Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Pak J Biol Sci ; 25(1): 56-66, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35001576

ABSTRACT

<b>Background and Objective:</b> Dill<i> </i>(<i>Anethum graveolens</i> L.) has the potential to develop as a new alternative medicine due to its pharmacological activities. However, studies into its safety regarding herb-drug interactions have been neglected. This study investigated the risk of dill-induced herb-drug interactions (HDI) by examining its effect on the expression of phase I and II drug-metabolizing enzyme and transporter genes in Caco-2 cells. <b>Materials and Methods:</b> Caco-2 cells (5×10<sup>5</sup> cells/well) were treated with 10 µM ketoconazole, 20 µM rifampicin or dill extract (60-240 µg mL<sup>1</sup>) for 72 hrs. Cell viability was assessed using the resazurin assay and reactive oxygen species (ROS) content was determined with 2 ,7 -dichlorofluorescein diacetate. Aspartate (AST) and alanine aminotransferase (ALT) levels were measured using L-aspartate and L-alanine with α-ketoglutarate as substrate. Expression of phase I (<i>CYP1A2</i>, <i>CYP2C19</i>, <i>CYP2D6</i>, <i>CYP2E1 </i>and <i>CYP3A4</i>) and II (<i>UGT1A6</i>,<i> SULT1A1</i>,<i> NAT1</i>,<i> NAT2 </i>and<i> GSTA1/2</i>) metabolizing genes and transporters (<i>ABCB1</i>,<i> ABCC2</i>,<i> ABCG2 </i>and <i>SLCO1B1</i>) were determined by RT/qPCR. <b>Results:</b> All tested concentrations of dill did not affect cell viability or AST and ALT levels. The highest concentration of dill extract (240 µg mL<sup>1</sup>) significantly lowered the ROS level. Expression of <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and <i>ABCB1 </i>mRNA was significantly up-regulated by dill extract. <b>Conclusion:</b> Dill extract did not directly damage Caco-2 cells but prolonged use of dill may increase the risk of HDI via the up-regulation of the drug-metabolizing genes <i>CYP1A2</i>, <i>CYP2C19</i>, <i>SULT1A1</i>, <i>NAT2 </i>and the transporter <i>ABCB1</i>.


Subject(s)
Anethum graveolens/metabolism , Caco-2 Cells/drug effects , Up-Regulation/genetics , ATP Binding Cassette Transporter, Subfamily B/drug effects , Arylamine N-Acetyltransferase/drug effects , Arylsulfotransferase/drug effects , Cytochrome P-450 CYP1A2/drug effects , Cytochrome P-450 CYP2C19/drug effects , Herb-Drug Interactions/physiology , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
2.
Clin Pharmacol Ther ; 106(1): 182-194, 2019 07.
Article in English | MEDLINE | ID: mdl-30648733

ABSTRACT

Simultaneous competition for cytochrome P450 (CYP) 2C19 and CYP3A4 might diminish clopidogrel's antiplatelet effect by impacting its metabolic activation. This pharmacoepidemiologic study investigated whether proton pump inhibitors (PPIs) and CYP3A4-metabolized statins individually and jointly increase thrombotic events by attenuating clopidogrel's effectiveness. From Korean nationwide claims data (2007-2015), we selected 59,233 patients who initiated clopidogrel and statins after coronary stenting and compared thrombotic risks by PPI or CYP3A4-metabolized statin use or both. PPIs were associated with increased thrombotic risks (hazard ratio (HR) 1.27, 95% confidence interval (CI) 1.12-1.45), unlike CYP3A4-metabolized statins (HR 1.03, 95% CI 0.98-1.07). PPIs with high CYP2C19-inhibitory potential were more relevant than those with low potential (HR 1.28, 95% CI 1.02-1.61). Joint effects of PPIs and CYP3A4-metabolized statins were nonsignificant (relative excess risk due to interaction -0.14, 95% CI -0.34 to 0.07). Concurrent PPIs were associated with increased thrombotic risks in patients receiving clopidogrel and statins; CYP3A4-metabolized statins did not exacerbate PPI-associated risks.


Subject(s)
Clopidogrel/pharmacokinetics , Cytochrome P-450 CYP2C19/drug effects , Cytochrome P-450 CYP3A/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Platelet Aggregation Inhibitors/pharmacokinetics , Proton Pump Inhibitors/pharmacology , Age Factors , Aged , Comorbidity , Drug Interactions , Female , Humans , Male , Middle Aged , National Health Programs , Republic of Korea , Sex Factors
3.
OMICS ; 20(9): 528-37, 2016 09.
Article in English | MEDLINE | ID: mdl-27631192

ABSTRACT

Medicinal plants are part of the healthcare systems worldwide, especially in low- and middle-income countries. African lettuce (Launaea taraxacifolia) is cultivated extensively in Africa, from Senegal in the west to Ethiopia and Tanzania in the east, and in Southern Africa. Potential anticancer effects of L. taraxacifolia have been suggested, but little is known about putative molecular mechanisms or potential for herb-drug interactions through inhibition or induction of drug-metabolizing enzymes. We investigated the effects of crude aqueous extracts of L. taraxacifolia on growth kinetics and cell cycle progression of the WHC01 esophageal cancer cells. Antiproliferative and apoptotic effects were evaluated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometry, while examining, in parallel, the genes regulating apoptosis and cell cycle in this cell culture model. In addition, we tested the inhibitory and enzyme kinetic effects of the aqueous L. taraxacifolia using recombinant human CYP450 isozyme model systems (CYP1A2, CYP2C9, and CYP2C19). L. taraxacifolia exhibited a significant growth inhibitory effect on the WHC01 cancer cells. Most cell cycle genes were downregulated. Cell cycle analysis showed a G0-G1 cell cycle arrest in WHC01 cells in the presence of L. taraxacifolia extract, accompanied by morphological changes. L. taraxacifolia extract treatment resulted in downregulation of expression levels of CYP1A2 (p < 0.0005) and CYP2C19 (p < 0.003) by 50-70%. L. taraxacifolia extract caused reversible and time-dependent inhibition of the recombinant CYP1A2, CYP2C9, and CYP2C19. This study provides new insights on possible anticancer effects of L. taraxacifolia, a widely used medicinal plant in parts of Africa and across the world especially by patients with cancer. Further mechanistic studies expanding on these observations would be timely and contribute to the field of global precision medicine that requires solid understanding of drug and herb molecular mechanisms of action and drug-herb interaction potentials, given the worldwide use of medicinal plants.


Subject(s)
Antineoplastic Agents/pharmacology , Cytochrome P-450 CYP1A2/drug effects , Cytochrome P-450 CYP2C19/drug effects , Cytochrome P-450 CYP2C9/drug effects , Herb-Drug Interactions , Lactuca/chemistry , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Isoenzymes , Pharmacogenomic Testing , Plant Extracts/chemistry , Plants, Medicinal , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL