Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.176
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Cancer Res Clin Oncol ; 150(4): 212, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662247

ABSTRACT

BACKGROUND AND AIM: Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS: In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS: Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS: The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.


Subject(s)
Breast Neoplasms , Cyclophosphamide , Morinda , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/adverse effects , Mice , Humans , Female , Morinda/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Fruit and Vegetable Juices , Xenograft Model Antitumor Assays , Drug Synergism , Plant Extracts/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/adverse effects , Mice, Inbred BALB C , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/etiology
2.
J Ethnopharmacol ; 330: 118235, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38648891

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AM, recorded in http://www.worldfloraonline.org, 2023-08-03) is a kind of medicine food homology plant with a long medicinal history in China. Astragaloside III (AS-III) has immunomodulatory effects and is one of the most active components in AM. However, its underlying mechanism of action is still not fully explained. AIM OF THE STUDY: The research was designed to discuss the protective effects of AS-III on immunosuppression and to elucidate its prospective mechanism. MATERIALS AND METHODS: Molecular docking methods and network pharmacology analysis were used to comprehensively investigate potential targets and relative pathways for AS-III and immunosuppression. In order to study and verify the pharmacological activity and mechanism of AS-III in alleviating immunosuppression, immunosuppression mouse model induced by cyclophosphamide (CTX) in vivo and macrophage RAW264.7 cell model induced by hypoxia/lipopolysaccharide (LPS) in vitro were used. RESULTS: A total of 105 common targets were obtained from the AS-III-related and immunosuppression-related target networks. The results of network pharmacology and molecular docking demonstrate that AS-III may treat immunosuppression through by regulating glucose metabolism-related pathways such as regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, cGMP-PKG signaling pathway, central carbon metabolism in cancer together with HIF-1 pathway. The results of molecular docking showed that AS-III has good binding relationship with LDHA, AKT1 and HIF1A. In CTX-induced immunosuppressive mouse model, AS-III had a significant protective effect on the reduction of body weight, immune organ index and hematological indices. It can also protect immune organs from damage. In addition, AS-III could significantly improve the expression of key proteins involved in energy metabolism and serum inflammatory factors. To further validate the animal results, an initial inflammatory/immune response model of macrophage RAW264.7 cells was constructed through hypoxia and LPS. AS-III improved the immune function of macrophages, reduced the release of NO, TNF-α, IL-1ß, PDHK-1, LDH, lactate, HK, PK and GLUT-1, and restored the decrease of ATP caused by hypoxia. Besides, AS-III was also demonstrated that it could inhibit the increase of HIF-1α, PDHK-1 and LDH by adding inhibitors and agonists. CONCLUSIONS: In this study, the main targets of AS-III for immunosuppressive therapy were initially analyzed. AS-III was systematically confirmed to attenuates immunosuppressive state through the HIF-1α/PDHK-1 pathway. These findings offer an experimental foundation for the use of AS-III as a potential candidate for the treatment of immunosuppression.


Subject(s)
Molecular Docking Simulation , Network Pharmacology , Saponins , Animals , Mice , RAW 264.7 Cells , Saponins/pharmacology , Lipopolysaccharides , Male , Cyclophosphamide/pharmacology , Immunosuppressive Agents/pharmacology , Triterpenes/pharmacology , Signal Transduction/drug effects , Astragalus Plant/chemistry
3.
J Ethnopharmacol ; 330: 118148, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38583734

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY: To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS: Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS: 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION: The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.


Subject(s)
Anemia , Cyclophosphamide , Mice, Inbred BALB C , Panax notoginseng , Saponins , Animals , Cyclophosphamide/toxicity , Panax notoginseng/chemistry , Mice , Saponins/pharmacology , Anemia/chemically induced , Anemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Cell Line, Tumor , Female
4.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589967

ABSTRACT

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Moxibustion , Primary Ovarian Insufficiency , Humans , Female , Rats , Animals , Mitophagy , Reactive Oxygen Species/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/adverse effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Cyclophosphamide/adverse effects , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/metabolism , Protein Kinases/metabolism , Hormones/adverse effects , Hormones/metabolism , Adenosine Triphosphate/metabolism
5.
Phytomedicine ; 128: 155424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537441

ABSTRACT

BACKGROUND: Leukopenia could be induced by chemotherapy, which leads to bone marrow suppression and even affects the therapeutic progression of cancer. Qijiao Shengbai Capsule (QSC) has been used for the treatment of leukopenia in clinic, but its bioactive components and mechanisms have not yet been elucidated clearly. PURPOSE: This study aimed to elucidate the molecular mechanisms of QSC in treating leukopenia. STUDY DESIGN: Serum pharmacochemistry, multi-omics, network pharmacology, and validation experiment were combined to study the effect of QSC in murine leukopenia model. METHODS: First, UPLC-QTOF-MS was used to clarify the absorbed components of QSC. Then, cyclophosphamide (CTX) was used to induce mice model with leukopenia, and the therapeutic efficacy of QSC was assessed by an integrative approach of multi-omics and network pharmacology strategy. Finally, molecular mechanisms and potential therapeutic targets were identified by validated experiments. RESULTS: 121 compounds absorbed in vivo were identified. QSC significantly increase the count of white blood cells (WBCs) in peripheral blood of leukopenia mice with 15 days treatment. Multi-omics and network pharmacology revealed that leukotriene pathway and MAPK signaling pathway played crucial roles during the treatment of leukopenia with QSC. Six targets (ALOX5, LTB4R, CYSLTR1, FOS, JUN, IL-1ß) and 13 prototype compounds were supposed to be the key targets and potential active components, respectively. The validation experiment further confirmed that QSC could effectively inhibit the inflammatory response induced by leukopenia. The inhibitors of ALOX5 activity can significantly increase the number of WBCs in leukopenia mice. Molecular docking of ALOX5 suggested that calycosin, daidzein, and medicarpin were the potentially active compounds of QSC. CONCLUSION: Leukotriene pathway was found for the first time to be a key role in the development of leukopenia, and ALOX5 was conformed as the potential target. QSC may inhibit the inflammatory response and interfere the leukotriene pathway, it is able to improve hematopoiesis and achieve therapeutic effects in the mice with leukopenia.


Subject(s)
Drugs, Chinese Herbal , Leukopenia , Leukotrienes , Animals , Leukopenia/drug therapy , Leukopenia/chemically induced , Drugs, Chinese Herbal/pharmacology , Mice , Leukotrienes/metabolism , Male , Cyclophosphamide , Disease Models, Animal , Network Pharmacology , Signal Transduction/drug effects , Capsules , Multiomics
6.
Medicine (Baltimore) ; 103(13): e37572, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552085

ABSTRACT

RATIONALE: Cyclophosphamide (CTX) is widely used in the treatment of malignancies and autoimmune diseases. Although severe hyponatremia caused by low-dose CTX chemotherapy is uncommon, it can lead to serious complications and even death. PATIENT CONCERNS: A 44-year-old woman with left-sided breast cancer suddenly experienced headaches, disorientation and weakness after receiving low-dose neoadjuvant chemotherapy combined with CTX and doxorubicin. DIAGNOSES: The patient pathology showed invasive breast carcinoma. She developed severe hyponatremia and a generalized seizure after completing the first cycle of neoadjuvant chemotherapy with CTX and doxorubicin. Laboratory tests showed a serum sodium of 118 mmol/L (normal range 135-145 mmol/L) and potassium sodium 3.16 mmol/L (normal range 3.5-5.5 mmol/L). Subsequently, the patient developed secondary diabetes insipidus 4 hours after sodium supplementation, her 24-hour urine volume was 4730 mL (normal range 1000-2000 mL/24 hours), and the urine specific gravity decreased to 1.005. INTERVENTIONS: The patient was given intravenous sodium chloride (500 mL of 3%NaCl, 100 mL/hour) and potassium chloride (500 mL of 0.3%KCl, 250 mL/hour). Meanwhile, she was advised to reduce her water intake, and pituitrin was administered to prevent dehydration caused by diabetes insipidus. OUTCOMES: The patient completely recovered after correcting of the serum sodium concentration (137 mmol/L) without any neurological deficits. After discontinuing pituitrin, her 24-hour urine volume was 2060 mL and the urine specific gravity was 1.015. LESSONS: This is a typical case of severe hyponatremia induced by low-dose CTX. Clinicians and healthcare providers should be aware of this potential toxicity, and appropriate monitoring should be implemented.


Subject(s)
Breast Neoplasms , Diabetes Insipidus , Diabetes Mellitus , Hyponatremia , Pituitary Hormones, Posterior , Humans , Female , Adult , Hyponatremia/chemically induced , Hyponatremia/complications , Breast Neoplasms/complications , Breast Neoplasms/drug therapy , Cyclophosphamide/adverse effects , Sodium , Doxorubicin/adverse effects , Pituitary Hormones, Posterior/adverse effects
7.
J Ethnopharmacol ; 327: 118011, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38467320

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rujifang (RJF) constitutes a traditional Chinese medicinal compound extensively employed in the management of triple-negative breast cancer (TNBC). However, information regarding its potential active ingredients, antitumor effects, safety, and mechanism of action remains unreported. AIM OF THE STUDY: To investigate the efficacy and safety of RJF in the context of TNBC. MATERIALS AND METHODS: We employed the ultra high-performance liquid chromatography-electrospray four-pole time-of-flight mass spectrometry technique (UPLC/Q-TOF-MS/MS) to scrutinize the chemical constituents of RJF. Subcutaneously transplanted tumor models were utilized to assess the impact of RJF on TNBC in vivo. Thirty female BLAB/c mice were randomly divided into five groups: the model group, cyclophosphamide group, and RJF high-dose, medium-dose, and low-dose groups. A total of 1 × 106 4T1 cells were subcutaneously injected into the right shoulder of mice, and they were administered treatments for a span of 28 days. We conducted evaluations on blood parameters, encompassing white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelet count (PLT), neutrophils, lymphocytes, and monocytes, as well as hepatorenal indicators including alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin, and creatinine (CRE) to gauge the safety of RJF. Ki67 and TUNEL were detected via immunohistochemistry and immunofluorescence, respectively. We prepared RJF drug-containing serum for TNBC cell lines and assessed the in vitro inhibitory effect of RJF on tumor cell growth through the CCK8 assay and cell cycle analysis. RT-PCR was employed to detect the mRNA expression of cyclin-dependent kinase and cyclin-dependent kinase inhibitors in tumor tissues, and Western blot was carried out to ascertain the expression of cyclin and pathway-related proteins. RESULTS: 100 compounds were identified in RJF, which consisted of 3 flavonoids, 24 glycosides, 18 alkaloids, 3 amino acids, 8 phenylpropanoids, 6 terpenes, 20 organic acids, and 18 other compounds. In animal experiments, both CTX and RJF exhibited substantial antitumor effects. RJF led to an increase in the number of neutrophils in peripheral blood, with no significant impact on other hematological indices. In contrast, CTX reduced red blood cell count, hemoglobin levels, and white blood cell count, while increasing platelet count. RJF exhibited no discernible influence on hepatorenal function, whereas Cyclophosphamide (CTX) decreased ALP, GOT, and GPT levels. Both CTX and RJF reduced the expression of Ki67 and heightened the occurrence of apoptosis in tumor tissue. RJF drug-containing serum hindered the viability of 4T1 and MD-MBA-231 cells in a time and concentration-dependent manner. In cell cycle experiments, RJF diminished the proportion of G2 phase cells and arrested the cell cycle at the S phase. RT-PCR analysis indicated that RJF down-regulated the mRNA expression of CDK2 and CDK4, while up-regulating that of P21 and P27 in tumor tissue. The trends in CDKs and CDKIs protein expression mirrored those of mRNA expression. Moreover, the PI3K/AKT pathway displayed downregulation in the tumor tissue of mice treated with RJF. CONCLUSION: RJF demonstrates effectiveness and safety in the context of TNBC. It exerts anti-tumor effects by arresting the cell cycle at the S phase through the PI3K-AKT pathway.


Subject(s)
Signal Transduction , Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Triple Negative Breast Neoplasms/pathology , Ki-67 Antigen/metabolism , Tandem Mass Spectrometry , Cell Line, Tumor , Cell Proliferation , Apoptosis , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/pharmacology , Cyclin-Dependent Kinases/therapeutic use , Cyclophosphamide/pharmacology , Hemoglobins/pharmacology , Hemoglobins/therapeutic use , Transaminases , Glutamates/pharmacology , Glutamates/therapeutic use , RNA, Messenger
8.
J Agric Food Chem ; 72(7): 3469-3482, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329061

ABSTRACT

Turmeric, a traditional medicinal herb, is commonly used as a dietary and functional ingredient. This study aimed to investigate the effect of turmeric polysaccharides (TPs) on intestinal immunity and gut microbiota in cyclophosphamide (Cy)-induced immunosuppressed BALB/c mice. We verified that the oral administration of TPs-0 and TPs-3 (200 and 400 mg/kg, bw) improved thymus and spleen indexes, increased the whole blood immune cells (WBC) and lymph count index, and stimulated the secretion of serum immunoglobulin IgG. More importantly, TPs-0 and TPs-3 could repair intestinal immune damage and reduce intestinal inflammation. The specific mechanism is ameliorating the intestinal pathological damage, promoting CD4+ T cell secretion, regulating the expression of related cytokines, and reducing the level of critical proteins in the NF-κB/iNOS pathway. Interestingly, the intake of TPs-0 and TPs-3 significantly increased the content of short-chain fatty acids (SCFAs). Moreover, TPs-0 and TPs-3 relieved the intestinal microbiota disorder via the proliferation of the abundance of Lactobacillus and Bacteroides and the inhibition of Staphylococcus. Cumulatively, our study suggests that TPs-0 and TPs-3 can relieve intestinal immune damage by repairing the immune barrier and regulating intestinal flora disorders. TPs have potential applications for enhancing immunity as a functional food.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Curcuma , Cyclophosphamide , Mice, Inbred BALB C , Immunity , Polysaccharides/pharmacology
9.
Support Care Cancer ; 32(3): 190, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400861

ABSTRACT

BACKGROUND: Highly emetogenic chemotherapy (HEC) is known to induce nausea and vomiting (CINV) in approximately 90% of cancer patients undergoing this regimen unless proper prophylactic antiemetics are administered. This study aimed to analyze the use of a three-drug prophylactic antiemetic regimen during the first cycle of chemotherapy and assess the compliance rate with the National Comprehensive Cancer Network (NCCN) guidelines. METHODS: This retrospective study utilized data from the National Inpatient Sample database from 2016 to 2020 provided by the Health Insurance Review and Assessment Service. The claims data encompassed 10 to 13% of inpatients admitted at least once each year. Patients with solid cancers treated with two HEC regimens, namely anthracycline + cyclophosphamide (AC) and cisplatin-based regimens, were selected as the study population. We evaluated the use of a three-drug prophylactic antiemetic regimen, including a neurokinin-1 receptor antagonist, a 5-hydroxytryptamine-3 receptor antagonist, and dexamethasone and compliance with the NCCN guidelines. Multiple logistic regression was conducted to estimate the influence of variables on guideline adherence. RESULTS: A total of 3119 patients were included in the analysis. The overall compliance rate with the NCCN guidelines for prophylactic antiemetics was 74.3%, with higher rates observed in the AC group (87.9%) and lower rates in the cisplatin group (60.4%). The AC group had a 6.37 times higher likelihood of receiving guideline-adherent antiemetics than the cisplatin group. Further analysis revealed that, compared to 2016, the probability of complying with the guidelines in 2019 and 2020 was 0.72 times and 0.76 times lower, respectively. CONCLUSION: This study showed that a considerable proportion of HEC-treated patients received guideline-adherent antiemetic therapies. However, given the variations in adherence rates between different chemotherapy regimens (AC vs. cisplatin), efforts to improve adherence and optimize antiemetic treatment remain essential for providing the best possible care for patients experiencing CINV.


Subject(s)
Antiemetics , Antineoplastic Agents , Neoplasms , Humans , Antiemetics/therapeutic use , Cisplatin , Retrospective Studies , Nausea/chemically induced , Nausea/prevention & control , Nausea/drug therapy , Vomiting/chemically induced , Vomiting/prevention & control , Vomiting/drug therapy , Neoplasms/drug therapy , Cyclophosphamide/adverse effects , Anthracyclines/adverse effects , Republic of Korea , Antineoplastic Agents/adverse effects
10.
BMC Complement Med Ther ; 24(1): 7, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166988

ABSTRACT

BACKGROUND: Immunological abnormalities are implicated in the pathogenesis of many chronic diseases. Due to the drug-related adverse effects of currently available orthodox immunomodulators, natural immunomodulators are being looked upon as potential agents to replace them in therapeutic regimens. This research aimed to investigate the immunomodulatory potential of L. micranthus extracts epiphytic on Psidium guajava (LMPGE) and Parkia biglobosa (LMPBE). METHODS: Phytochemical screening and acute toxicity testing were carried out to identify the phytoconstituents and safety profiles of the extracts. The extracts' innate and adaptive immunomodulatory potentials were determined in experimental animals using in vivo leucocyte mobilization, delayed-type hypersensitivity (DTH) response, hemagglutination antibody titre, and cyclophosphamide-induced myelosuppression models. Levamisole was used as the standard drug throughout the study. RESULTS: Compared to LMPBE, LMPGE contained significantly (p <  0.05) more tannins, cyanogenic glycosides, saponins, reducing sugars, glycosides, flavonoids, and alkaloids. Furthermore, the groups treated with the extracts had a significant (p <  0.05) increase in the total number of leucocytes, neutrophils, basophils, and antibody titers relative to the untreated control. In the same way, the treatment raised TLC in cyclophosphamide-intoxicated rats, with 250 mg/kg b. w. of LMPGE and LMPBE recording 9712.50 ± 178.00 and 8000.00 ± 105.00 ×  109 /L, respectively, compared to 3425.00 ± 2 5.00 × 109 /L in the untreated group. Overall, LMPGE was more effective. CONCLUSIONS: The findings from this study suggest that L. micranthus epiphytic in Psidium guajava and Parkia biglobosa has possible immune stimulating potential.


Subject(s)
Fabaceae , Loranthaceae , Psidium , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Immunologic Factors/pharmacology , Cyclophosphamide
11.
Tissue Cell ; 86: 102296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184921

ABSTRACT

Coenzyme Q10 (KQ10) and curcumin (KUR) supplements are extensively used for their potential antioxidant, anticancer, and antiapoptotic properties. The present study investigated the neuroprotective potential of KQ10 and KUR against the side effect of cyclophosphamide (SF) (150 mg/kg) on the hippocampus of male Wistar albino rats. Forty-nine 10-12 weeks old rats were randomly divided into seven groups: control, olive oil (OL), SF, KQ10, KUR, SF+KQ10, and SF+KUR. Our biochemical finding showed a significant decrease in superoxide dismutase (SOD) level in the SF group compared to the control group (p < 0.05). There was also a significant reduction in the total number of the hippocampal pyramidal neurons in the CA1, CA2, and CA1-3 regions in the SF group compared to the control group (p < 0.05). In the SF+KQ10 group, we found a significant increase in serum SOD level and the total number of the hippocampal pyramidal neurons in the CA1, CA2, and CA1-3 regions compared to the SF group (p < 0.05). Immunohistochemical and histopathological examination exhibited noteworthy findings in the hippocampus tissues. Our findings showed that KQ10 administration significantly mitigated the hippocampal alteration caused by SF through enhancing antioxidant enzyme activity and reducing apoptosis. However, we found no protective activity of KUR on the hippocampus tissue, which may be due to its weak antioxidative activity.


Subject(s)
Antioxidants , Curcumin , Ubiquinone/analogs & derivatives , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Curcumin/pharmacology , Rats, Wistar , Hippocampus , Superoxide Dismutase/metabolism , Cyclophosphamide/toxicity , Oxidative Stress
12.
J Ethnopharmacol ; 323: 117718, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38181933

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: It has been reported that apoptosis and oxidative stress are related to cyclophosphamide (CYC)-induced premature ovarian failure (POF). Therefore, anti-apoptotic and anti-oxidative stress treatments exhibit therapeutic efficacy in CYC-induced POF. Danggui Shaoyao San (DSS), which has been extensively used to treat gynecologic diseases, is found to inhibit apoptosis and reduce oxidative stress. However, the roles of DSS in regulating apoptosis and oxidative stress during CYC-induced POF, and its associated mechanisms are still unknown. AIM OF THE STUDY: This work aimed to investigate the roles and mechanisms of DSS in inhibiting apoptosis and oxidative stress in CYC-induced POF. MATERIALS AND METHODS: CYC (75 mg/kg) was intraperitoneally injected in mice to construct the POF mouse model for in vivo study. Thereafter, alterations of body weight, ovary morphology and estrous cycle were monitored to assess the ovarian protective properties of DSS. Serum LH and E2 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was employed for examining ovarian pathological morphology and quantifying follicles in various stages. Meanwhile, TUNEL staining and apoptosis-related proteins were adopted for evaluating apoptosis. Oxidative stress was measured by the levels of ROS, MDA, and 4-HNE. Western blot (WB) assay was performed to detect proteins related to the SIRT1/p53 pathway. KGN cells were used for in vitro experiment. TBHP stimulation was carried out for establishing the oxidative stress-induced apoptosis cell model. Furthermore, MTT assay was employed for evaluating the protection of DSS from TBHP-induced oxidative stress. The anti-apoptotic ability of DSS was evaluated by hoechst/PI staining, JC-1 staining, and apoptosis-related proteins. Additionally, the anti-oxidative stress ability of DSS was measured by detecting the levels of ROS, MDA, and 4-HNE. Proteins related to SIRT1/p53 signaling pathway were also measured using WB and immunofluorescence (IF) staining. Besides, SIRT1 expression was suppressed by EX527 to further investigate the role of SIRT1 in the effects of DSS against apoptosis and oxidative stress. RESULTS: In the in vivo experiment, DSS dose-dependently exerted its anti-apoptotic, anti-oxidative stress, and ovarian protective effects. In addition, apoptosis, apoptosis-related protein and oxidative stress levels were inhibited by DSS treatment. DSS treatment up-regulated SIRT1 and down-regulated p53 expression. From in vitro experiment, it was found that DSS treatment protected KGN cells from TBHP-induced oxidative stress injury. Besides, DSS administration suppressed the apoptosis ratio, apoptosis-related protein levels, mitochondrial membrane potential damage, and oxidative stress. SIRT1 suppression by EX527 abolished the anti-apoptotic, anti-oxidative stress, and ovarian protective effects, as discovered from in vivo and in vitro experiments. CONCLUSIONS: DSS exerts the anti-apoptotic, anti-oxidative stress, and ovarian protective effects in POF mice, and suppresses the apoptosis and oxidative stress of KGN cells through activating SIRT1 and suppressing p53 pathway.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Humans , Female , Mice , Animals , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/prevention & control , Tumor Suppressor Protein p53/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Oxidative Stress , Apoptosis , Cyclophosphamide/toxicity , Signal Transduction
13.
Breast Cancer Res Treat ; 203(3): 565-574, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37923962

ABSTRACT

PURPOSE: Most cytotoxic drugs are dosed using body surface area (BSA), yet not all cancer patients receive the full BSA-determined dose. Prior work suggests that breast cancer patients who are obese are more likely to experience dose reduction than normal weight patients. However, the factors driving dose reduction remain unclear. METHODS: In 452 women diagnosed with stage I-IIIA primary breast cancer at Kaiser Permanente Northern California, we evaluated the association between obesity and dose reduction, and further explored other factors in relation to dose reduction, including various sociodemographic characteristics, tumor characteristics, and comorbidities. Study participants were a part of the Pathways Study, diagnosed between 2006 and 2013 and treated with cyclophosphamide + doxorubicin, followed by paclitaxel (ACT). Dose reduction was assessed using first cycle dose proportion (FCDP) and average relative dose intensity (ARDI), a metric of dose intensity over the course of chemotherapy. RESULTS: Overall, 8% of participants received a FCDP < 90% and 21.2% had an ARDI < 90%, with dose reduction increasing with body mass index. In adjusted logistic regression models, obese women had 4.1-fold higher odds of receiving an ARDI < 90% than normal weight women (95% CI: 1.9-8.9; p-trend = 0.0006). Increasing age was positively associated with an ADRI < 90%, as was the presence of comorbidity. Dose reduction was less common in later calendar years. CONCLUSION: Results offer insight on factors associated with chemotherapy dosing for a common breast cancer regimen. Larger studies are required to evaluate relevance to other regimens, and further work will be needed to determine whether dose reductions impact outcomes in obese women.


Subject(s)
Breast Neoplasms , Delivery of Health Care, Integrated , Fumarates , beta-Alanine/analogs & derivatives , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/epidemiology , Breast Neoplasms/complications , Drug Tapering , Retrospective Studies , Cyclophosphamide , Obesity/complications , Obesity/epidemiology , Obesity/drug therapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects
14.
Clin Cancer Res ; 30(2): 274-282, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37939122

ABSTRACT

PURPOSE: Hematopoietic cell transplantation (HCT) has curative potential for myeloid malignancies, though many patients cannot tolerate myeloablative conditioning with high-dose chemotherapy alone or with total-body irradiation (TBI). Here we report long-term outcomes from a phase I/II study using iodine-131 (131I)-anti-CD45 antibody BC8 combined with nonmyeloablative conditioning prior to HLA-haploidentical HCT in adults with high-risk relapsed/ refractory acute myeloid or lymphoid leukemia (AML or ALL), or myelodysplastic syndrome (MDS; ClinicalTrials.gov, NCT00589316). PATIENTS AND METHODS: Patients received a tracer diagnostic dose before a therapeutic infusion of 131I-anti-CD45 to deliver escalating doses (12-26 Gy) to the dose-limiting organ. Patients subsequently received fludarabine, cyclophosphamide (CY), and 2 Gy TBI conditioning before haploidentical marrow HCT. GVHD prophylaxis was posttransplant CY plus tacrolimus and mycophenolate mofetil. RESULTS: Twenty-five patients (20 with AML, 4 ALL and 1 high-risk MDS) were treated; 8 had ≥ 5% blasts by morphology (range 9%-20%), and 7 had previously failed HCT. All 25 patients achieved a morphologic remission 28 days after HCT, with only 2 patients showing minimal residual disease (0.002-1.8%) by flow cytometry. Median time to engraftment was 15 days for neutrophils and 23 days for platelets. Point estimates for overall survival and progression-free survival were 40% and 32% at 1 year, and 24% at 2 years, respectively. Point estimates of relapse and nonrelapse mortality at 1 year were 56% and 12%, respectively. CONCLUSIONS: 131I-anti-CD45 radioimmunotherapy prior to haploidentical HCT is feasible and can be curative in some patients, including those with disease, without additional toxicity.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Transplantation Conditioning , Adult , Humans , Cyclophosphamide/therapeutic use , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Iodine Radioisotopes , Leukemia, Myeloid, Acute/drug therapy , Survivors , Transplantation Conditioning/adverse effects
15.
Microbiol Immunol ; 68(1): 15-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964433

ABSTRACT

Some chemotherapeutic drugs can induce cancer cell death and enhance antitumor T-cell immunity in cancer-bearing hosts. Immunomodulatory reagents could augment such chemotherapy-induced effects. We previously reported that oral digestion of Lentinula edodes mycelia (L.E.M.) extract or  l-arginine supplementation can augment antitumor T-cell responses in cancer-bearing mice. In this study, the effects of L.E.M. extract with or without  l-arginine on the therapeutic efficacy of immunogenic chemotherapy by 5-fluorouracil (5-FU)/oxaliplatin (L-OHP) and/or cyclophosphamide (CP) are examined using two mouse colon cancer models. In MC38 and CT26 cancer models, therapy with 5-FU/L-OHP/CP significantly suppressed tumor growth, and supplementation with L.E.M. extract halved the tumor volumes. However, the modulatory effect of L.E.M. extract was not significant. In the CT26 cancer model, supplementation with L.E.M. extract and  l-arginine had no clear effect on tumor growth. In contrast, their addition to chemotherapy halved the tumor volumes, although the effect was not significant. There was no difference in the cytotoxicity of tumor-specific cytotoxic T cells generated from CT26-cured mice treated by chemotherapy alone versus chemotherapy combined with L.E.M. extract/ l-arginine. These results indicate that the antitumor effects of immunogenic chemotherapy were too strong to ascertain the effects of supplementation of L.E.M. extract and  l-arginine, but these reagents nonetheless have immunomodulatory effects on the therapeutic efficacy of immunogenic chemotherapy in colon cancer-bearing mice.


Subject(s)
Colonic Neoplasms , Shiitake Mushrooms , Mice , Animals , Shiitake Mushrooms/therapeutic use , Colonic Neoplasms/drug therapy , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Cyclophosphamide/therapeutic use , Arginine/therapeutic use , Dietary Supplements
16.
J Ethnopharmacol ; 322: 117551, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38081398

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Caragana sinica (Buc'hoz) Rehd. is a plant widely grown in Yunnan, China, for both medicinal and edible purposes. The "National Compilation of Chinese Herbal Medicine" describes its nature as "slightly temperate and sweet". Caragana sinica is usually medicated with whole herbs, the main function is to replenish the kidneys and stop bleeding. Caragana sinica was used in folk medicine in Chuxiong, Yunnan, to treat deficiency colds, fatigue, fever, cough, hypertension, and other diseases. AIM OF THE STUDY: This article investigates the structural characteristics of Caragana sinica polysaccharide (CSP) and explores its immune-regulatory activity and molecular biological mechanisms in cyclophosphamide-induced immunosuppressed mice, as well as its effects on intestinal bacteria. METHODS: With the water-extraction and alcohol-precipitation method, Caragana sinica polysaccharide were extracted, obtaining CSP by purification. A variety of methods and techniques have been used to analyze the chemical properties and structural characteristics of CSP. Immunosuppressive mice model was established through intraperitoneal injection of cyclophosphamide (CTX) to study the immune-regulatory effects and mechanisms of CSP. RESULTS: The data indicated that CSP is a neutral heteropolysaccharide mainly composed of arabinose and galactose. This article uses immunosuppressive mice induced by cyclophosphamide (CTX) as the model. The results showed that CSP can promote the immune function of CTX treated immunosuppressed mice and regulate the diversity and composition of intestinal microbiota. CSP can increase macrophage phagocytosis, NK cell killing activity, and lymphocyte proliferation activity. It can also repair the index and morphological damage of the thymus and spleen. And by binding to the TLR4 receptor, MyD88 was activated and interacted with TRAF6 to promote the transfer of NF-κB into the nucleus. Thereby promoting cytokine release and increasing the production of IL-1ß, IL-6, IL-10, TNF-α, IgA, and IgG in the serum. CSP also effectively alleviated the liver damage caused by CTX through antioxidant activity. Furthermore, CSP can dramatically affect the intestinal microbiota and the body's immunity by boosting the relative presence of Bacteroides and Verrucamicrobiota. CONCLUSIONS: Research results indicated that CSP can regulate the immune function of mice, providing a basis for developing CSP as a potential immune modulator and functional food.


Subject(s)
Caragana , Gastrointestinal Microbiome , Mice , Animals , Caragana/chemistry , China , Cyclophosphamide/toxicity , Immunosuppressive Agents/toxicity , Lymphocyte Activation , Polysaccharides
17.
J Ethnopharmacol ; 321: 117508, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38065351

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Antler glue is a classic medicinal to enhance sexual function in traditional Chinese medicine (TCM), which was first recorded in Shen Nong Ben Cao Jing (Shennong's Classic of the Materia Medica). Vinegar-processing is a classic method of processing traditional Chinese medicine. The method of preparing antler glue by boiling antlers in vinegar and then concentrating them is recorded in Lei Gong Pao Zhi Lun (Master Lei's Discourse on Medicinal Processing). In modern times, the typical processing method of antler glue is water extraction and concentration. However, it is not clear whether there is a difference in the effect of these two processing methods on the chemical composition and pharmacological activity of antler glue. AIM OF THE STUDY: The Chinese Pharmacopoeia (2020) records that the processing method of antler glue is water extraction and concentration. But Lei Gong Pao Zhi Lun differs in Chinese Pharmacopoeia (2020), which records the processing method of vinegar extraction and concentration. The effect of the two processing methods on antler glue's chemical composition and pharmacological activity is unknown. So this study aimed to elucidate the difference between different processing methods on the chemical composition and the treatment effect on oligoasthenospermia of antler glue. MATERIALS AND METHODS: So the automatic amino acid analyzer is used to determine the amino acid content of two different processing methods of antler glue. Proteomics was performed to detect the protein components of two different processing methods of antler glue and analyze them. Cyclophosphamide-induced mice models of oligoasthenospermia were used to study the different pharmacological effects of antler glue in two different processing methods. An automatic sperm analyzer observed the quantity and quality of sperm in mice epididymis. Serum sex hormone testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels in mice were tested using the enzyme-linked immunosorbent assay (ELISA) kits. Hematoxylin-eosin (H&E) staining was used to analyze pathological alterations in mouse testicular tissue. The transcriptome has been used to reveal the potential mechanism of antler glue in treating oligoasthenospermia. Mitochondrial complex activity assay kits were used to assay the activity of mitochondrial respiratory chain complex I-V in mouse testicular tissue. Western blot was used to determine the expression of related proteins in mouse testicular tissue. RESULTS: Vinegar-processing can increase the alanine, proline, and glycine content in antler glue, reduce the length of protein peptides in antler glue, and produce a variety of unique proteins. Vinegar-processed antler glue (VAG) increased sperm density, sperm survival, sperm viability, and serum sex hormone levels in oligozoospermic mice. It reversed testicular damage caused by cyclophosphamide, and the effects were differently superior to those of water-processed antler glue (WAG). In addition, transcriptomics and related experiments have shown that VAG can increase the expression of Ndufa2, Uqcr11, Cox6b1, and Atp5i genes and proteins in mouse testis, thus promoting adenosine diphosphate (ATP) synthesis by increasing the activity of mitochondrial respiratory chain complexes I, III, IV and V. By promoting the oxidative phosphorylation process to produce more ATP, VAG can achieve the therapeutic effect of oligoasthenospermia. CONCLUSION: Vinegar-processing method can increase the content of active ingredients in antler glue. VAG increases ATP levels in the testes by promoting the process of oxidative phosphorylation to treat oligozoospermia.


Subject(s)
Antlers , Oligospermia , Humans , Mice , Male , Animals , Antlers/chemistry , Acetic Acid , Semen/chemistry , Proteins , Gonadal Steroid Hormones , Amino Acids , Cyclophosphamide , Adenosine Triphosphate
18.
J Chin Med Assoc ; 87(3): 305-313, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38109372

ABSTRACT

BACKGROUND: Ganoderma lucidum ( G . lucidum ) is a traditional Chinese herbal medicine that has shown potential as an alternative adjuvant therapy for cancer patients. However, the mechanisms and adjuvant therapeutic effects of G . lucidum in cancer treatment remain unclear. METHODS: In this work, G . lucidum spore oil (GanoOil), a newly developed oily G . lucidum spore extract was used to investigate the mechanisms and adjuvant therapeutic effects of GanoOil in conjunction with the chemotherapeutic drug cyclophosphamide (CTX) for preventing breast cancer metastasis. RESULTS: In the model of lung metastasis, orally administered GanoOil increased the population of CD8 + T cells and interleukin (IL)-6 cytokine levels in mouse blood, whereas also enhancing the activity of natural killer cells in the spleen. Furthermore, the combination of GanoOil and CTX effectively suppressed the lung metastasis of circulating breast cancer cells, alleviated CTX-induced weight loss, and reduced the ratio of lung and spleen weight to body weight in mice. Moreover, high concentrations of GanoOil exhibited no significant toxicity or side effects in both in vitro and in vivo experiments. CONCLUSION: In conclusion, GanoOil is a safe drug that can enhance immune activity in mice to achieve therapeutic effects on cancer, and can also synergistically inhibit tumor metastasis with CTX.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Neoplasms, Second Primary , Reishi , Humans , Animals , Mice , Female , Breast Neoplasms/pathology , Spores, Fungal , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Interleukin-6 , Lung Neoplasms/prevention & control
19.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5603-5611, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114153

ABSTRACT

This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/ß-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and ß-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/ß-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.


Subject(s)
Lung Neoplasms , Wnt Signaling Pathway , Rats , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , beta Catenin/genetics , beta Catenin/metabolism , Proliferating Cell Nuclear Antigen , bcl-2-Associated X Protein/metabolism , Rats, Inbred Lew , Rats, Sprague-Dawley , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , Cyclophosphamide , Cell Line, Tumor
20.
Lancet Oncol ; 24(12): 1359-1374, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926100

ABSTRACT

BACKGROUND: Adjuvant chemotherapy for patients with early breast cancer improves outcomes but its toxicity affects patients' quality of life (QOL). The UK TACT2 trial investigated whether accelerated epirubicin improves time to recurrence and if oral capecitabine is non-inferior to cyclophosphamide, methotrexate, and fluorouracil (CMF) for efficacy with less toxicity. Results showed no benefit for accelerated epirubicin and capecitabine was non-inferior. As part of the QOL substudy, we aimed to assess the effect of chemotherapies on psychological distress, physical symptoms, and functional domains. METHODS: TACT2 was a multicentre, phase 3, open-label, parallel-group, randomised, controlled trial done in 129 UK centres. Participants were aged 18 years or older with histologically confirmed node-positive or high-risk node-negative invasive primary breast cancer, who had undergone complete excision, and due to receive adjuvant chemotherapy. Patients were randomly assigned (1:1:1:1) to four cycles of 100 mg/m2 epirubicin either every 3 weeks (standard epirubicin) or every 2 weeks with 6 mg pegfilgrastim on day 2 of each cycle (accelerated epirubicin), followed by four 4-week cycles of either CMF (600 mg/m2 cyclophosphamide intravenously on days 1 and 8 or 100 mg/m2 orally on days 1-14; 40 mg/m2 methotrexate intravenously on days 1 and 8; and 600 mg/m2 fluorouracil intravenously on days 1 and 8 of each cycle) or four 3-week cycles of 2500 mg/m2 capecitabine (1250 mg/m2 given twice daily on days 1-14 of each cycle). The randomisation schedule was computer generated in random permuted blocks, stratified by centre, number of nodes involved (none vs 1-3 vs ≥4), age (≤50 years vs >50 years), and planned endocrine treatment (yes vs no). QOL was one of the secondary outcomes and is reported here. All patients from a subset of 44 centres were invited to complete QOL questionnaires (Hospital Anxiety and Depression Scale [HADS] and European Organisation for Research and Treatment of Cancer [EORTC] Quality of Life Questionnaire 30-item core module [QLQ-C30] and Quality of Life Questionnaire breast module [QLQ-BR23]) at baseline, end of standard or accelerated epirubicin, end of CMF or capecitabine, and at 12 and 24 months after randomisation. The QOL substudy prespecified two coprimary QOL outcomes assessed in the intention-to-treat population: overall QOL (reported elsewhere) and HADS total score. Prespecified secondary QOL outcomes were EORTC QLQ-C30 subscales of physical function, role function, and fatigue and EORTC QLQ-BR23 subscales of sexual function and systemic therapy side-effects. This trial is registered with ISRCTN, ISRCTN68068041, and ClinicalTrials.gov, NCT00301925. FINDINGS: From Dec 16, 2005, to Dec 5, 2008, 4391 patients (20 [0·5%] of whom were male) were enrolled in TACT2; 1281 (85·8%) of 1493 eligible patients were included in the QOL substudy. Eight (0·6%) participants in the QOL substudy were male and 1273 (99·4%) were female. Median follow-up was 85·6 months (IQR 80·6-95·9). Analysis was performed on the complete QOL dataset (as of Sept 15, 2011) when all participants had passed the 24-month timepoint. Prerandomisation questionnaires were completed by 1172 (91·5%) patients and 1179 (92·0%) completed at least one postrandomisation questionnaire. End-of-treatment HADS depression score (p=0·0048) and HADS total change score (p=0·0093) were worse for CMF versus capecitabine. Accelerated epirubicin led to worse physical function (p=0·0065), role function (p<0·0001), fatigue (p=0·0002), and systemic side-effects (p=0·0001), but not sexual function (p=0·36), compared with standard epirubicin during treatment, but the effect did not persist. Worse physical function (p=0·0048), sexual function (p=0·0053), fatigue (p<0·0001), and systemic side-effects (p<0·0001), but not role functioning (p=0·013), were seen for CMF versus capecitabine at end of treatment; these differences persisted at 12 months and 24 months. INTERPRETATION: Accelerated epirubicin was associated with worse QOL than was standard epirubicin but only during treatment. These findings will help patients and clinicians make an informed choice about accelerated chemotherapy. CMF had worse QOL effects than did capecitabine, which were persistent for 24 months. The favourable capecitabine QOL compared with CMF supports its use as an adjuvant option after neoadjuvant chemotherapy in patients with triple-negative breast cancer. FUNDING: Cancer Research UK, Amgen, Pfizer, and Roche.


Subject(s)
Breast Neoplasms , Humans , Male , Female , Breast Neoplasms/pathology , Capecitabine , Epirubicin/adverse effects , Methotrexate/adverse effects , Quality of Life , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Fluorouracil , Cyclophosphamide , Chemotherapy, Adjuvant/methods , Fatigue/chemically induced , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL