Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474452

ABSTRACT

Cynomorium songaricum Rupr. (CSR) belongs to the family Cynomoriaceae. It is a perennial succulent parasitic herb with a reddish-brown coloration, predominantly submerged in sand and lacking chlorophyll. Traditionally, it has been used in ethnic medicine to treat various diseases, such as gastric ulcers, indigestion, bowel movements, and improving sexual function. To comprehensively collect CSR data, extensive literature searches were conducted using medical, ecological, and scientific databases such as Google Scholar, PubMed, Science Direct, Web of Science, and China National Knowledge Infrastructure (CNKI). This article summarizes and categorizes research on the uses, phytochemical characteristics, pharmacological activities, and toxicity of ethnic medicine, with the aim of establishing a solid foundation and proposing new avenues for exploring and developing potential applications of CSR. So far, a total of 98 compounds have been isolated and identified from CSR, including flavonoids, terpenes, steroids, and other compounds. It is worth noting that flavonoids and polysaccharides have significant antioxidant and anti-inflammatory properties. In addition, these compounds also show good application prospects in anti-tumor, antioxidant, anti-aging, anti-fatigue, anti-diabetes, and other aspects. Although extensive progress has been made in the basic research of CSR, further research is still needed to enhance the understanding of its mechanism of action and explore more unknown compounds. Our review indicates that CSR has broad prospects and deserves further research.


Subject(s)
Cynomorium , Ethnopharmacology , Antioxidants , Medicine, Chinese Traditional , Phytochemicals/pharmacology , Flavonoids , Plant Extracts/chemistry , Phytotherapy
2.
Sci Total Environ ; 919: 170801, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340858

ABSTRACT

Addressing soil salinization and implementing sustainable practices for cultivating cash crops on saline-alkali land is a prominent global challenge. Cynomorium songaricum is an important salt-alkali tolerant medicinal plant capable of adapting to saline-alkali environments. In this study, two typical ecotypes of C. songaricum from the desert-steppe (DS) and saline-alkali land (SAL) habitats were selected. Through the integration of multi-omics with machine learning, the rhizosphere microbial communities, genetic maps, and metabolic profiles of two ecotypes were created and the crucial factors for the adaptation of C. songaricum to saline-alkali stress were identified, including 7 keystone OTUs (i.e. Novosphingobium sp., Sinorhizobium meliloti, and Glycomyces sp.), 5 core genes (cell wall-related genes), and 10 most important metabolites (i.e. cucurbitacin D and 3-Hydroxybutyrate) were identified. Our results indicated that under saline-alkali environments, the microbial competition might become more intense, and the microbial community network had the simple but stable structure, accompanied by the changes in the gene expression related to cell wall for adaptation. However, this regulation led to the reduction in active ingredients, such as the accumulation of flavonoids and organic acid, and enhanced the synthesis of bitter substances (cucurbitacin D), resulting in the decrease in the quality of C. songaricum. Therefore, compared to the SAL ecotype, the DS was more suitable for the subsequent development of medicinal and edible products of C. songaricum. Furthermore, to explore the reasons for this quality variation, we constructed a comprehensive microbial-genetic-metabolic regulatory network, revealing that the metabolism of C. songaricum was primarily influenced by genetic factors. These findings not only offer new insights for future research into plant salt-alkali tolerance strategies but also provide a crucial understanding for cultivating high-quality medicinal plants.


Subject(s)
Cynomorium , Microbiota , Triterpenes , Transcriptome , Cynomorium/chemistry , Cynomorium/physiology , Alkalies , Metabolome
3.
Zhongguo Zhong Yao Za Zhi ; 48(4): 908-920, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872261

ABSTRACT

To clarify the content characteristics of the main active components and mineral elements of Cynomorium songaricum under different habitat conditions, and further explore the relationship between the quality of C. songaricum and habitats, this study took C. songaricum from 25 different habitats in China as the research object, and measured the contents of 8 main active components and 12 mineral elements separately. Diversity analysis, correlation analysis, principal component analysis and cluster analysis were carried out. The results showed that the genetic diversity of total flavonoids, ursolic acid, ether extract, potassium(K), phosphorus(P) and zinc(Zn) in C. songaricum was high. The coefficient of variation of crude polysaccharide, ether extract, gallic acid, protocatechuic aldehyde, catechin, epicatechin, calcium(Ca), sodium(Na), magnesium(Mg), sulfur(S), iron(Fe), manganese(Mn), selenium(Se) and nickel(Ni) were all over 36%, indicating that the quality of C. songaricum was significantly affected by habitats. There were strong synergistic and weak antagonistic effects among the contents of the 8 active components, and complex antagonistic and synergistic effects among the contents of the 12 mineral elements. Principal component analysis revealed that crude polysaccharide, ursolic acid, catechin, epicatechin and total flavonoids could be used as the characteristic components to evaluate the quality of C. songaricum, and Na, copper(Cu), Mn and Ni were the characteristic elements to evaluate the quality of C. songaricum. In cluster ana-lysis, the second group with the main active components as cluster center had better quality in terms of the content of active substances, and the second group with the mineral elements as cluster center had higher utilization potential in the exploitation of mineral elements. This study could provide a basis for resource evaluation and breeding of excellent varieties of C. songaricum in different habitats, and provide a reference for cultivation and identification of C. songaricum.


Subject(s)
Catechin , Cynomorium , Selenium , Plant Breeding , Ethers , Ethyl Ethers , Flavonoids , Plant Extracts , Ursolic Acid
4.
Article in Chinese | WPRIM | ID: wpr-970562

ABSTRACT

To clarify the content characteristics of the main active components and mineral elements of Cynomorium songaricum under different habitat conditions, and further explore the relationship between the quality of C. songaricum and habitats, this study took C. songaricum from 25 different habitats in China as the research object, and measured the contents of 8 main active components and 12 mineral elements separately. Diversity analysis, correlation analysis, principal component analysis and cluster analysis were carried out. The results showed that the genetic diversity of total flavonoids, ursolic acid, ether extract, potassium(K), phosphorus(P) and zinc(Zn) in C. songaricum was high. The coefficient of variation of crude polysaccharide, ether extract, gallic acid, protocatechuic aldehyde, catechin, epicatechin, calcium(Ca), sodium(Na), magnesium(Mg), sulfur(S), iron(Fe), manganese(Mn), selenium(Se) and nickel(Ni) were all over 36%, indicating that the quality of C. songaricum was significantly affected by habitats. There were strong synergistic and weak antagonistic effects among the contents of the 8 active components, and complex antagonistic and synergistic effects among the contents of the 12 mineral elements. Principal component analysis revealed that crude polysaccharide, ursolic acid, catechin, epicatechin and total flavonoids could be used as the characteristic components to evaluate the quality of C. songaricum, and Na, copper(Cu), Mn and Ni were the characteristic elements to evaluate the quality of C. songaricum. In cluster ana-lysis, the second group with the main active components as cluster center had better quality in terms of the content of active substances, and the second group with the mineral elements as cluster center had higher utilization potential in the exploitation of mineral elements. This study could provide a basis for resource evaluation and breeding of excellent varieties of C. songaricum in different habitats, and provide a reference for cultivation and identification of C. songaricum.


Subject(s)
Cynomorium , Catechin , Plant Breeding , Selenium , Ethers , Ethyl Ethers , Flavonoids , Plant Extracts
5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142587

ABSTRACT

Cynomorium songaricum is a perennial parasitic herb, and its stem is widely used as a traditional Chinese medicine, which largely relies on bioactive compounds (e.g., polysaccharides, flavonoids, and triterpenes). To date, although the optimum harvest time of stems has been demonstrated at the unearthed stage (namely the early flowering stage, EFS), the accumulation mechanism of polysaccharides and flavonoids during growth stages is still limited. In this study, the physiological characteristics (stem fresh weight, contents of soluble sugar and flavonoids, and antioxidant capacity) at four different growth stages (germination stage (GS), vegetative growth stage (VGS), EFS, and flowering stage (FS)) were determined, transcriptomics were analyzed by illumina sequencing, and expression levels of key genes were validated by qRT-PCR at the GS, VGS, and EFS. The results show that the stem biomass, soluble sugar and total flavonoids contents, and antioxidant capacity peaked at EFS compared with GS, VGS, and FS. A total of 6098 and 13,023 differentially expressed genes (DEGs) were observed at VGS and EFS vs. GS, respectively, with 367 genes co-expressed. Based on their biological functions, 109 genes were directly involved in polysaccharide and flavonoid biosynthesis as well as growth and development. The expression levels of key genes involved in polysaccharides (e.g., GLCs, XTHs and PMEs), flavonoids (e.g., 4CLLs, CYPs and UGTs), growth and development (e.g., AC58, TCPs and AP1), hormones biosynthesis and signaling (e.g., YUC8, AIPT and ACO1), and transcription factors (e.g., MYBs, bHLHs and WRKYs) were in accordance with changes of physiological characteristics. The combinational analysis of metabolites with transcriptomics provides insight into the mechanism of polysaccharide and flavonoid biosynthesis in C. songaricum during growth stages.


Subject(s)
Cynomorium , Triterpenes , Antioxidants/metabolism , Cynomorium/genetics , Cynomorium/metabolism , Flavonoids , Hormones , Polysaccharides , Sugars , Transcription Factors , Transcriptome
6.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807215

ABSTRACT

Cynomorium songaricum is an important endangered plant with significant medicinal and edible values. However, the lack of resources and quality variation have limited the comprehensive developments and sustainable utilization of C. songaricum. Here, we evaluated the chemical and genetic traits of C. songaricum from the highly suitable habitat regions simulated with species distribution models. The PCA and NJ tree analyses displayed intraspecific variation in C. songaricum, which could be divided into two ecotypes: ecotype I and ecotype II. Furthermore, the LC-MS/MS-based metabolomic was used to identify and analyze the metabolites of two ecotypes. The results indicated that a total of 589 compounds were detected, 236 of which were significantly different between the two ecotypes. Specifically, the relative content and the kind of flavonoids were more abundant in ecotype I, which were closely associated with the medicinal activities. In contrast, amino acids and organic acids were more enriched in ecotype II, which may provide better nutritional quality and unique flavor. In summary, our findings demonstrate the ecotype division and chemical diversity of C. songaricum in China from different geographical regions and provide a reference for the development of germplasm and directed plant breeding of endangered medicinal plants.


Subject(s)
Cynomorium , Chromatography, Liquid , Cynomorium/chemistry , Ecotype , Plant Breeding , Tandem Mass Spectrometry
7.
J Dairy Sci ; 105(6): 4783-4790, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35450713

ABSTRACT

Cynomorium songaricum is a traditional medicine and also a food material that is eaten raw or processed as tea or beverages. As a featured plant in semi-desert grasslands, C. songaricum is also eaten by the cattle and sheep in the area. This research study fed dairy sheep C. songaricum to determine the flavan-3-ols in sheep milk. Catechin (Cat), epicatechin (Epi), procyanidin A1 (A1), procyanidin A2 (A2), and procyanidin B1 (B1) were detected in sheep milk with the concentration being Epi > A2 > Cat > B1 > A1 at 24 h after the administration of C. songaricum. Neither A1 nor A2 were detected in the methanol extract of C. songaricum. Cysteine degradation of the plant revealed that in addition to Epi, A2 was the extending unit of the polymeric flavan-3-ols in C. songaricum, indicating that A2 is released digestively from the polymers and enters the milk. Procyanidin B-1 was converted to A1 on incubation in raw but not heated milk, indicating that the A1 in milk is the enzymatically transformed product of B1. Accelerated oxidation showed that the flavan-3-ols, B1, Cat, and Epi significantly protects the unsaturated triacyglycerols in the milk from oxidation. The flavan-3-ol could slow down the oxidation of glutathione and the latter may play an important role in preventing the milk triglycerides from oxidation. Flavan-3-ols are polyphenols with many health benefits. The present research revealed the antioxidant activities of flavan-3-ols that could be absorbed to sheep milk, adding new evidences for the values of these flavan-3-ols and for the milk.


Subject(s)
Catechin , Cynomorium , Animals , Antioxidants , Catechin/analysis , Cattle , Flavonoids , Milk/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Sheep
8.
Phytochemistry ; 198: 113155, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35259348

ABSTRACT

Cynomorium coccineum subsp. songaricum (Rupr.) J. Leonard has been widely used as a Chinese herbal remedy or a functional food for treating symptoms of aging or neurodegenerative diseases. A further investigation on the finding of active constituents led to the isolation and identification of four previously undescribed triterpenoids, together with 20 known compounds. Their structures were elucidated by extensive spectroscopic analysis (IR, NMR, HRMS, and CD). Sixteen compounds showed significant neuroprotective effects against glutamate-induced or oxygen-glucose deprivation-induced SK-N-SH cell death. Our findings revealed the active constituents of C. coccineum subsp. songaricum and indicated that both oleanane-type and ursane-type triterpenes could be valuable platforms for neurodegenerative agents based on primary structure-activity relationship analysis.


Subject(s)
Cynomorium , Drugs, Chinese Herbal , Neuroprotective Agents , Triterpenes , Cynomorium/chemistry , Drugs, Chinese Herbal/chemistry , Neuroprotection , Neuroprotective Agents/pharmacology , Triterpenes/pharmacology
9.
BMC Complement Med Ther ; 21(1): 206, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34372842

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, but there is still no effective way to stop or slow its progression. Our previous studies demonstrated that extract of Cynomorium songaricum (ECS), a Chinese herbal medicine, had neuroprotective effects in AD models in vivo. However, the pharmacological mechanism of ECS in AD is still unclear. METHODS: To study the mechanisms of action of the effects of ECS on AD, we used Aß25-35- and H2O2-exposed HT22 cells to mimic specific stages of AD in vitro. The mitochondrial membrane potential (MMP), intracellular ATP, intracellular reactive oxygen species (ROS), and expression levels of mitochondrial dynamics-related proteins in each group were examined. Furthermore, we explored the mechanisms by which ECS reduces the phosphorylation of Drp1 at Ser637 and the changes in the concentrations of intracellular calcium ions in the two models after FK506 intervention. RESULTS: The results showed that ECS significantly enhanced the MMP (P < 0.05), increased intracellular ATP levels (P < 0.05) and decreased intracellular ROS levels in the Aß- and H2O2-induced cell models (P < 0.05). Additionally, ECS regulated the expression levels of mitochondrial dynamics-related proteins by reducing the phosphorylation of Drp1 at Ser637 (P < 0.05) and decreasing the expression of Fis1 in the H2O2-induced models (P < 0.05). Further study indicated that ECS reduced the overload of intracellular calcium (P < 0.05). CONCLUSION: Our study results suggest that ECS protects the mitochondrial ultrastructure, ameliorates mitochondrial dysfunction, and maintains mitochondrial dynamics in AD models.


Subject(s)
Alzheimer Disease/drug therapy , Cynomorium/metabolism , Mitochondrial Dynamics/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Humans , In Vitro Techniques
10.
Food Funct ; 12(16): 7501-7513, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34223597

ABSTRACT

Cynomorium songaricum is a medicinal, edible, and endangered plant species. Since inflorescences are not considered medicinal parts, their discard causes a waste of resources. To expand the medicinal uses of C. songaricum, we evaluated their chemistry and pharmacology by applying widely targeted metabolomics, network pharmacology, and molecular docking. Widely targeted metabolomics results indicated chemical diversity in C. songaricum with 599 compounds. Among them, 280 compounds were different between the succulent stem and inflorescence. With 218 upregulated compounds, inflorescence has more abundant compounds than the succulent stem, especially pigment compounds such as flavonols, flavones, and flavanones. Moreover, anthocyanin and proanthocyanidin were unique compounds in the inflorescence and succulent stem, respectively. Sixty-five compounds in inflorescence and 18 compounds in succulent stems were found to be associated with atherosclerosis in the network pharmacology analysis. Tests revealed that inflorescence had a stronger anti-atherosclerotic effect than succulent stems. Molecular docking analysis revealed that 30 compounds (29 pigment compounds) in inflorescence and 6 compounds (4 pigment compounds) in succulent stem showed strong binding affinities with three target proteins, namely ALB, MPO, and NOS2, especially amentoflavone, quercetin 7-O-rutinoside, and luteolin 7-O-glucoside (cynaroside). Results demonstrated that the inflorescence is rich in pigment compounds and has a potential anti-atherosclerosis effect. This study provides novel methods and ideas for the sustainable development of endangered medicinal plants.


Subject(s)
Cynomorium/chemistry , Inflorescence/chemistry , Plants, Medicinal/chemistry , Molecular Docking Simulation/methods
11.
Article in English | MEDLINE | ID: mdl-34052560

ABSTRACT

Although Cynomorium songaricum Rupr. polysaccharide (CSP) has been examined for its effects on glucose regulation, its underlying mechanism is still unclear. To address this issue, a MS-based lipidomics strategy was developed to gain a system-level understanding of the mechanism of CSP on improving type 2 diabetes mellitus (T2DM). UPLC-QTOF/MS and multivariate statistical tools were used to identify the alteration of serum metabolites associated with T2DM and responses to CSP treatment. As a result, 35 potential biomarkers were found and identified in serum, amongst which 26 metabolites were regulated to normal like levels after the administration of CSP. By analyzing the metabolic pathways, glycerophospholipid metabolism was suggested to be closely involved. These results indicated that the intake of CSP exhibited promising anti-diabetic activity, largely due to the regulation of phospholipid metabolism, including phosphatidylcholines, lysophosphatydylcholines, phosphtatidylethanolamines and sphingomyelins.


Subject(s)
Cynomorium/chemistry , Diabetes Mellitus, Type 2/metabolism , Lipidomics , Polysaccharides/pharmacology , Animals , Humans , Lipid Metabolism/drug effects , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Pancreas/drug effects , Pancreas/metabolism , Plant Extracts/pharmacology
12.
Biotechnol Appl Biochem ; 68(1): 41-51, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31981375

ABSTRACT

Cynomorium songaricum Rupr is widely known in China as a traditional herbal medicine. In this study, single-factor experiments and response surface methodology were used to optimize the extraction of Cynomorium songaricum Rupr glycoprotein (CSG). The results show that a maximum glycoprotein yield of 6.39 ± 0.32% was achieved at a ratio of solid to liquid 32:1 for 4.2 H at 52 °C. Then, the IR, monosaccharide composition, amino acid composition, type of glycopeptide linkage, and average molecular weight of CSG-1 purified from CSG were characterized. The results indicate that CSG-1 presented the characteristic absorption peak of polysaccharide and protein, including four monosaccharides and 17 amino acids, had O-linked glycopeptide bonds, Mw , Wn , Mw /Mn , Mp , and the z-average were 5.343 × 106 , 3.203 × 106 , 1.668, 8.911 × 106 , and 6.948 × 106 , respectively. Besides, CSG-1 solution was described by the Herschel-Bulkley model and it behaved as a shear-thinning fluid. Also, under a frequency sweep the moduli G' and G″ both increased with increasing CSG-1 concentration and the CSG-1 dispersions had weak thermal stability over the temperature sweep. These results provide a scientific basis for the further study of Cynomorium songaricum Rupr.


Subject(s)
Cynomorium/chemistry , Glycoproteins , Plant Proteins , Glycoproteins/chemistry , Glycoproteins/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Rheology
13.
Nat Prod Res ; 35(17): 2967-2971, 2021 Sep.
Article in English | MEDLINE | ID: mdl-31621410

ABSTRACT

Cynomorium coccineum is a non-photosynthetic plant that grows in Mediterranean countries and that is amply used in the traditional medicine. The aim of this study was to extend previous studies on the chemical and biological properties of C. coccineum, evaluating the potential antiviral and antiproliferative activity of the methanolic extract. The MTT assay was used for the in vitro cytotoxic studies against human cancer-derived cell lines, while both MTT and plaque reduction (PRT) methods were used to evaluate the potential inhibitory effect of the extract against a panel of mammal viruses. The results obtained showed no selective activity against any DNA and RNA virus but revealed an interesting antiproliferative activity against human leukaemia-derived cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Cynomorium , Animals , Antineoplastic Agents/isolation & purification , Antiviral Agents/isolation & purification , Biological Products/isolation & purification , Biological Products/pharmacology , Cell Line, Tumor , Cynomorium/chemistry , Humans , Medicine, Traditional , Methanol
14.
Molecules ; 27(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35011276

ABSTRACT

Cynomorium songaricum is a root holoparasitic herb that is mainly hosted in the roots of Nitraria roborowskii and Nitraria sibirica distributed in the arid desert and saline-alkaline regions. The stem of C. songaricum is widely used as a traditional Chinese medicine and applied in anti-viral, anti-obesity and anti-diabetes, which largely rely on the bioactive components including: polysaccharides, flavonoids and triterpenes. Although the differences in growth characteristics of C. songaricum between N. roborowskii and N. sibirica have been reported, the difference of the two hosts on growth and polysaccharides biosynthesis in C. songaricum as well as regulation mechanism are not limited. Here, the physiological characteristics and transcriptome of C. songaricum host in N. roborowskii (CR) and N. sibirica (CS) were conducted. The results showed that the fresh weight, soluble sugar content and antioxidant capacity on a per stem basis exhibited a 3.3-, 3.0- and 2.1-fold increase in CR compared to CS. A total of 16,921 differentially expressed genes (DEGs) were observed in CR versus CS, with 2573 characterized genes, 1725 up-regulated and 848 down-regulated. Based on biological functions, 50 DEGs were associated with polysaccharides and starch metabolism as well as their transport. The expression levels of the selected 37 genes were validated by qRT-PCR and almost consistent with their Reads Per kb per Million values. These findings would provide useful references for improving the yield and quality of C. songaricum.


Subject(s)
Cynomorium/physiology , Polysaccharides/biosynthesis , Transcriptome , Antioxidants/metabolism , Biological Transport , Carbohydrate Metabolism , Gene Expression Profiling , Starch/metabolism , Sugars/metabolism
15.
Int J Biol Sci ; 16(1): 61-73, 2020.
Article in English | MEDLINE | ID: mdl-31892846

ABSTRACT

Cynomorium coccineum has long been used as the health and medicinal plant known to induce cancer cell death. However, the bioactive compounds of C. coccineum and the underlying mechanism of their regulator in cell autophagy and cell apoptosis remain unexplored. In our previous study, we found that the ethanol extract had antitumor activity through inducing cancer cell death. In this study, by detecting the anti-tumor effect of sequence extracts from Cynomorium coccineum, the active constituents were collected in solvent ethyl acetate. A strategy based on ultra-performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry (UPLC-Q-Orbitrap/MS) was first utilized to analyze the chemical constituents of active fraction (ethyl acetate fraction, CS3). A total of 29 compounds including 8 triterpenoids, 6 flavonoids, 4 fatty acids, 8 phenolic acids, 1 anthraquinones, 1 nucleoside and 1 sterol were detected and identified or tentatively identified for the first time in Cynomorium coccineum. We found that CS3 induces cancer cell death accompanied with a great number of vacuoles in the cytoplasm. CS3-induced autophagosome formation was found and confirmed by electron microscopy and the high expression levels of microtubule-associated protein-1 light chain 3-II (LC3II), a marker protein of autophagy. We additionally demonstrated that CS3 activated and increased the pro-apoptotic mitochondrial proteins, BNIP3 and BNIP3L, in mRNA and protein levels. The constituents of CS3 down-regulated anti-apoptotic BCL2, and then releases autophagic protein Beclin-1. These finding for the first time systematically not only explore and identify the active constituents of CS3 in Cynomorium coccineum, but also examined the mechanism associated with CS3-induced cell death via cell autophagy. This active component may serve as a potential source to obtain new autophagy inducer and anti-cancer compounds for hepatocellular carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Cynomorium/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Autophagy/drug effects , Blotting, Western , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , Flow Cytometry , Hep G2 Cells , Humans , Mass Spectrometry , Microscopy, Fluorescence
16.
Phytomedicine ; 73: 153038, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-31378503

ABSTRACT

BACKGROUND: HCY2, a triterpenoid-enriched extract of Cynomorii Herba, has been shown to reduce body weight and adiposity and attenuate manifestations of the associated metabolic syndrome in high-fat-diet (HFD)-fed mice. PURPOSE: The current study aimed to investigate the biochemical mechanism underlying the anti-obesity effect produced by HCY2. STUDY DESIGN: An HCY2-containing extract was examined for its effects on the regulation of adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma co-activator-1 (PGC1) pathways and the protein expression related to mitochondrial uncoupling and biogenesis in skeletal muscle using an HFD-induced obese mouse model. METHODS: The obese mouse model was produced by providing HFD (60% kcal from fat) ad libitum. The effects and signaling mechanisms of HCY2 were examined using analytical procedures which included enzyme-linked immunosorbent assay kits, Western blot analysis, and the use of a Clark-type oxygen electrode. RESULTS: The current study revealed that the weight reduction produced by HCY2 is associated with the activation of the AMPK signaling pathway, with resultant increases in mitochondrial biogenesis and expression of uncoupling protein 3 in skeletal muscle in vivo. The use of a recoupler, ketocholestanol, delineated the precise role of mitochondrial uncoupling in the anti-obesity effect afforded by HCY2 in obese mice. CONCLUSION: Our experimental findings offer a promising prospect for the use of HCY2 in the management of obesity through the regulation of AMPK/PGC1 pathways.


Subject(s)
Anti-Obesity Agents/pharmacology , Cynomorium/chemistry , Obesity/drug therapy , Obesity/etiology , AMP-Activated Protein Kinases/metabolism , Animals , Anti-Obesity Agents/chemistry , Body Weight/drug effects , Diet, High-Fat/adverse effects , Male , Mice, Inbred ICR , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Signal Transduction/drug effects , Triterpenes/pharmacology , Weight Loss/drug effects
17.
J Ethnopharmacol ; 249: 112368, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31678417

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The botanical identity of the ancient vernacular cynomorium does not correspond to the modern scientific genus while it is not clear how many species of hipocistis (Cytinus sp.) were differentiated by the ancient physicians and whether Cynomorium coccineum was subsumed. The early history of therapeutic uses related to the herbal drugs derived from these parasitic taxa is therefore not easily accessible. Cynomorium coccineum became an important pharmaceutical commodity after the Siege of Malta but its importance decreased in the 18th century and now is considered obsolete. MATERIAL AND METHODS: We compare the morphological, ecological and therapeutic information of Cynomorium and other parasitizing plant taxa across the past 2000 years and contextualize their uses with the pharmacological properties of their principal metabolites focusing on the raise and fall of C. coccineum as a medicine. RESULTS: The therapeutic uses of C. coccineum, the Maltese mushroom, seem to become clearly traceable since the Canon of Medicine by Avicenna. Styptic and astringent drugs such as Cynomorium, Cytinus but also gall apples and many others have been selected for their protein-linking capacity leading to the formation of a protective layer on the mucous membranes, which can be used to reduce the secretion of water and electrolytes in case of diarrhoea, dysentery and external bleedings. Whether C. coccineum is effective as a systemically applied anti-haemorrhagic drug is questionable. CONCLUSION: It appears that the vernacular cynomorium of the ancients corresponds to an edible Orobanche sp. while it remains doubtful whether the vernacular hipocistis was next to Cytinus sp. also applied to C. coccineum as evidence of C. coccineum parasitizing Cistus sp. is scarce. The isolation of gallic acid used as a styptic and the increasing availability of chemical styptics in the 18th century together with the availability of effective alternative anti-diarrhoeic drugs with a more reliable supply very probably led to the decline of the importance of the Maltese mushroom in pharmacy during the 18th century. The effectiveness of gallic acid as a systemic anti-haemorrhagic remains uncertain.


Subject(s)
Agaricales/chemistry , Astringents/pharmacology , Astringents/therapeutic use , Cynomorium/chemistry , Diarrhea/drug therapy , Hemorrhage/drug therapy , Animals , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Humans , Phytotherapy/methods
18.
Wei Sheng Yan Jiu ; 48(1): 104-108, 2019 Jan.
Article in Chinese | MEDLINE | ID: mdl-31032777

ABSTRACT

OBJECTIVE: To observe the sub-chronic toxicity of songaria cynomorium herb aqueous extract in rat at different oral dose levels. METHODS: The study was conducted according to the protocol of sub-chronic toxicity study in rat in Procedures and Method for Toxicolohical Assessment on Food Safety(GB 15193. 13-2015). Total 80 SPF grade Wistar rats, weighing 60-80 g, were randomized into 4 groups of 10/sex/group based on their body weight. The animals from groups 1 to 4 were orally dosed once daily with songaria cynomorium herb aqueous-soluble extract at 0, 2. 83, 5. 66 and 8. 49 g/kg BW respectively for continuous 90 days. And the dose volume was 13 mL/kg. The clinical signs, body weight, food consumption, food utilization rate, hematology, serum chemistry and histopathology were monitored or tested. RESULTS: No obvious toxic signs were observed and no animals were found dead during the whole study. There were no significant differences between the control and test article groups in the body weight, food consumption, food utilization rate. Although some hematology and serum chemistry parameters in a single dose group changed significantly, their values were still in the normal ranges of our laboratory. Therefore, all the above changes were not considered as adverse effects. However, the prothrombin time(PT) at male middle and high dose group prolonged significantly(P<0. 05). In addition, Compared with that of control, significantly increased testes index was observed in the mid-dose group, while increased spleen index, testes index, epididymis index were observed in high-dose group. no obvious histopathology changes were detected in all test article groups. CONCLUSION: Under the condition of this experiment, the No-observed-adverse-effect-level(NOAEL) was 2. 83 g/kg BW and the lowest-observed-adverse-effect-level(LOAEL) was 5. 66 g/kg BW for songaria cynomorium herb aqueous-soluble extract in the rat sub-chronic toxicity study.


Subject(s)
Cynomorium , Plant Extracts , Animals , Cynomorium/toxicity , Dose-Response Relationship, Drug , Male , No-Observed-Adverse-Effect Level , Organ Size , Plant Extracts/toxicity , Random Allocation , Rats , Rats, Sprague-Dawley , Rats, Wistar , Toxicity Tests, Subchronic
19.
J Agric Food Chem ; 67(13): 3554-3564, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30860831

ABSTRACT

Cynomorium songaricum Rupr. is a valuable food and medicinal plant with functions, such as an increase in sexual function, mainly attributed to its complex secondary metabolites. However, the effect of internal microbes on metabolite production in C. songaricum is still largely unclear. In this study, the relationship between endophytes and differential secondary metabolites in C. songaricum from seven major producing regions of China were explored based on established methods of metabolomics and high-throughput sequencing. The results showed that there were 13 different marker metabolites, seven shared fungal OTUs, and numerous unshared OTUs among C. songaricum distributed at different locations in China and identified significant correlations between metabolites and endophytic fungi. Our study revealed that endophytic fungi may be one possible factor that can affect the plant secondary metabolite composition.


Subject(s)
Cynomorium/microbiology , Endophytes/isolation & purification , Fungi/isolation & purification , Mycobiome , Plants, Medicinal/microbiology , China , Cynomorium/chemistry , Cynomorium/metabolism , Desert Climate , Endophytes/classification , Endophytes/genetics , Fungi/classification , Fungi/genetics , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism
20.
J Ethnopharmacol ; 235: 65-74, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30708032

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cynomorium songaricum Rupr. (CS) belongs to the genus of parasitic perennial flowering plants, mostly used in Chinese traditional medicine for benign prostatic hyperplasia (BPH) treatment. BPH is a chronic disease in men that both androgen and estrogen play a crucial role in promoting its development via their receptors. Previously we have showed that compounds from CS have the phytoestrogenic and/or phytoandrogenic activities that may have the potential suppressive effects on BPH, while the mechanism remains unclear. AIM OF THE STUDY: In this study, we aim to investigate the effect of CS and its derived compounds: luteolin (LUT), gallic acid (GA), protocatechuic acid (PA) and protocatechualdehyde (Pra) on inhibition of rat BPH and proliferation of BPH-1 cell line respectively, and further uncover whether it is related with the phytoestrogenic and / or phytoandrogenic activities. MATERIALS AND METHODS: Estradiol/testosterone (1:100) was subcutaneous injected to induce BPH in a castrated rat model, and CS was orally administrated for 45 days. Then the weights of the body and prostate were recorded, the pathogenesis changes of prostate were analyzed by Hematoxylin and eosin (H&E) and immunohistochemical (IHC). The levels of 17ß-estradiol (E2), testosterone, and dihydrotestosterone (DHT) from rats' serum were measured by enzyme-linked immunosorbent assay (ELISA). In vitro, human benign prostatic epithelial cell BPH-1 was cultured and treated with or without different CS compounds and DHT or E2. MTT and CCK-8 assays were performed to detect the regulatory effects on cell proliferation. The expressions of PCNA, AR, ERα, ERß, and steroid 5-α-reductases (SRD5A1 and SRD5A2) were further analyzed by western blotting upon treatment. RESULTS: Treatment with CS significantly inhibited rat prostate enlargement, improved the pathological feature and reduced the thickness of smooth muscle layer. The up-regulated AR and ERα expressions and down-regulated ERß in BPH rat prostate were significantly blocked after CS administration. Moreover, the enhanced values of E2/testosterone and the level of DHT in serum were also strongly inhibited in CS group compared with those in BPH groups. In cellular level, LUT, GA, PA, or Pra significantly inhibited DHT- or E2- induced BPH-1 cell proliferation and PCNA expressions. Consistently with the data in vivo, compounds from CS interfered the DHT or E2-regulated AR, ERα and ERß expressions in BPH-1 cells as well. Importantly, the dramatic increased SRD5A1 and SRD5A2 expressions were observed in BPH rat prostates and DHT or E2-stimulated BPH-1 cells. However, treatment with CS in rat or with compounds isolated from CS in BPH-1 cells significantly blocked the induction of SRD5A1 and SRD5A2. CONCLUSIONS: CS suppressed BPH development through interfering with prostatic AR, ERα/ß, and SRD5A1/2 expressions, which provided evidence of CS for BPH treatment.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Cynomorium/chemistry , Membrane Proteins/genetics , Plant Extracts/pharmacology , Prostatic Hyperplasia/prevention & control , Androgens/isolation & purification , Androgens/pharmacology , Animals , Blotting, Western , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/drug effects , Humans , Male , Phytoestrogens/isolation & purification , Phytoestrogens/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL