Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Ethnopharmacol ; 328: 118053, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38499257

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Citrullus colocynthis (L.) Schrad is a member of the Cucurbitaceae plant family which has been used in traditional medicine for the treatment of lung diseases such as asthma and bronchitis. AIM OF THE STUDY: The study was conducted to investigate antiproliferative and immunomodulating effects of C. colocynthis and isolated cucurbitacins on human T lymphocytes and lung epithelial cells in order to evaluate their potential in the treatment of airway diseases. MATERIALS AND METHODS: Different concentrations of an ethanolic extract of C. colocynthis fruits and cucurbitacins B (CuB), E (CuE) and E-glucopyranoside (CuE-Glu) were analysed for their cytotoxicity and immunomodulatory potential on Peripheral Blood Mononuclear Cells (PBMCs) of healthy donors and on the epithelial lung cancer cell line A549. Viability and proliferation were tested using WST1 and CFSE assays. Flow cytometric analysis of AnnexinV/PI staining was used to investigate cell death through apoptosis/necrosis. Effects on regulatory mechanisms of T lymphocytes, such as CD69 and CD25 marker activation, cytokine production of the cytokines interleukin 2 (IL2), tumor necrosis factor α (TNFα) and interferon γ (IFNy) were also analysed via flow cytometry. Influences on the activator protein 1 (AP1), nuclear factor of activated T-cells (NFAT) or nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFκB) pathways were analysed in the Jurkat reporter cell line. Cytokine secretion in A549 cells stimulated with virus-like particles was analysed using the bead-based Legendplex™ assay. RESULTS: Non-toxic concentrations of C. colocynthis and CuE-Glu showed dose-dependent effects on viability and proliferation in both T lymphocytes and A549 cells. The extracts inhibited lymphocyte activation and suppressed T cell effector functions, which was also shown by lower production of cytokines IL2, TNFα and IFNy. A dose dependent inhibition of the pathways NFκB, NFAT and AP1 in Jurkat cells could be observed. In A549 cells, especially CuE and CuE-Glu showed inhibitory effects on cytokine production following a simulated viral infection. Unglycosylated cucurbitacins were more effective in suppressing the immune function in lymphocytes than glycosylated cucurbitacins, however this activity is limited to cytotoxic concentrations. CONCLUSION: In our study we could confirm the immunmodulating effect of C. colocynthis and cucurbitacins B, E and E-glucopyranoside in vitro by suppression of different pathways of inflammation and T cell proliferation. Activity in a lung cell model using a virus-like stimulation shows promise for further research regarding cucurbitacins in airway diseases.


Subject(s)
Citrullus colocynthis , Citrullus , Triterpenes , Humans , Cucurbitacins/pharmacology , Interleukin-2 , Leukocytes, Mononuclear , Tumor Necrosis Factor-alpha , Plant Extracts/pharmacology , Lymphocytes , Lung
2.
Biochem Biophys Res Commun ; 687: 149196, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37939504

ABSTRACT

Brain gliomas are difficult in the field of tumor therapy because of their high recurrence rate, high mortality rate, and low selectivity of therapeutic agents. The efficacy of Traditional Chinese Medicine (TCM) in the treatment for tumours has been widely recognized. Here, three Chinese herb related molecules, namely Catechins, Caudatin and Cucurbitacin-I, were screened by bioinformatic means, and were found to inhibit the proliferation of glioblastoma T98G cells using Colony-forming and CCK-8 assays. Notably, the simultaneous use of all three molecules could more significantly inhibit the proliferation of glioma cells. Consistent with this, temozolomide, each in the combination with three molecules, could synergistically inhibit the proliferation of T98G cells. Results of qPCR assay was also showed that this inhibition was through the activation of the KDELR2-mediated endoplasmic reticulum stress (ER) pathway. Molecular docking experiments further revealed that Catechins, Caudatin and Cucurbitacin-I could activate ER stress might by targeting KDELR2. Taken together, these results suggest that these herbal molecules have the potential to inhibit the growth of glioma cells and could provide a reference for clinical therapeutic drug selection.


Subject(s)
Antineoplastic Agents , Catechin , Glioblastoma , Glioma , Humans , Glioblastoma/pathology , Catechin/pharmacology , Cucurbitacins/pharmacology , Cucurbitacins/therapeutic use , Molecular Docking Simulation , Glioma/pathology , Antineoplastic Agents/pharmacology , Cell Proliferation , Endoplasmic Reticulum Stress , Cell Line, Tumor , Apoptosis , Vesicular Transport Proteins/metabolism
3.
Biochem Pharmacol ; 217: 115810, 2023 11.
Article in English | MEDLINE | ID: mdl-37717690

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most devastating diseases; it has a considerably poor prognosis and may become the second most lethal malignancy in the next 10 years. Chemotherapeutic resistance is common in PDAC; thus, it is necessary to exploit effective alternative drugs. In recent years, traditional folk medicines and their extracts have shown great potential in cancer treatment. The seed of Lagenaria siceraria (Molina) Standl. is a traditional medicine in Asia. Because of its analgesic effects and ability to reduce swelling, it is often used as an adjuvant treatment for abdominal tumors. Cucurbitacin compounds are extracts abundant in Lagenaria siceraria (Molina) Standl. Here, we found that cucurbitacin C (CuC), a member of the cucurbitacin family, has apparent anti-PDAC therapeutic properties. CuC decreased the viability and suppressed the proliferation of PDAC cells in a time- and dose-dependent manner. Further studies revealed that CuC inhibited cell migration and invasion by inhibiting epithelial-mesenchymal transition (EMT). In addition, G2/M arrest was induced, and the apoptotic pathway was activated. Transcriptomic and bioinformatic analyses showed that CuC inhibited the cGMP-PKG-VASP axis, increasing the content of cGMP to restore tumor characteristics. The antitumor activity of CuC in vivo was verified through animal experiments, and no obvious side effects were observed. Overall, our study indicates a candidate therapeutic compound for PDAC that is worthy of further development.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Apoptosis , Cucurbitacins/pharmacology , Cell Line, Tumor , Cell Proliferation , G2 Phase Cell Cycle Checkpoints , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Cell Movement , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Pancreatic Neoplasms
4.
J Transl Med ; 20(1): 630, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36585670

ABSTRACT

Since ancient times, plants have been an extensive reservoir of bioactive compounds with therapeutic interest for new drug development and clinical application. Cucurbitacins are a compelling example of these drug leads, primarily present in the plant kingdom, especially in the Cucurbitaceae family. However, these natural compounds are also known in several genera within other plant families. Beyond the Cucurbitaceae family, they are also present in other plant families, as well as in some fungi and one shell-less marine mollusc. Despite the natural abundance of cucurbitacins in different natural species, their obtaining and isolation is limited, as a result, an increase in their chemical synthesis has been developed by researchers. Data on cucurbitacins and their anticancer activities were collected from databases such as PubMed/MedLine, TRIP database, Web of Science, Google Scholar, and ScienceDirect and the information was arranged sequentially for a better understanding of the antitumor potential. The results of the studies showed that cucurbitacins have significant biological activities, such as anti-inflammatory, antioxidant, antimalarial, antimicrobial, hepatoprotective and antitumor potential. In conclusion, there are several studies, both in vitro and in vivo reporting this important anticancer/chemopreventive potential; hence a comprehensive review on this topic is recommended for future clinical research.


Subject(s)
Antineoplastic Agents , Cucurbitacins , Cucurbitacins/pharmacology , Cucurbitacins/therapeutic use , Cucurbitacins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Plant Extracts
5.
Toxins (Basel) ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: mdl-35324709

ABSTRACT

We examined a two-step target protein binding strategy that uses cofilin as the target protein to analyze the active constituents in Bryonia cretica. In the first step, we prepared the target protein, and used it to analyze the compounds binding to it in the second step. We used the methanolic extract of B. cretica as a library of possible active compounds. We conducted LC-MS analysis using information from our previous study. The peaks in the HPLC profile were identified as cucurbitacin D, isocucurbitacin D, and cucurbitacin I. As far as we know, there is no known study of the activity of isocucurbitacin D in this research field. Therefore, we examined the effects of isocucurbitacin D on cell proliferation and cofilin protein in human fibrosarcoma cell line HT1080 to confirm the effectiveness of this strategy. The cytotoxicity assay, the fibrous/globular actin ratio assay, and the immunoblotting analysis revealed that isocucurbitacin D showed a cytotoxic effect with disruption of target protein cofilin. The target protein binding strategy is a direct and straightforward method for finding new drug seeds from crude sources, such as natural plant extracts.


Subject(s)
Antineoplastic Agents , Bryonia , Actin Depolymerizing Factors , Antineoplastic Agents/pharmacology , Cell Proliferation , Cucurbitacins/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants
6.
Fitoterapia ; 155: 105041, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34592371

ABSTRACT

Acanthosicyos horridus Welw. ex Hook.f. (!nara) is a leafless, thorny, melon-producing plant endemic to the hyper-arid Namib Desert. The methanol crude extract prepared from the ripe fruits of !nara afforded the known dihydroxycucurbitacin 7ß-hydroxy-23,24-dihydrocucurbitacin D (1), along with four new congeners 7ß,15ß-dihydroxy-23,24-dihydrocucurbitacin D (2), 25-O-ß-glucopyranosyl-7ß-hydroxy-23,24-dihydrocucurbitacin D (3), 25-O-ß-glucopyranosyl-7ß-hydroxy-23,24-dihydroisocucurbitacin D (4) and 25-O-ß-glucopyranosyl-7ß-hydroxy-23,24-dihydro-3-epi-isocucurbitacin D (5). These compounds were isolated through a combination of preparative normal phase thin-layer chromatography (TLC) and semi-preparative reversed phase high performance liquid chromatography (HPLC). Their structures were established by comprehensive analysis of HR-ESI-MS data, 1D and 2D NMR spectroscopic data and by comparison with literature values of similar cucurbitacins. The five isolated compounds exhibited poor cytotoxic activity against the MDA-MB-231 breast cancer cell line. To the best of our knowledge, this is the first report of glycosylated cucurbitacins in Acanthosicyos horridus.


Subject(s)
Cucurbitaceae/chemistry , Cucurbitacins/pharmacology , Cell Line, Tumor , Cucurbitacins/isolation & purification , Desert Climate , Fruit/chemistry , Humans , Molecular Structure , Namibia , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry
7.
Cancer Chemother Pharmacol ; 88(1): 1-14, 2021 07.
Article in English | MEDLINE | ID: mdl-33825035

ABSTRACT

As the main substance in some traditional Chinese medicines, cucurbitacins have been used to treat hepatitis for decades in China. Currently, the use of cucurbitacins against cancer and other diseases has achieved towering popularity among researchers worldwide, as detailed in this review with summarized tables. Numerous studies have reported the potential tumor-killing activities of cucurbitacins in multiple aspects of human malignancies. Continuous research on its anticancer activity mechanisms also brings a glimmer of light to the treatment of patients with lung cancer. In line with the promising roles of cucurbitacins against cancer, through various molecular signaling pathways, it is justifiable to propose the use of cucurbitacins as a potential mainline chemotherapy before the onset and after the diagnosis of lung cancers. Here, this article mainly summarized the findings about the biological functions and underlying mechanisms of cucurbitacins on lung cancer pathogenesis and treatment. In addition, we also discussed the safety and efficacy of their application for further research and even clinical practice.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cucurbitacins/pharmacology , Cucurbitacins/therapeutic use , Lung Neoplasms/drug therapy , Animals , Humans , Lung Neoplasms/metabolism , Medicine, Chinese Traditional/methods , Signal Transduction/drug effects
8.
J Ethnopharmacol ; 275: 113867, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33892067

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The tea made with the fruits of Luffa operculata (L.) Cogn. (Cucurbitaceae; EBN) is popularly used as abortive. AIM OF THE STUDY: The present work aimed at accessing how the exposition of female Wistar rats to 1.0 mg/kg of EBN (experimental group, EG), or distilled water (control group, CG), by gavage, at gestational days (GD) 17-21 interfered with the reproductive performance, and with dams' behavior after weaning. MATERIALS AND METHODS: At post-natal day 2 (PND2), the number of male and female pups was evaluated, as well as their weight. After weaning (PND21), dams were euthanized, and their liver and kidneys were removed for histological and biochemical analyses, while the blood was used in the evaluation of cytokines IL-1α, IL-1ß, IL-6 and TNF-α, corticosterone, adrenocorticotrophic hormone, melatonin, AST, ALT and creatinine levels. RESULTS AND DISCUSSION: Dams that were treated with EBN showed an anxiety-like behavior, weight loss at the end of gestation and weight gain at weaning, accompanied with a significant decrease in pro-inflammatory cytokines and in the melatonin level. No significant histological or biochemical alterations have occurred in the liver or kidneys. The number of female pups was significantly higher in the EG. The male pups showed weight gain at PND60. CONCLUSION: The presence of cucurbitacins is probably involved in the dysregulations that were found, due to their polycyclic steroid triterpene structure.


Subject(s)
Cytokines/blood , Luffa/chemistry , Melatonin/blood , Plant Extracts/pharmacology , Administration, Oral , Adrenocorticotropic Hormone/blood , Animals , Animals, Newborn , Behavior, Animal/drug effects , Body Weight/drug effects , Corticosterone/blood , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Cucurbitacins/toxicity , Female , Fruit/chemistry , Hormones/blood , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Male , Maternal Exposure , Plant Extracts/administration & dosage , Plant Extracts/toxicity , Pregnancy , Prenatal Exposure Delayed Effects , Rats, Wistar , Reproduction/drug effects , Sex Characteristics
9.
Phytother Res ; 35(8): 4155-4170, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33724593

ABSTRACT

Cucurbitacin IIa was first found in plants and it belongs to tetracyclo triterpenoids. It is one of the most important active components in cucurbitaceae plants. Studies have found that cucurbitacin IIa has a variety of pharmacological effects, such as antitumor, antiinflammatory, antibacterial, antihepatitis B virus, inhibition of human immunodeficiency virus replication, and antidepressant effect. However, the underlying mechanisms, intracellular targets, and structure-activity relationships of cucurbitacin IIa remain to be completely elucidated. This review summarizes the current advances concerning the phytochemistry and pharmacology of cucurbitacin IIa. Electronic databases such as PubMed, Web of Science, Google Scholar, Science Direct, and CNKI were used to find relevant information about cucurbitacin IIa using keywords such as "Cucurbitacin IIa," "Pharmacology," and "Phytochemistry." These pharmacological effects involve the actin cytoskeleton aggregation, the regulation of JAK2/STAT3, ERBB-MAPK, CaMKII α/CREB/BDNF signal pathways, as well as the regulation of survivin, caspases, and other cell cycles, apoptosis, autophagy-related cytokines, and kinases. It has high development and use value.


Subject(s)
Cucurbitacins , Triterpenes , Apoptosis , Caspases , Cell Cycle , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Cytokines , Cytoskeleton , Humans , Signal Transduction , Triterpenes/chemistry , Triterpenes/pharmacology
10.
Sci Rep ; 11(1): 6185, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731771

ABSTRACT

Bioprospecting identifies new sources of compounds with actual or potential economic value that come from biodiversity. An analysis was performed regarding bioprospecting purposes in ten genotypes of Sechium spp., through a meta-analysis of 20 information sources considering different variables: five morphological, 19 biochemical, anti-proliferative activity of extracts on five malignant cell lines, and 188 polymorphic bands of amplified fragment length polymorphisms, were used in order to identify the most relevant variables for the design of genetic interbreeding. Significant relationships between morphological and biochemical characters and anti-proliferative activity in cell lines were obtained, with five principal components for principal component analysis (SAS/ETS); variables were identified with a statistical significance (< 0.7 and Pearson values ≥ 0.7), with 80.81% of the accumulation of genetic variation and 110 genetic bands. Thirty-nine (39) variables were recovered using NTSYSpc software where 30 showed a Pearson correlation (> 0.5) and nine variables (< 0.05), Finally, using a cladistics analysis approach highlighted 65 genetic bands, in addition to color of the fruit, presence of thorns, bitter flavor, piriform and oblong shape, and also content of chlorophylls a and b, presence of cucurbitacins, and the IC50 effect of chayote extracts on the four cell lines.


Subject(s)
Bioprospecting , Cucurbitaceae , Cucurbitacins/pharmacology , Fruit/chemistry , Plant Extracts/pharmacology , Animals , Cell Line , Cucurbitaceae/chemistry , Cucurbitaceae/classification , Cucurbitaceae/genetics , Genotype , Humans , Mice , Polymorphism, Genetic
11.
Molecules ; 26(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499307

ABSTRACT

Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5ß,19-epoxycucurbita-6,23-dien-3ß,19,25-triol (Kuguacin R; KR) and 3ß,7ß,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1ß, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1ß-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Inflammation/drug therapy , Momordica charantia/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Acne Vulgaris/drug therapy , Acne Vulgaris/immunology , Acne Vulgaris/microbiology , Animals , Cytokines/biosynthesis , Cytokines/genetics , Disease Models, Animal , Glycosides/chemistry , Glycosides/pharmacology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Humans , Inflammation/immunology , Inflammation/microbiology , Male , Mice , Mice, Inbred ICR , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Propionibacteriaceae/pathogenicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , THP-1 Cells
12.
J Nat Prod ; 83(12): 3536-3544, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33269591

ABSTRACT

In the ongoing efforts to discover natural cholesterol-lowering compounds, dihydrocucurbitacin B, isolated from Trichosanthes cucumeroides roots, was found to promote LDL uptake by upregulating LDLR protein in a PCSK9-dependent process. In this study, an in-depth investigation of T. cucumeroides roots afforded 27 cucurbitacins (1-27), including seven new cucurbitacins (1-7), and their structures were elucidated by spectroscopic data analyses. In order to gain insight into their structure-activity relationship, cucurbitacin derivatives (B1-11 and DB1-11) were synthesized. Evaluation of lipid-lowering activities of these cucurbitacins by an LDL uptake assay in HepG2 cells revealed that most of the compounds improved the LDL uptake rate, among which hexanorisocucurbitacin D (6) and isocucurbitacin D (21) exhibited the highest activities (rates of 2.53 and 2.47, respectively), which were comparable to that of the positive control, nagilactone B (rate of 2.07). According to a mechanistic study by Western blot analysis, compounds 6 and 21 dose-dependently increased LDLR protein levels and reduced PCSK9 protein levels, representing promising new lipid-lowering drug candidates.


Subject(s)
Cucurbitacins/pharmacology , Hypercholesterolemia/blood , Trichosanthes/chemistry , Cucurbitacins/chemistry , Hep G2 Cells , Humans , Plant Extracts/chemistry , Plant Roots/chemistry , Spectrum Analysis/methods , Structure-Activity Relationship
13.
Int Immunopharmacol ; 88: 106914, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32829087

ABSTRACT

Certain natural products, derived from medicinal plants, exhibit anti-inflammatory properties, but the mechanism of action of many remains unclear. Borrelia burgdorferi spirochetes are responsible for causing Lyme arthritis through activation of the Toll-like receptor (TLR) signaling pathway. In this study, we investigated the mechanisms by which Isoforskolin (ISOF) and Cucurbitacin IIa (CuIIa), compounds derived from Chinese herbs, can exert anti-inflammatory effects by modulating single immunoglobulin interleukin-1 receptor-related receptor (SIGIRR; also known as Toll/interleukin-1 receptor 8, TIR8) and thereby inhibiting B. burgdorferi basic membrane protein A (BmpA)-induced TLR signaling in human macrophages, specifically the THP-1 human monocytic cell line. After THP-1 cells were exposed in vitro to: i) recombinant (r)BmpA, ii) rBmpA and ISOF or iii) rBmpA and CuIIa, Cytotoxicity assay (Cell Counting Kit-8, CCK-8) are used to measure the effects of ISOF and CuIIa on cell viability. Meanwhile, real-time polymerase chain reaction and Western blotting were used to quantify SIGIRR mRNA and protein levels, respectively, at 6, 12, 24 and 48 h time points post-stimulation. In addition, proinflammatory cytokine tumor necrosis factor-α (TNF-α) was determined by ELISA analysis. Our study showed that rBmpA stimulation of THP-1 cells resulted in a drop in SIGIRR levels in THP-1 cells. More importantly, SIGIRR levels increased significantly in rBmpA-stimulated THP-1 cells following ISOF or CuIIa administration, and the results of ELISA analysis suggested that ISOF or CuIIa reduced the secretion of the proinflammatory cytokine TNF-α. In conclusion, These results reveal new possibilities for the treatment of Lyme arthritis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Bacterial Proteins/pharmacology , Borrelia burgdorferi , Colforsin/analogs & derivatives , Colforsin/pharmacology , Cucurbitacins/pharmacology , Macrophages/drug effects , Cell Survival/drug effects , Humans , Macrophages/metabolism , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
14.
Sci China Life Sci ; 63(11): 1665-1677, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32303962

ABSTRACT

High salt intake is a known risk factor of cardiovascular diseases. Our recent study demonstrated that long-term high salt intake impairs transient receptor potential channel M5 (TRPM5)-mediated aversion to high salt concentrations, consequently promoting high salt intake and hypertension; however, it remains unknown whether TRPM5 activation ameliorates cardiovascular dysfunction. Herein we found that bitter melon extract (BME) and cucurbitacin E (CuE), a major compound in BME, lowered high salt-induced hypertension. Long-term BME intake significantly enhanced the aversion to high salt concentrations by upregulating TRPM5 expression and function, eventually decreasing excessive salt consumption in mice. Moreover, dietary BME ameliorated high salt-induced cardiovascular dysfunction and angiotensin II-induced hypertension in vivo. The mechanistic evidence demonstrated that dietary BME inhibited high salt-induced RhoA/Rho kinase pathway overactivation, leading to reduced phosphorylation levels of myosin light chain kinase and myosin phosphatase targeting subunit 1. Furthermore, CuE inhibited vasoconstriction by attenuating L-type Ca2+ channel-induced Ca2+ influx in vascular smooth muscle cells. To summarize, our findings indicate that dietary BME has a beneficial role in antagonizing excessive salt consumption and thus appears promising for the prevention of high salt-induced cardiovascular dysfunction.


Subject(s)
Cardiovascular Diseases/prevention & control , Sodium Chloride, Dietary/adverse effects , TRPM Cation Channels/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cucurbitacins/administration & dosage , Cucurbitacins/pharmacology , Dietary Supplements , Mice , Momordica charantia/chemistry , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Signal Transduction/drug effects , TRPM Cation Channels/genetics , Taste Perception/drug effects , Taste Perception/physiology , Vasoconstriction , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
15.
Exp Parasitol ; 212: 107873, 2020 May.
Article in English | MEDLINE | ID: mdl-32165146

ABSTRACT

Ginsenoside-Rh2 and cucurbitacin-B (CuB) are secondary metabolites of Ginseng (Panax ginseng) and Cucurbitaceae plants respectively. We assessed the anticryptosporidial activity of these two functional compounds in a cell culture model of cryptosporidiosis. The highest concentration of each compound that was not toxic to the host cells was used to assess the activity against C. parvum during infection/invasion and growth in HCT-8 cell monolayers. Monolayers were infected with pre-excysted C. parvum oocysts. Infected monolayers were incubated at 37 °C for 24 h and 48 h in the presence of different concentrations of each test compound. A growth resumption assay was performed by incubating infected monolayers in the presence of compounds for 24 h followed by a second 24-h incubation in the absence of compound. To screen for invasion inhibiting activity, freshly excysted C. parvum sporozoites were pre-treated with different concentrations of compounds prior to adding them to the cell monolayers. Paromomycin, a known inhibitor of C. parvum, and DMSO were used as positive and negative control, respectively. The level of infection was initially assessed using an immunofluorescent assay and quantified by real-time PCR. Both compounds were found to strongly inhibit C. parvum intracellular development in a dose-dependent manner. IC50 values of 25 µM for a 24 h development period and 5.52 µM after 48 h development were measured for Rh2, whereas for CuB an IC50 value of 0.169 µg/ml and 0.118 µg/ml were obtained for the same incubation periods. CuB also effectively inhibited resumption of growth, an activity that was not observed with Rh2. CuB was more effective at inhibiting excystation and/or host cell invasion, indicating that this compound also targets extracellular stages of the parasite.


Subject(s)
Coccidiostats/pharmacology , Cryptosporidium parvum/drug effects , Cucurbitacins/pharmacology , Ginsenosides/pharmacology , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Cell Line , Cryptosporidium parvum/cytology , Cryptosporidium parvum/growth & development , Cucurbitaceae/chemistry , Dimethyl Sulfoxide , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Mice , Panax/chemistry , Paromomycin/pharmacology , Real-Time Polymerase Chain Reaction , Solvents
16.
Sci Rep ; 10(1): 2109, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034276

ABSTRACT

Diplocyclos palmatus (L.) C. Jeffrey is an important medicinal plant used in several reproductive medicines. It serves as a wide source of tetracyclic triterpens called cucurbitacins. Response surface methodology (RSM) with Box-Behnken design (BBD) was studied to optimize the production of cucurbitacins. RSM put forth the ideal conditions such as 1:30 SS ratio (g/mL), 80 rpm (mixing extraction speed), 150 µm mean particle size, 30 min extraction time and 50 °C using chloroform in continuous shaking extraction (CSE) and showed the highest cucurbitacin I (CUI) content (2.345 ± 0.1686 mg/g DW). Similarly, the highest yield of cucurbitacin B (CUB) (1.584 ± 0.15 mg/g DW) was recorded at ideal conditions (1:40 g/mL SS ratio and 60 min time and others similar to CUI). Among the tested extraction methods, the highest CUI, CUB, and CUI + B yield (1.437 ± 0.03, 0.782 ± 0.10, 2.17 ± 0.35 mg/g DW, respectively) as well as promising DPPH radical scavenging activity (25.06 ± 0.1 µgAAE/g DW) were recorded from the SBAE (steam bath assisted extraction). In addition, MAE and UAE revealed the highest inhibition of α-amylase (68.68%) and α-glucosidase (56.27%) enzymes, respectively. Fruit extracts showed potent anticancer activity against breast (MCF-7) and colon (HT-29) cancer cell lines (LC50 - 44.27 and 46.88 µg/mL, respectively). Our study proved that SS ratio, particle size and temperature were the most positively influencing variables and served to be the most efficient for the highest recovery of CUI and CUB. Based on the present study, the fruits of D. palmatus were revealed as a potent antioxidant, anti-diabetic and anticancer bio-resource that could be explored further to develop novel drug to manage diabetes, cancer and oxidative stress related disorders.


Subject(s)
Cucurbitaceae/chemistry , Cucurbitacins/isolation & purification , Plant Extracts/isolation & purification , Plants, Medicinal/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cucurbitacins/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , HT29 Cells/drug effects , Humans , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , MCF-7 Cells/drug effects , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors
17.
Molecules ; 24(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091784

ABSTRACT

Cucurbita genus has received a renowned interest in the last years. This plant species, native to the Americas, has served worldwide folk medicine for treating gastrointestinal diseases and intestinal parasites, among other clinical conditions. These pharmacological effects have been increasingly correlated with their nutritional and phytochemical composition. Among those chemical constituents, carotenoids, tocopherols, phenols, terpenoids, saponins, sterols, fatty acids, and functional carbohydrates and polysaccharides are those occurring in higher abundance. However, more recently, a huge interest in a class of triterpenoids, cucurbitacins, has been stated, given its renowned biological attributes. In this sense, the present review aims to provide a detailed overview to the folk medicinal uses of Cucurbita plants, and even an in-depth insight on the latest advances with regards to its antimicrobial, antioxidant and anticancer effects. A special emphasis was also given to its clinical effectiveness in humans, specifically in blood glucose levels control in diabetic patients and pharmacotherapeutic effects in low urinary tract diseases.


Subject(s)
Cucurbita/chemistry , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Blood Glucose/drug effects , Ethnopharmacology , Humans , Medicine, Traditional , Plant Extracts/chemistry
18.
Hypertens Res ; 42(8): 1152-1161, 2019 08.
Article in English | MEDLINE | ID: mdl-30962520

ABSTRACT

As an effective medicine for jaundice in traditional Chinese medicine, Cucumis melo L. has been widely used in China. However, its effect on vascular function is still unclear. In this study, we extracted the compounds of Cucumis melo L., and the major ingredients were identified as cucurbitacins (CuEC, cucurbitacins extracted from Cucumis melo L.), especially cucurbitacin B. We replicated the toxicity in mice by intraperitoneal injection of a high dose of CuEC (2 mg/kg) and demonstrated that the cause of death was CuEC-induced impairment of the endothelial barrier and, thus, increased vascular permeability via decreasing VE-cadherin conjunction. The administration of low doses of CuEC (1 mg/kg) led to a decline in systolic blood pressure (SBP) without causing toxicity in mice. More importantly, CuEC dramatically suppressed angiotensin II (Ang II)-induced SBP increase. Further studies demonstrated that CuEC facilitated acetylcholine-mediated vasodilation in mesenteric arteries of mice. In vitro studies showed that CuEC induced vasodilation in a dose-dependent manner in mesenteric arteries of both mice and rats. Pretreatment with CuEC inhibited phenylephrine-mediated vasoconstriction. In summary, a moderate dose of CuEC reduced SBP by improving blood vessel tension. Therefore, our study provides new experimental evidence for developing new antihypertensive drugs.


Subject(s)
Blood Pressure/drug effects , Cucumis melo/chemistry , Cucurbitacins/pharmacology , Phytotherapy , Vasodilation/drug effects , Animals , Capillary Permeability/drug effects , Cucurbitacins/isolation & purification , Cucurbitacins/therapeutic use , Drug Evaluation, Preclinical , Hypertension/drug therapy , Male , Mesenteric Arteries/drug effects , Mice, Inbred C57BL , Toxicity Tests , Vasoconstriction/drug effects
19.
BMC Complement Altern Med ; 18(1): 274, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30301463

ABSTRACT

BACKGROUND: Cucumis prophetarum var. prophetarum is used in Saudi folk medicine for treating liver disorders and grows widely between Abha and Khamis Mushait City, Saudi Arabia. METHODS: Bioassay-guided fractionation and purification were used to isolate the main active constituents of Cucumis prophetarum var. prophetarum fruits. These compounds were structurally elucidated using NMR spectroscopy, mass spectral analyses and x-ray crystallography. All fractions, sub-fractions and pure compounds were screened for their anticancer activity against six cancer cell lines. RESULTS: The greatest cytotoxic activity was found to be in the ethyl acetate fraction, resulting in the isolation of five cucurbitacin compounds [E, B, D, F-25 acetate and Hexanorcucurbitacin D]. Among the cucurbitacins that were isolated and tested cucurbitacin B and E showed potent cytotoxicity activities against all six human cancer cell lines. CONCLUSION: Human breast cancer cell lines were found to be the most sensitive to cucurbitacins. Preliminary structure activity relationship (SAR) for cytotoxic activity of Cucurbitacins against human breast cancer cell line MDA-MB-231 has been reported.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Cucumis/chemistry , Cucurbitacins/isolation & purification , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Biological Assay/methods , Cell Line, Tumor , Chemical Fractionation/methods , Cucurbitacins/chemistry , Cucurbitacins/pharmacology , Humans
20.
Nutrients ; 9(8)2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28757593

ABSTRACT

The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC50 1.85 µg·mL-1), but the lymphocytes were affected by the extract (IC50 30.04 µg·mL-1). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL-1. Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Cucurbitaceae/chemistry , Apigenin/pharmacology , Cucurbitacins/pharmacology , Female , Flavanones/pharmacology , Flavonoids/pharmacology , Fruit/chemistry , HeLa Cells , Humans , Inhibitory Concentration 50 , Phloretin/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Quercetin/pharmacology , Rutin/pharmacology , Uterine Cervical Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL