis , Humans , Lysine/biosynthesis , Male , Pharyngitis/microbiology , Pharynx/microbiology , Phospholipase D/biosynthesis , Staphylococcus aureus/metabolism , Tonsillitis/microbiology
7.
J Biol Chem ; 275(33): 25365-71, 2000 Aug 18.
Article in English | MEDLINE | ID: mdl-10801858

ABSTRACT

Corynebacterium ammoniagenes contains a ribonucleotide reductase (RNR) of the class Ib type. The small subunit (R2F) of the enzyme has been proposed to contain a manganese center instead of the dinuclear iron center, which in other class I RNRs is adjacent to the essential tyrosyl radical. The nrdF gene of C. ammoniagenes, coding for the R2F component, was cloned in an inducible Escherichia coli expression vector and overproduced under three different conditions: in manganese-supplemented medium, in iron-supplemented medium, and in medium without addition of metal ions. A prominent typical tyrosyl radical EPR signal was observed in cells grown in rich medium. Iron-supplemented medium enhanced the amount of tyrosyl radical, whereas cells grown in manganese-supplemented medium had no such radical. In highly purified R2F protein, enzyme activity was found to correlate with tyrosyl radical content, which in turn correlated with iron content. Similar results were obtained for the R2F protein of Salmonella typhimurium class Ib RNR. The UV-visible spectrum of the C. ammoniagenes R2F radical has a sharp 408-nm band. Its EPR signal at g = 2.005 is identical to the signal of S. typhimurium R2F and has a doublet with a splitting of 0.9 millitesla (mT), with additional hyperfine splittings of 0.7 mT. According to X-band EPR at 77-95 K, the inactive manganese form of the C. ammoniagenes R2F has a coupled dinuclear Mn(II) center. Different attempts to chemically oxidize Mn-R2F showed no relation between oxidized manganese and tyrosyl radical formation. Collectively, these results demonstrate that enzymatically active C. ammoniagenes RNR is a generic class Ib enzyme, with a tyrosyl radical and a diferric metal cofactor.


Subject(s)
Bacterial Proteins , Corynebacterium/enzymology , Iron/chemistry , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/genetics , Cloning, Molecular , Electron Spin Resonance Spectroscopy , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Iron/pharmacology , Ligands , Manganese/chemistry , Manganese/pharmacology , Plasmids/metabolism , Salmonella typhimurium/enzymology , Spectrophotometry , Ultraviolet Rays
8.
Appl Environ Microbiol ; 65(4): 1530-9, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10103247

ABSTRACT

The Corynebacterium glutamicum panD gene was identified by functional complementation of an Escherichia coli panD mutant strain. Sequence analysis revealed that the coding region of panD comprises 411 bp and specifies a protein of 136 amino acid residues with a deduced molecular mass of 14.1 kDa. A defined C. glutamicum panD mutant completely lacked L-aspartate-alpha-decarboxylase activity and exhibited beta-alanine auxotrophy. The C. glutamicum panD (panDC. g.) as well as the E. coli panD (panDE.c.) genes were cloned into a bifunctional expression plasmid to allow gene analysis in C. glutamicum as well as in E. coli. The enhanced expression of panDC.g. in C. glutamicum resulted in the formation of two distinct proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, leading to the assumption that the panDC.g. gene product is proteolytically processed into two subunits. By increased expression of panDC.g. in C. glutamicum, the activity of L-aspartate-alpha-decarboxylase was 288-fold increased, whereas the panDE.c. gene resulted only in a 4-fold enhancement. The similar experiment performed in E. coli revealed that panDC.g. achieved a 41-fold increase and that panDE.c. achieved a 3-fold increase of enzyme activity. The effect of the panDC.g. and panDE.c. gene expression in E. coli was studied with a view to pantothenate accumulation. Only by expression of the panDC.g. gene was sufficient beta-alanine produced to abolish its limiting effect on pantothenate production. In cultures expressing the panDE.c. gene, the maximal pantothenate production was still dependent on external beta-alanine supplementation. The enhanced expression of panDC.g. in E. coli yielded the highest amount of pantothenate in the culture medium, with a specific productivity of 140 ng of pantothenate mg (dry weight)-1 h-1.


Subject(s)
Corynebacterium/genetics , Escherichia coli/metabolism , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Pantothenic Acid/metabolism , Amino Acid Sequence , Base Sequence , Corynebacterium/enzymology , Escherichia coli/genetics , Genes, Bacterial , Genetic Complementation Test , Glutamate Decarboxylase/chemistry , Molecular Sequence Data , Plasmids/genetics , Protein Processing, Post-Translational , Recombination, Genetic , Sequence Alignment
9.
Plant Mol Biol ; 32(5): 831-48, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8980535

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) genes from Corynebacterium glutamicum (cppc), Escherichia coli (eppc) or Flaveria trinervia (fppc) were transferred to Solanum tuberosum. Plant regenerants producing foreign PEPC were identified by Western blot analysis. Maximum PEPC activities measured in eppc and fppc plants grown in the greenhouse were doubled compared to control plants. For cppc a transgenic plant line could be selected which exhibited a fourfold increase in PEPC activity. In the presence of acetyl-CoA, a known activator of the procaryotic PEPC, a sixfold higher activity level was observed. In cppc plants grown in axenic culture PEPC activities were even higher. There was a 6-fold or 12-fold increase in the PEPC activities compared to the controls measured in the absence or presence of acetyl-CoA, respectively. Comparable results were obtained by transient expression in Nicotiana tabacum protoplasts. PEPC of C. glutamicum (PEPC C.g.) in S. tuberosum leaf extracts displays its characteristic K(m) (PEP) value. Plant growth was examined with plants showing high expression of PEPC and, moreover, with a plant cell line expressing an antisense S. tuberosum (anti-sppc) gene. In axenic culture the growth rate of a cppc plant cell line was appreciably diminished, whereas growth rates of an anti-sppc line were similar or slightly higher than in controls. Malate levels were increased in cppc plants and decreased in antisense plants. There were no significant differences in photosynthetic electron transport or steady state CO2 assimilation between control plants and transformants overexpressing PEPC C.g. or anti-sppc plants. However, a prolonged dark treatment resulted in a delayed induction of photosynthetic electron transport in plants with less PEPC. Rates of CO2 release in the dark determined after a 45 min illumination period at a high proton flux density were considerably enhanced in cppc plants and slightly diminished in anti-sppc plants. When CO2 assimilation rates were corrected for estimated rates of mitochondrial respiration in the light, the electron requirement for CO2 assimilation determined in low CO2 was slightly lower in transformants with higher PEPC, whereas transformants with decreased PEPC exhibited an appreciably elevated electron requirement. The CO2 compensation point remained unchanged in plants (cppc) with high PEPC activity, but might be increased in an antisense plant cell line. Stomatal opening was delayed in antisense plants, but was accelerated in plants overexpressing PEPC C.g. compared to the controls.


Subject(s)
Phosphoenolpyruvate Carboxylase/genetics , Solanum tuberosum/genetics , Amino Acids/metabolism , Carbon Dioxide/metabolism , Corynebacterium/enzymology , DNA, Antisense/genetics , Darkness , Electron Transport , Escherichia coli/enzymology , Genetic Vectors , Malates/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis , Plant Leaves/metabolism , Plants/enzymology , Plants, Genetically Modified , Plants, Toxic , Pyruvic Acid/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solanum tuberosum/growth & development , Nicotiana
10.
Biochem J ; 303 ( Pt 1): 323-7, 1994 Oct 01.
Article in English | MEDLINE | ID: mdl-7945258

ABSTRACT

Pseudo-substrate analogues of collagenase from Corynebacterium rathayii, in which the scissile peptide bond is replaced by a phosphinic moiety, were synthesized and evaluated as inhibitors of this enzyme. The phosphinic tetrapeptide, Z-Phe-psi(PO2CH2)-Gly-Pro-Nle (1), was found to be a potent inhibitor of collagenase with a Ki value of 8 nM. Increasing the length of the phosphinic-containing inhibitors from tetra- to hepta-peptide size further improves the potency of these compounds. The heptapeptide analogue, Z-Phe-Gly-Pro-Phe-psi(PO2CH2)-Gly-Pro-Nle-OMe, with a Ki value of 0.6 nM, is the most potent inhibitor reported to date for bacterial collagenases. A comparison between the phosphinic analogue Z-Phe-psi(PO2CH2)-Gly-Pro-Nle (1) and the phosphonamide peptide Z-Phe-psi(PO2NH)-Gly-Pro-Nle (2) shows that for bacterial collagenase the replacement of a CH2 by an NH group results only in a modest increase in affinity from Ki = 8 nM for compound 1 to Ki = 6 nM for compound 2. Most of the phosphorus-containing inhibitors of this series are slow- or slow-tight-binding inhibitors with second-order rate constants for association and dissociation varying respectively for the kon values from 1 x 10(3) to 26 x 10(3) M-1.s-1 and for the koff values from 3 x 10(-4) to 2 x 10(-5) s-1. Interestingly, the lower affinity of the molecule containing a D residue in the P1 position of the inhibitor, compared with the molecule with an L residue in this position, is mainly the consequence of a lower rate constant for association of these D stereoisomers with the enzyme. This study demonstrates that phosphinic peptide analogues are potent inhibitors of a bacterial collagenase. The development of new phosphinic peptides should lead to the discovery of potent inhibitors of other zinc metalloproteases. Details of how the analogues were synthesized are given in Supplementary Publication SUP 50176 (14 pages), which has been deposited with the British Library Document Supply Centre, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, from whom copies can be obtained on the terms indicated in Biochem. J. (1994) 297, 9.


Subject(s)
Corynebacterium/enzymology , Matrix Metalloproteinase Inhibitors , Oligopeptides/pharmacology , Phosphinic Acids/pharmacology , Amino Acid Sequence , Kinetics , Mathematics , Models, Theoretical , Molecular Sequence Data , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL