Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 602
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Integr Med ; 22(2): 188-198, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472011

ABSTRACT

OBJECTIVE: This study explores the mechanism of action of Danhongqing formula (DHQ), a compound-based Chinese medicine formula, in the treatment of cholestatic liver fibrosis. METHODS: In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout (Mdr2-/-) mice as an animal model of cholestatic liver fibrosis. DHQ was administered orally for 8 weeks, and its impact on cholestatic liver fibrosis was evaluated by assessing liver function, liver histopathology, and the expression of liver fibrosis-related proteins. Real-time polymerase chain reaction, Western blot, immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19 (H19) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in the liver tissue of Mdr2-/- mice. In addition, cholangiocytes and hepatic stellate cells (HSCs) were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression. Cholangiocytes overexpressing H19 were constructed, and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation. The intervention effect of DHQ on these processes was also investigated. HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ. RESULTS: DHQ alleviated liver injury, ductular reaction, and fibrosis in Mdr2-/- mice, and inhibited H19 expression, STAT3 expression and STAT3 phosphorylation. This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19, inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium, and decreased the expression of activation markers in HSCs. The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation, and DHQ was able to successfully inhibit these effects. CONCLUSION: DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/- mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC, thereby suppressing cell activation. Please cite this article as: Li M, Zhou Y, Zhu H, Xu LM, Ping J. Danhongqing formula alleviates cholestatic liver fibrosis by downregulating long non-coding RNA H19 derived from cholangiocytes and inhibiting hepatic stellate cell activation. J Integr Med. 2024; 22(2): 188-198.


Subject(s)
Cholestasis , RNA, Long Noncoding , Humans , Mice , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Culture Media, Conditioned/metabolism , Mice, Knockout , Cholestasis/drug therapy , Cholestasis/genetics , Cholestasis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver/metabolism
2.
Mol Med ; 30(1): 21, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317079

ABSTRACT

BACKGROUND: Pericytes are a vital component of the blood-brain barrier, and their involvement in acute inflammation was recently suggested. However, it remains unclear whether pericytes contribute to hypothalamic chronic inflammation and energy metabolism in obesity. The present study investigated the impact of pericytes on the pathophysiology of obesity by focusing on platelet-derived growth factor (PDGF) signaling, which regulates pericyte functions. METHODS: Tamoxifen-inducible systemic conditional PDGF receptor ß knockout mice (Pdgfrb∆SYS-KO) and Calcium/calmodulin-dependent protein kinase type IIa (CaMKIIa)-positive neuron-specific PDGF receptor ß knockout mice (Pdgfrb∆CaMKII-KO) were fed a high-fat diet, and metabolic phenotypes before and 3 to 4 weeks after dietary loading were examined. Intracellular energy metabolism and relevant signal transduction in lipopolysaccharide- and/or platelet-derived growth factor-BB (PDGF-BB)-stimulated human brain pericytes (HBPCs) were assessed by the Seahorse XFe24 Analyzer and Western blotting. The pericyte secretome in conditioned medium from HBPCs was studied using cytokine array kit, and its impact on polarization was examined in bone marrow-derived macrophages (BMDMs), which are microglia-like cells. RESULTS: Energy consumption increased and body weight gain decreased after high-fat diet loading in Pdgfrb∆SYS-KO mice. Cellular oncogene fos (cFos) expression increased in proopiomelanocortin (POMC) neurons, whereas microglial numbers and inflammatory gene expression decreased in the hypothalamus of Pdgfrb∆SYS-KO mice. No significant changes were observed in Pdgfrb∆CaMKII-KO mice. In HBPCs, a co-stimulation with lipopolysaccharide and PDGF-BB shifted intracellular metabolism towards glycolysis, activated mitogen-activated protein kinase (MAPK), and modulated the secretome to the inflammatory phenotype. Consequently, the secretome showed an increase in various proinflammatory chemokines and growth factors including Epithelial-derived neutrophil-activating peptide 78 (C-X-C motif chemokine ligand (CXCL)5), Thymus and activation-regulated chemokine (C-C motif chemokine (CCL)17), Monocyte chemoattractant protein 1 (CCL2), and Growth-regulated oncogene α (CXCL1). Furthermore, conditioned medium from HBPCs stimulated the inflammatory priming of BMDMs, and this change was abolished by the C-X-C motif chemokine receptor (CXCR) inhibitor. Consistently, mRNA expression of CXCL5 was elevated by lipopolysaccharide and PDGF-BB treatment in HBPCs, and the expression was significantly lower in the hypothalamus of Pdgfrb∆SYS-KO mice than in control Pdgfrbflox/flox mice (FL) following 4 weeks of HFD feeding. CONCLUSIONS: PDGF receptor ß signaling in hypothalamic pericytes promotes polarization of macrophages by changing their secretome and contributes to the progression of obesity.


Subject(s)
Pericytes , Platelet-Derived Growth Factor , Mice , Humans , Animals , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Pericytes/metabolism , Becaplermin/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Culture Media, Conditioned/metabolism , Lipopolysaccharides , Signal Transduction , Inflammation/metabolism , Mice, Knockout , Obesity/metabolism , Hypothalamus , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism
3.
Lasers Med Sci ; 39(1): 46, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270723

ABSTRACT

This investigation tried to evaluate the combined and solo effects of photobiomodulation (PBM) and conditioned medium derived from human adipose tissue-derived stem cells (h-ASC-CM) on the inflammatory and proliferative phases of an ischemic infected delayed healing wound model (IIDHWM) in rats with type I diabetes mellitus (TIDM). The present investigation consisted of four groups: group 1 served as the control, group 2 treated with h-ASC-CM, group 3 underwent PBM treatment, and group 4 received a combination of h-ASC-CM and PBM. Clinical and laboratory assessments were conducted on days 4 and 8. All treatment groups exhibited significantly higher wound strength than the group 1 (p = 0.000). Groups 4 and 3 demonstrated significantly greater wound strength than group 2 (p = 0.000). Additionally, all therapeutic groups showed reduced methicillin -resistant Staphylococcus aureus (MRSA) in comparison with group 1 (p = 0.000). While inflammatory reactions, including neutrophil and macrophage counts, were significantly lower in all therapeutic groups rather than group 1 on days 4 and 8 (p < 0.01), groups 4 and 3 exhibited superior results compared to group 2 (p < 0.01). Furthermore, proliferative activities, including fibroblast and new vessel counts, as well as the measurement of new epidermal and dermal layers, were significantly increased in all treatment groups on 4 and 8 days after the surgery (p < 0.001). At the same times, groups 4 and 3 displayed significantly higher proliferative activities compared to group 2 (p < 0.001). The treatment groups exhibited significantly higher mast cell counts and degranulation phenotypes in comparison with the group 1 on day 4 (p < 0.05). The treatment groups showed significantly lower mast cell counts and degranulation phenotypes than group 1 on day 8 (p < 0.05).The combined and individual application of h-ASC-CM and PBM remarkably could accelerate the proliferation phase of wound healing in the IIDHWM for TIDM in rats, as indicated by improved MRSA control, wound strength, and stereological evaluation. Furthermore, the combination of h-ASC-CM and PBM demonstrated better outcomes compared to the individual application of either h-ASC-CM or PBM alone.


Subject(s)
Diabetes Mellitus , Low-Level Light Therapy , Methicillin-Resistant Staphylococcus aureus , Humans , Animals , Rats , Culture Media, Conditioned/pharmacology , Leukocyte Count , Stem Cells , Wound Healing , Cell Proliferation
4.
Phytomedicine ; 123: 155145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976698

ABSTRACT

BACKGROUND: Sesamol (SEM), a natural lignan compound isolated from sesame, has strong anti-oxidant property, regulating lipid metabolism, decreasing cholesterol and hepatoprotection. However, its anti-hepatic fibrosis effect and mechanisms have not been comprehensively elucidated. HYPOTHESIS/PURPOSE: This study aims to investigate the anti-hepatic fibrosis of SEM and its underlying mechanisms. METHOD: C57BL/6 mice with hepatic fibrosis were induced by TAA, then administrated with SEM or curcumin, respectively. HSCs were stimulated by TGF-ß or conditioned medium, and then cultured with SEM, GW4064, GW3965, Rapamycin (RA) or 3-methyladenine (3-MA), respectively. Mice with hepatic fibrosis also were administrated with SEM, RA or 3-MA to estimate the effect of SEM on autophagy. RESULTS: In vitro, SEM significantly inhibited extracellular matrix deposition, P2 × 7r-NLRP3, and inflammatory cytokines. SEM increased FXR and LXRα/ß expressions and decreased MAPLC3α/ß and P62 expressions, functioning as 3-MA (autophagy inhibitor). In vivo, SEM reduced serum transaminase, histopathology changes, fibrogenesis, autophagy markers and inflammatory cytokines caused by TAA. LX-2 were activated with conditioned medium from LPS-primed THP-1, which resulted in significant enhance of autophagy markers and inflammatory cytokines and decrease of FXR and LXRα/ß expressions. SEM could reverse above these changes and function as 3-MA, GW4064, or GW3965. Deficiency of FXR or LXR attenuated the regulation of SEM on α-SMA, MAPLC3α/ß, P62 and IL-1ß in activated LX-2. In activated THP-1, deficiency of FXR could decrease the expression of LXR, and vice versa. Deficiency of FXR or LXR in activated MΦ decreased the expressions of FXR and LXR in activated LX-2. Deficiency FXR or LXR in activated MΦ also attenuated the regulation of SEM on α-SMA, MAPLC3α/ß, P62, caspase-1 and IL-1ß. In vivo, SEM significantly reversed hepatic fibrosis via FXR/LXR and autophagy. CONCLUSION: SEM could regulate hepatic fibrosis by inhibiting fibrogenesis, autophagy and inflammation. FXR/LXR axis-mediated inhibition of autophagy contributed to the regulation of SEM against hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. SEM might be a prospective therapeutic candidate, and its mechanism would be a new direction or strategy for hepatic fibrosis treatment.


Subject(s)
Benzoates , Benzodioxoles , Benzylamines , Hepatocytes , Liver Cirrhosis , Phenols , Mice , Animals , Culture Media, Conditioned/adverse effects , Culture Media, Conditioned/metabolism , Mice, Inbred C57BL , Liver Cirrhosis/metabolism , Hepatocytes/metabolism , Macrophages , Cytokines/metabolism , Autophagy , Hepatic Stellate Cells , Liver
5.
In Vitro Cell Dev Biol Anim ; 59(10): 764-777, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38062299

ABSTRACT

In this work, we used splenocytes from healthy mice to study the effects of the two most commonly used cell culture media (A, B) with different compositions of redox reagents. The incubation of cells for 24 h resulted in a significant decrease in viability and metabolic activity of splenocytes, and the negative effects of incubation in medium B were more pronounced. In standard conditions, oxidative stress in cells was manifested by reduced mitochondrial potential, and this effect correlated with the transition of 58.3% of cells to the early stage of apoptosis under reducing conditions of medium A and up to 66.1% of cells under super-reducing conditions in medium B, suggesting altered cell physiology. High levels of ROS/RNS activated transcription factor Nrf2, superoxide dismutase 1, and catalase. The higher mRNA levels of these genes were under the conditions of medium B, whose super-reducing environment in combination with the environment of conventional incubators proved to be less suitable for the cells compared to medium A. Treatment of the cells with a lower concentration (10 µg/ml) of oleoresin obtained from the microalga H. pluvialis partially eliminated the negative effects of cultivation. Higher concentration of oleoresin (40 µg/ml) was slightly cytotoxic, due to the significant antioxidant effect of astaxanthin, the main bioactive component of the extract, which eliminated most of the ROS/RNS acting as signalling molecules. This study shows that the standard culture conditions do not reflect the physiological in vivo cell conditions; therefore, they are not generally suitable for incubation of all cell types.


Subject(s)
Chlorophyta , Microalgae , Animals , Mice , Chlorophyta/metabolism , Pilot Projects , Microalgae/metabolism , Reactive Oxygen Species/metabolism , Plant Extracts/metabolism , Culture Media, Conditioned/metabolism
6.
PLoS One ; 18(12): e0296022, 2023.
Article in English | MEDLINE | ID: mdl-38150488

ABSTRACT

PURPOSE: To investigate human corneal epithelial cell and fibroblast migration and growth factor secretion after rose bengal photodynamic therapy (RB-PDT) and the effect of conditioned medium (CM). METHODS: A human corneal epithelial cell line (HCE-T), human corneal fibroblasts (HCF) and keratoconus fibroblasts (KC-HCF) have been used. Twenty-four hours after RB-PDT (0.001% RB concentration, 565 nm wavelength illumination, 0.17 J/cm2 fluence) cell migration rate using scratch assay and growth factor concentrations in the cell culture supernatant using ELISA have been determined. In addition, the effect of CM has been observed. RESULTS: RB-PDT significantly reduced migration rate in all cell types, compared to controls (p≤0.02). Migration rate of HCE-T cultures without RB-PDT (untreated) was significantly higher using HCF CM after RB-PDT, than using HCF CM without RB-PDT (p<0.01). Similarly, untreated HCF displayed a significantly increased migration rate with HCE-T CM after RB-PDT, compared to HCE-T CM without treatment (p<0.01). Furthermore, illumination alone and RB-PDT significantly decreased keratinocyte growth factor (KGF) concentration in HCF and KC-HCF supernatant, and RB-PDT significantly decreased soluble N-Cadherin (SN-Cad) concentration in HCF supernatant, compared to controls (p<0.01 for all). In HCE-T CM, RB-PDT increased hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGFb) concentration (p≤0.02), while decreasing transforming growth factor ß (TGF-ß) concentration (p<0.01). FGFb concentration increased (p<0.0001) and TGF-ß concentration decreased (p<0.0001) in HCF CM, by RB-PDT. Epidermal growth factor (EGF), HGF, and TGF-ß concentration decreased (p≤0.03) and FGFb concentration increased (p<0.01) in KC-HCF CM, using RB-PDT. CONCLUSIONS: HCE-T, HCF and KC-HCF migration rate is reduced 24 hours after RB-PDT. In contrast, HCE-T migration is enhanced using HCF CM after RB-PDT, and HCF migration rate is increased through HCE-T CM following RB-PDT. Modulation of EGF, KGF, HGF, FGFb, TGF-ß and N-Cadherin secretion through RB-PDT may play an important role in corneal wound healing.


Subject(s)
Epidermal Growth Factor , Photochemotherapy , Humans , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Rose Bengal/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Cell Movement , Transforming Growth Factor beta/metabolism , Epithelial Cells , Cadherins/metabolism , Fibroblast Growth Factor 7/metabolism , Fibroblast Growth Factor 7/pharmacology
7.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4201-4207, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802788

ABSTRACT

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 µg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 µg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 µg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Subject(s)
Bilobalides , Female , Rats , Mice , Animals , Bilobalides/pharmacology , Neuroprotection , Lipopolysaccharides/toxicity , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Mice, Inbred C57BL , Macrophages/metabolism , Microglia , Cytokines/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Inflammation/metabolism
8.
Food Funct ; 14(22): 10083-10096, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37870074

ABSTRACT

Supercritical fluid extraction with CO2 (SFE) is an alternative technology to conventional solvent extraction (CSE), to obtain food-grade bioactives from plants. Here, SFE and CSE extracts from carrot and pumpkin matrices, impregnated with hempseed or flaxseed oil as co-solvents, were characterized by HPLC and GC-MS, and their ability to counteract the inflammatory and oxidative phenomena underlying the onset of several pathologies was assessed in vitro. All extracts showed dose-dependent anti-inflammatory potential and demonstrated an ability to interfere with the pro-inflammatory effects of breast cancer cell-conditioned media, and to inhibit reactive oxygen species (ROS) accumulation and nitrite production (NP) in lipopolysaccharide-stimulated macrophages. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is involved in these response mechanisms, as highlighted by the increased mRNA levels of its target genes revealed by quantitative real-time PCR analyses. NP and ROS concentrations negatively correlated with α-tocopherol and most carotenoids, but positively with the total tocopherol/total carotenoid ratio, suggesting an idiosyncratic effect of these bioactives on cell responses and emphasizing the need to focus on extract constituents' interactions.


Subject(s)
Cucurbita , Daucus carota , Animals , Mice , Lipopolysaccharides/pharmacology , Carbon Dioxide/pharmacology , Culture Media, Conditioned/pharmacology , Reactive Oxygen Species , MDA-MB-231 Cells , Plant Extracts/pharmacology , Macrophages , Oxidative Stress , Inflammation/drug therapy , Carotenoids/pharmacology , RAW 264.7 Cells
9.
Chin J Nat Med ; 21(7): 540-550, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37517821

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).


Subject(s)
Amyotrophic Lateral Sclerosis , Ginsenosides , Neurodegenerative Diseases , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Ginsenosides/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Culture Media, Conditioned/pharmacology , Superoxide Dismutase-1 , Neurons/metabolism , Apoptosis
10.
Braz J Microbiol ; 54(3): 1819-1825, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37258877

ABSTRACT

The world is heading towards an era of intractable and impending untreatable N. gonorrhoeae, thereby underlining the significance of rapid and accurate prediction of drug resistance as an indispensable need of the hour. In the present study, we optimized and evaluated a stable isotope labeling-based approach using the MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry) for rapid and reliable detection of ciprofloxacin and azithromycin resistance in N. gonorrhoeae. All the isolates were cultured under three varied condition setups viz. medium supplemented with normal lysine, heavy lysine (isotope), and heavy lysine along with the antibiotics (ciprofloxacin/azithromycin), respectively. After incubation, spectra were acquired using the MALDI-TOF MS which were further screened for unique patterns (media-specific spectra) to differentiate drug-susceptible and resistant isolates. The results of the stable isotope labeling assay were comparable to the results of phenotypic methods used for susceptibility testing.


Subject(s)
Mycobacterium tuberculosis , Neisseria gonorrhoeae , Azithromycin , Isotope Labeling , Lysine , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Culture Media, Conditioned
11.
Phytomedicine ; 115: 154809, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087791

ABSTRACT

BACKGROUND: Activation of renal fibroblasts into myofibroblasts plays an important role in promoting renal interstitial fibrosis (RIF). Ginkgo biloba extract (EGb) can alleviate RIF induced by cisplatin (CDDP). PURPOSE: To elucidate the effect of EGb treatment on cisplatin-induced RIF and reveal its potential mechanism. METHODS: The two main active components in EGb were determined by high-performance liquid chromatography (HPLC) analysis. Rats were induced by CDDP and then treated with EGb, 2ME2 (HIF-1α inhibitor) or amifostine. After HK-2 cells and HIF-1α siRNA HK-2 cells were treated with CDDP, EGb or amifostine, the conditioned medium from each group was cultured with NRK-49F cells. The renal function of rats was detected. The renal damage and fibrosis were evaluated by H&E and Masson trichrome staining. The IL-6 content in the cell medium was detected by ELISA. The expression levels of indicators related to renal fibrosis and signaling pathway were examined by western blotting and qRT-PCR. RESULTS: HPLC analysis showed that the contents of quercetin and kaempferol in EGb were 36.0 µg/ml and 45.7 µg/ml, respectively. In vivo, EGb and 2ME2 alleviated renal damage and fibrosis, as well as significantly decreased the levels of α-SMA, HIF-1α, STAT3 and IL-6 in rat tissues induced by CDDP. In vitro, the levels of HIF-1α, STAT3 and IL-6 were significantly increased in HK-2 cells and HIF-1α siRNA HK-2 cells induced by CDDP. Notably, HIF-1α siRNA significantly decreased the levels of HIF-1α, STAT3 and IL-6 in HK-2 cells, as well as the IL-6 level in medium from HK-2 cells. Additionally, the α-SMA level in NRK-49F cells was significantly increased after being cultured with conditioned medium from HK-2 cells or HIF-1α siRNA HK-2 cells exposed to CDDP. Furthermore, exogenous IL-6 increased the α-SMA level in NRK-49F cells. Importantly, the expression levels of the above-mentioned indicators were significantly decreased after the HK-2 cells and HIF-1α siRNA HK-2 cells were treated with EGb. CONCLUSION: This study revealed that EGb improves CDDP-induced RIF, and the mechanism may be related to its inhibition of the renal fibroblast activation by down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells.


Subject(s)
Amifostine , Kidney Diseases , Rats , Animals , Cisplatin/adverse effects , Interleukin-6/metabolism , Amifostine/metabolism , Amifostine/pharmacology , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Kidney , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Ginkgo biloba , Fibroblasts , RNA, Small Interfering/pharmacology , Fibrosis , Epithelial Cells/metabolism
12.
Integr Cancer Ther ; 22: 15347354221134513, 2023.
Article in English | MEDLINE | ID: mdl-36859800

ABSTRACT

The popular dietary supplements of Ginkgo biloba (Ginkgo) products have been reported to have anti-cancer activities in multiple cellular and animal studies, with the benefits yet to be proven with clinical trials. The mechanisms of action are not clear, forming a barrier to investigation in Gingko-specific benefits to cancer patients, especially when combined with other therapies. Here we reported on the discovery of a novel mechanism by which a Ginkgo golden leaf extract (GGLE) inhibited melanoma cell invasion and angiogenesis. GGLE did not inhibit melanoma cells via direct cytotoxicity. Instead, GGLE significantly inhibited total RNase activities in melanoma cells under both normoxia and hypoxia conditions. The RNase angiogenin was induced twofolds by hypoxia, and the induction was significantly suppressed by GGLE treatment in a dose dependent manner. As a result of angiogenin inhibition, GGLE inhibited melanoma cell migration and invasion in a dose dependent manner. Conditioned media from melanoma cell culture sufficiently induced in vitro angiogenesis in human endothelial cells, whereas the conditioned media of GGLE-treated melanoma cells significantly inhibited this angiogenetic activity. This was accompanied with markedly reduced angiogenin concentrations in the GGLE-treated melanoma cell conditioned media. We concluded that, instead of direct cytotoxicity, GGLE inhibited angiogenin synthesis and secretion by melanoma cells, resulting in inhibition of tumor cell invasion and tumor-induced angiogenesis. This new mechanism opens the door for investigation in GGLE influencing tumor microenvironment, and warrants further investigation and validation in vivo.


Subject(s)
Ginkgo biloba , Melanoma , Plant Extracts , Humans , Culture Media, Conditioned , Endothelial Cells , Plant Extracts/pharmacology , Ribonucleases , Tumor Microenvironment
13.
Phytomedicine ; 109: 154563, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610148

ABSTRACT

BACKGROUND: Cachexia is a multifactorial debilitating syndrome that is responsible for 22% of mortality among cancer patients, and there are no effective therapeutic agents available. Curcumin, a polyphenolic compound derived from the plant turmeric, has been shown to have anti-inflammatory, antioxidant, anti-autophagic, and antitumor activities. However, its function in cancer cachexia remains largely unexplored. PURPOSE: This study aimed to elucidate the mechanisms by which curcumin improves adipose atrophy in cancer cachexia. METHODS: C26 tumor-bearing BALB/c mice and ß3-adrenoceptor agonist CL316243 stimulated BALB/c mice were used to observe the therapeutic effects of curcumin on the lipid degradation of cancer cachexia in vivo. The effects of curcumin in vitro were examined using mature 3T3-L1 adipocytes treated with a conditioned medium of C26 tumor cells or CL316243. RESULTS: Mice with C26 tumors and cachexia were protected from weight loss and adipose atrophy by curcumin (50 mg/kg, i.g.). Curcumin significantly reduced serum levels of free fatty acids and increased triglyceride levels. In addition, curcumin significantly inhibited PKA and CREB activation in the adipose tissue of cancer cachectic mice. Curcumin also ameliorated CL316243-induced adipose atrophy and inhibited hormone-mediated PKA and CREB activation in mice. Moreover, the lipid droplet degradation induced by C26 tumor cell conditioned medium in mature 3T3-L1 adipocytes was ameliorated by curcumin (20 µM) treatment. Curcumin also improved the lipid droplet degradation of mature 3T3-L1 adipocytes induced by CL316243. CONCLUSION: Curcumin might be expected to be a therapeutic supplement for cancer cachexia patients, primarily through inhibiting adipose tissue loss via the cAMP/PKA/CREB signaling pathway.


Subject(s)
Curcumin , Neoplasms , Mice , Animals , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Curcumin/pharmacology , Culture Media, Conditioned/pharmacology , Signal Transduction , Lipolysis , Obesity , Atrophy
14.
Biomed Pharmacother ; 159: 114264, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36652738

ABSTRACT

Liver fibrosis (LF) is an important stage in chronic liver disease development, characterized by hepatic stellate cell (HSC) activation and excessive extracellular matrix deposition. Phillygenin (PHI), an active component in the traditional Chinese medicine Forsythiae Fructus with a significant anti-inflammatory effect, has been proved to inhibit HSC activation. Macrophages can polarize to pro-inflammatory M1 phenotype and anti-inflammatory M2 phenotype, participating in LF development. Currently, Forsythiae Fructus and its many components have been proved to inhibit the inflammatory activation of macrophages. However, there is no direct evidence that PHI can regulate macrophage polarization, and the relationship between macrophage polarization and the anti-LF effect of PHI has not been studied. In this study, we found that PHI inhibited the co-expression of CD80 and CD86, and inhibited the mRNA expression and protein secretion of related inflammatory cytokines in RAW264.7 cells. For mechanism, PHI was found to inhibit the JAK1/JAK2-STAT1 and Notch1 signaling pathways. Subsequently, mHSCs were co-cultured with the conditioned media or exosomes from macrophages with different treatments. It was found that the conditioned media and exosomes from PHI-treated macrophages inhibited the expression of MMP2, TIMP1, TGF-ß, α-SMA, COL1 and NF-κB in mHSCs. Moreover, through bioinformatic analysis and cell transfection, we confirmed that PHI reduced HSC activation by inhibiting the overexpression of miR-125b-5p in M1 macrophage-derived exosomes and restoring Stard13 expression in mHSCs. On the whole, PHI could inhibit M1 macrophage polarization by suppressing the JAK1/JAK2-STAT1 and Notch1 signaling pathways, and reduce HSC activation by inhibiting macrophage exosomal miR-125b-5p targeting Stard13. DATA AVAILABILITY: The raw data supporting the conclusions of this study are available in the article/Supplementary figures, and can be obtained from the first or corresponding author.


Subject(s)
MicroRNAs , Humans , MicroRNAs/metabolism , Hepatic Stellate Cells/metabolism , Culture Media, Conditioned/pharmacology , Liver Cirrhosis/metabolism , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Macrophage Activation
15.
Sci Rep ; 12(1): 20772, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456585

ABSTRACT

Mesenchymal stem cells (MSCs) are a new therapeutic strategy for inflammatory bowel disease (IBD), and their efficacy has been widely recognized. However, there are still some challenges in cell therapy, including stable cell passage, laboratory conditions for cell culture, high-cost burden, and poor transplantation. The conditioned medium (CM) of MSCs is considered be an excellent alternative to cell transplantation, but the paracrine group in MSC-CM is limited in variety and low in concentration, which cannot meet the therapeutic needs of injured tissues and needs to be optimized. Pretreatment with low concentration of hydrogen peroxide (H2O2) can not only protect cells from oxidative damage, but also play a role similar to growth factors and regulate the physiological function of stem cells, to obtain an improved conditioned medium. To determine the optimal protocol for pretreatment of MSCs with H2O2, and to study the efficacy and potential mechanism of MSC-CM pretreated with H2O2 on Dextran Sulfate Sodium (DSS)-induced acute experimental colitis. MSCs were exposed to different concentrations of H2O2, and the optimal H2O2 pretreatment conditions were determined by evaluating their critical cell functional properties. H2O2-pretreated MSC-CM was transplanted into experimental mouse colitis by enema at 2, 4, and 6 days in modeling, and the changes of colonic tissue structure, the levels of inflammation and oxidative stress, the molecular changes of Nrf2/Keap1/ARE axis, and the related indicators of apoptosis in colonic epithelial cells were observed in each group. In vitro, Pretreated MSCs with 25 µM H2O2 significantly enhanced cell proliferation, migration, and survival, but had no effect on apoptosis. In vivo, MSC-CM treatment decreased apoptosis and extracellular matrix deposition, and maintained the mechanical barrier and permeability of colonic epithelial cells in experimental mouse colitis. Mechanistically, H2O2-pretreated MSC-CM against reactive oxygen species (ROS) production and MDA generation, accompanied by increases in components of the enzymatic antioxidant system includes SOD, CAT, GSH-PX, and T-AOC, which is through the up-regulation of the Nrf2, HO-1, and NQO-1 antioxidant genes. Our data confirmed that 25 µM H2O2 pretreated MSC-CM treatment could effectively improve intestinal mucosal repair in experimental colitis, which may be achieved by activating Nrf2/Keap1/ARE pathway.


Subject(s)
Colitis , Mesenchymal Stem Cells , Animals , Mice , Antioxidants , Colitis/chemically induced , Colitis/therapy , Culture Media, Conditioned/pharmacology , Hydrogen Peroxide , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2
16.
J Neuroinflammation ; 19(1): 253, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217178

ABSTRACT

BACKGROUND: The immune system has been implicated in synaptic plasticity, inflammation, and the progression of Alzheimer's disease (AD). However, there were few studies on improving the niche microenvironment of neural stem cells (NSCs) in the brain of AD to promote adult hippocampal neurogenesis (AHN) by regulating the function of non-parenchymal immune cells. METHODS: The lymph nodes of amyloid precursor protein/presenilin 1 (APP/PS1) and 3xTg (APP/PS1/tau) mouse models of AD were treated with photobiomodulation therapy (PBMT) for 10 J/cm2 per day for 1 month (10 min for each day), T lymphocytes isolated from these two AD models were treated with PBMT for 2 J/cm2 (5 min for each time). The NSCs isolated from hippocampus of these two AD models at E14, and the cells were co-cultivated with PBMT-treated T lymphocyte conditioned medium for NSCs differentiation. RESULTS: Our results showed that PBMT treatment could promote AHN and reverse cognitive deficits in AD mouse model. The expression of interferon-γ (IFN-γ) and interleukin-10 (IL-10) was upregulated in the brain of these two AD models after PBMT treated, which was induced by the activation of Janus kinase 2 (JAK2)-mediated signal transducer and activator of transcription 4 (STAT4)/STAT5 signaling pathway in CD4+ T cells. In addition, elevated CD4+ T cell levels and upregulated transforming growth factor-ß1 (TGFß1)/insulin-like growth factors-1 (IGF-1)/brain-derived neurotrophic factor (BDNF) protein expression levels were also detected in the brain. More importantly, co-cultivated the PBMT-treated T lymphocyte conditioned medium with NSCs derived from these two AD models was shown to promote NSCs differentiation, which was reflected in the upregulation of both neuronal class-III ß-tubulin (Tuj1) and postsynaptic density protein 95 (PSD95), but the effects of PBMT was blocked by reactive oxygen species (ROS) scavenger or JAK2 inhibitor. CONCLUSION: Our research suggests that PBMT exerts a beneficial neurogenesis modulatory effect through activating the JAK2/STAT4/STAT5 signaling pathway to promote the expression of IFN-γ/IL-10 in non-parenchymal CD4+ T cells, induction of improvement of brain microenvironmental conditions and alleviation of cognitive deficits in APP/PS1 and 3xTg-AD mouse models.


Subject(s)
Alzheimer Disease , Low-Level Light Therapy , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cognition , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Insulin-Like Growth Factor I/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Janus Kinase 2/metabolism , Mice , Mice, Transgenic , Neurogenesis/physiology , Presenilin-1/genetics , Presenilin-1/metabolism , Reactive Oxygen Species/metabolism , STAT4 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/pharmacology , T-Lymphocytes/metabolism , Transforming Growth Factor beta1/metabolism , Tubulin/metabolism
17.
Mol Biol Rep ; 49(11): 10315-10325, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36097106

ABSTRACT

BACKGROUND: Common treatments of liver disease failed to meet all the needs in this important medical field. It results in an urgent need for proper some new adjuvant therapies. Mesenchymal stem cells (MSCs) and their derivatives are promising tools in this regard. We aimed to compare the Silymarin, as traditional treatment with mesenchymal stem cell conditioned medium (MSC-CM), as a novel strategy, both with therapeutic potentialities in term of liver failure (LF) treatment. METHODS AND RESULTS: Mice models with liver failure were induced with CCl4 and were treated in the groups as follows: normal mice receiving DMEM-LG medium as control, LF-mice receiving DMEM-LG medium as sham, LF-mice receiving Silymarin as LF-SM, and LF-mice receiving MSC sphere CM as LF-MSC-CM. Biochemical, histopathological, molecular and protein level parameters were evaluated using blood and liver samples. Liver enzymes, MicroRNA-122 values as well as necrotic score were significantly lower in the LF-SM and LF-MSC-CM groups compared to sham. LF-SM showed significantly higher level of total antioxidant capacity and malondialdehyde than that of LF-MSC-CM groups. Sph-MSC-CM not only induced more down-regulated expression of fibrinogen-like protein 1 and receptor interacting protein kinases1 but also led to higher expression level of keratinocyte growth factor. LF-MSC-CM showed less mortality rate compared to other groups. CONCLUSIONS: Hepato-protective potentialities of Sph-MSC-CM are comparable to those of Silymarin. More inhibition of necroptosis/ necrosis and inflammation might result in rapid liver repair in case of MSC-CM administration.


Subject(s)
Liver Failure , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Silymarin , Animals , Mice , Culture Media, Conditioned/pharmacology , Liver Failure/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Silymarin/pharmacology
18.
J Cell Biochem ; 123(12): 1966-1979, 2022 12.
Article in English | MEDLINE | ID: mdl-36029519

ABSTRACT

There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.


Subject(s)
Hematologic Neoplasms , Hyperthermia, Induced , Mesenchymal Stem Cells , Humans , Interleukin-6/metabolism , Palatine Tonsil/metabolism , Down-Regulation , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Culture Media, Conditioned/pharmacology
19.
J Ethnopharmacol ; 299: 115652, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36038092

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dahuang Mudan decoction (DMD) is a classic prescription for treating intestinal carbuncle from Zhang Zhongjing's "Essentials of the Golden Chamber" in the Han Dynasty. Recent studies also prove that DMD has a therapeutic effect on ulcerative colitis (UC), but its mechanism is still unclear. AIM OF STUDY: In this study, we aim to assess the therapeutic effect of DMD on DSS-induced chronic colitis in mice and deeply expound its underlying regulative mechanism. MATERIALS AND METHODS: The efficacy of DMD on mice with 2% DSS-induced chronic colitis was examined by changes in mouse body weight, DAI score, colon length changes, peripheral blood white blood cells (WBC) and red blood cells (RBC) counts, and hemoglobin (HGB) content, using mesalazine as a positive control. A small animal imaging system observed the FITC-Dextran fluorescence distribution in mice, and the contents of IL-22 and IL-17A in colon tissue homogenate supernatant and LPS in peripheral blood were detected by ELISA. Fluorescence in situ molecular hybridization and bacterial culture were used to investigate bacterial infiltration in intestinal mucosa and bacterial translocation in mesenteric lymph nodes and spleen. Mice immune function was further evaluated by analyzing the changes in spleen index, thymus index, and the ratio of peripheral blood granulocytes, monocytes, and lymphocytes. Meanwhile, the proportion of NCR+ group 3 innate lymphoid cells (ILC3), NCR-ILC3, and IL-22+ILC3 in colonic lamina propria lymphocytes of mice was detected by flow cytometry. The contents of effectors IL-22, IL-17A, and GM-CSF were detected by RT-PCR. We use cell scratching to determine the effect of DMD conditioned medium on the migration of Caco-2 cells by establishing an in vitro model of MNK-3 conditioned medium (CM) intervening Caco-2 cells. RT-PCR and WB detect the expression of tight junction ZO-1, Occludin, and Claudin-1. RESULTS: DMD restored the body weight, colon length, peripheral blood RBC numbers, and HGB content of chronic colitis mice and reduced peripheral blood WBC and colon inflammatory cell infiltration. Moreover, DMD decreased LPS content in serum, bacterial infiltration of colonic mucosa, and bacterial translocation in spleen and mesenteric lymph nodes. Simultaneously, DMD intensified the expression of ZO-1, Occludin, and Claudin-1, the ratio of NCR+ILC3 and IL-22+ILC3, and decreased the proportion of NCR-ILC3. In vitro studies also confirmed that the conditioned medium of DMD promoted the migration of Caco-2 cells and the expression of tight junction proteins. CONCLUSION: Our results confirm that DMD improves inflammation and restores intestinal epithelial function in mice with chronic colitis, and the mechanism may be related to regulating ILC3 function.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Body Weight , Caco-2 Cells , Claudin-1/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Culture Media, Conditioned/adverse effects , Culture Media, Conditioned/metabolism , Dextran Sulfate , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Immunity, Innate , Interleukin-17/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides/pharmacology , Lymphocytes/metabolism , Mesalamine/adverse effects , Mice , Mice, Inbred C57BL , Occludin/metabolism , Tight Junction Proteins/metabolism
20.
Braz Oral Res ; 36: e090, 2022.
Article in English | MEDLINE | ID: mdl-35830137

ABSTRACT

The topical glucocorticoid budesonide has been prescribed before and after sinus lift surgery as adjuvant drug treatment for maxillary sinus membrane inflammation. However, there is no study on the effects of budesonide on the regenerative process of bone grafting biomaterials. We investigated the effect of the association of budesonide with some biomaterials on the growth and differentiation capacity of pre-osteoblastic cells (MC3T3-E1 subclone 4). Xenogeneic (Bio-Oss and Bio-Gen) and synthetic hydroxyapatites (Osteogen, Bonesynth, and HAP-91) were tested in conditioned medium (1% w/v). The conditioned medium was then supplemented with budesonide (0.5% v/v). Cell viability was assessed using the MTT assay (48, 96, and 144 h), and mineralized nodules were quantified after 14 days of culture using the Alizarin Red Staining. Alkaline phosphatase activity was assessed through the release of thymolphthalein at day seven. All biomaterials showed little or no cytotoxicity. The Bio-Gen allowed significantly less growth than the control group regardless of the experimental time. Regarding differentiation potential of MC3T3-E1, the HAP-91-conditioned medium showed remarkable osteoinductive properties. In osteodifferentiation, the addition of budesonide favored the formation of mineral nodules when cells were cultured in medium conditioned with synthetic materials, whereas it weakened the mineralization potential of cells cultured in xenogeneic medium. Regardless of whether budesonide was added or not, Osteogen and Bio-Oss showed higher alkaline phosphatase activity than the other groups. Budesonide may improve bone formation when associated with synthetic biomaterials. Conversely, the presence of this glucocorticoid weakens the mineralization potential of pre-osteoblastic cells cultured with xenogeneic hydroxyapatites.


Subject(s)
Biocompatible Materials , Osteoblasts , Alkaline Phosphatase , Biocompatible Materials/pharmacology , Budesonide/pharmacology , Cell Differentiation , Cell Line , Culture Media, Conditioned/pharmacology , Durapatite/pharmacology , Glucocorticoids/pharmacology , Hydroxyapatites/pharmacology , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL