Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Science ; 364(6438): 399-402, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31023926

ABSTRACT

The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.


Subject(s)
Hepatitis B virus/growth & development , Hepatocytes/physiology , Hepatocytes/virology , Primary Cell Culture/methods , Virus Cultivation/methods , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , DNA, Circular/biosynthesis , DNA, Circular/isolation & purification , DNA, Viral/biosynthesis , DNA, Viral/isolation & purification , Drug Evaluation, Preclinical , Hepatitis B virus/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Transcriptome , Virion/drug effects , Virion/growth & development
2.
J Hepatol ; 66(6): 1149-1157, 2017 06.
Article in English | MEDLINE | ID: mdl-28213165

ABSTRACT

BACKGROUND & AIMS: Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) persists as a stable episome in infected hepatocytes and serves as a template for the transcription of all viral genes. Due to the narrow host range of HBV, the development of a robust mouse model that supports cccDNA-dependent viral replication is a key hurdle in the development of novel HBV therapeutics. This study aimed to develop a novel tool to investigate HBV cccDNA. METHODS: Through minicircle technology, HBVcircle, a recombinant cccDNA, was easily generated and extracted from a genetically engineered E. coli strain. We characterized the performance of HBVcircle in cell culture by transfection and in immunocompetent mice by hydrodynamic injection (HDI). RESULTS: We demonstrated that HBVcircle formed authentic cccDNA-like molecules in vitro in transiently transfected hepatic cells and in vivo in mouse liver after HDI. HBVcircle supported high levels and persistent HBV replication. In addition, we investigated different factors affecting HBV in vivo replication and persistence, including the host genetic background, vector design and dosage, viral genes and genotypes, and immune activation status. Furthermore, different classes of anti-HBV drugs were also assessed with the HBVcircle system. CONCLUSION: Compared with previous reported HBV mouse models which employ other viral vectors to introduce overlength HBV genomes, viral gene expression and associated phenotypes are entirely driven by cccDNA-like viral genomes in the HBVcircle mouse model. Therefore, the HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery. LAY SUMMARY: To establish a mouse model that supports cccDNA-dependent transcription, a novel tool named HBVcircle, was developed with minicircle technology. HBVcircle formed authentic cccDNA-like molecules in hepatocytes, and supported high levels and persistent HBV replication in vivo. The HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery.


Subject(s)
DNA, Circular/genetics , DNA, Viral/genetics , Genetic Techniques , Hepatitis B virus/genetics , Adaptive Immunity , Animals , Cell Line , DNA, Circular/biosynthesis , DNA, Circular/immunology , DNA, Viral/biosynthesis , DNA, Viral/immunology , Drug Discovery , Drug Evaluation, Preclinical , Genes, Viral , Genetic Engineering , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B virus/immunology , Hepatitis B virus/physiology , Hepatocytes/virology , Humans , Male , Mice , Mice, Inbred C3H , Models, Genetic , Transcription, Genetic , Transfection , Virus Replication/genetics
3.
Chem Biol ; 6(8): 569-76, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10421762

ABSTRACT

BACKGROUND: Hepatitis delta virus (HDV) is a circular single-stranded RNA pathogen whose monomeric form results from self-processing. Although studies have examined minimal HDV ribozyme activities, the mechanism for forming the circular virus remains unclear, and the trans catalytic properties of self-processed forms of HDV ribozymes have not been studied. In addition, HDV ribozymes have not previously been engineered to cleave a non-HDV sequence. RESULTS: Long repeating RNAs have been produced from in vitro rolling-circle transcription of synthetic circular oligodeoxynucleotides encoding catalytically active subsets of the entire antigenomic RNA virus. Like full-length HDV, these multimeric RNAs undergo self-processing to monomer length; importantly, cyclization is found to occur efficiently, but only in the presence of the circular template. Linear and circular monomer ribozymes and engineered variants are shown to be active in cleaving HDV and HIV RNA targets in trans, despite having self-binding domains. CONCLUSIONS: Mimicry of the rolling-circle replication pathway for HDV replication has led to a new proposal for cyclization of HDV RNA. Under these conditions, cyclization is mediated by the complementary circular template. In addition, it has been shown that self-processed HDV ribozymes can be catalytically active in trans despite the presence of antisense sequences built into their structure.


Subject(s)
Hepatitis Delta Virus/drug effects , Molecular Mimicry/genetics , Oligonucleotides/pharmacology , RNA, Catalytic/metabolism , RNA, Viral/metabolism , Virus Replication/drug effects , Base Sequence , Chromatography, Thin Layer , DNA, Circular/biosynthesis , DNA, Circular/genetics , Hepatitis Delta Virus/enzymology , Hepatitis Delta Virus/genetics , Magnesium/metabolism , Molecular Sequence Data , Oligonucleotides/chemical synthesis , RNA Processing, Post-Transcriptional , RNA, Catalytic/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Repetitive Sequences, Nucleic Acid , Transcription, Genetic/genetics
4.
Curr Genet ; 14(2): 163-70, 1988 Aug.
Article in English | MEDLINE | ID: mdl-2846190

ABSTRACT

Broad bean (Vicia faba) mitochondrial DNA (mtDNA) includes three circular plasmids: mt-plasmid 1 (1,704 ntp), mt-plasmid 2 (1,695 ntp) and mt-plasmid 3 (1,476 ntp). Partially replicated circular forms of these mt-plasmids have been observed in electron microscope preparations. Restriction enzymes that cleave either mt-plasmid 2 (but not mt-plasmids 1 and 3) or mt-plasmid 3 (but not mt-plasmids 1 and 2) were used to generate linear forms of partially replicated mt-plasmid 2 and mt-plasmid 3 molecules. Analyses of these linearized replicative intermediates, observed by electron microscopy, indicated that in both mt-plasmid 2 and mt-plasmid 3 replication originates at a specific location and proceeds in the same, single direction around the molecules. The replication origins of mt-plasmid 2 and mt-plasmid 3 map close to sequences that can fold into hairpin structures.


Subject(s)
DNA Replication , DNA, Circular/biosynthesis , DNA, Mitochondrial/biosynthesis , Plasmids , DNA Restriction Enzymes , DNA, Circular/genetics , DNA, Circular/ultrastructure , DNA, Mitochondrial/genetics , DNA, Mitochondrial/ultrastructure , Deoxyribonucleases, Type II Site-Specific , Fabaceae , Microscopy, Electron , Plants, Medicinal
5.
Proc Natl Acad Sci U S A ; 74(1): 193-7, 1977 Jan.
Article in English | MEDLINE | ID: mdl-138139

ABSTRACT

The enzyme system for duplicating the duplex, circular DNA of phage phi X174 (replicative form) in stage II of the replicative life cycle was shown to proceed in two steps: synthesis of the viral (+) strand ]stage II(+)], followed by synthesis of the complementary (-) strand ]stage II(-)] [Eisenberg et al. (1976) Proc. Natl. Acad. Sci. USA 73, 3151-3155]. Novel features of the mechanism of the stage II(+) reaction have now been observed. The product, synthesized in extensive net quantities, is a covalently closed, circular, single-stranded DNA. The supercoiled replicative form I template and three of the four required proteins--the phage-induced cistron A protein (cis A), the host rep protein (rep), and the DNA polymerase III holoenzyme (holoenzyme)--act catalytically; the Escherichia coli DNA unwinding (or binding) protein binds the product stoichiometrically. In a reaction uncoupled from replication, cis A, rep, DNA binding protein, ATP, and Mg2+ separate the supercoiled replicative form I into its component single strands coated with DNA binding protein. In the presence of Mg2+, cis A, nicks the replicative form I; rep, ATP, and Mg2+ achieve strand separation with a concurrent cleavage of ATP and binding of DNA binding protein to the single strands. rep exhibits a single-stranded DNA-dependent ATPase activity. These observations suggest that the rep enzymatically melts the duplex at the replicating fork, using energy provided by ATP; this mechanism may apply to the replication of the E. coli chromosome as well.


Subject(s)
Coliphages/metabolism , DNA Replication , DNA, Circular/biosynthesis , DNA, Viral/biosynthesis , Virus Replication , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , DNA Polymerase III/metabolism , DNA, Single-Stranded/metabolism , Endonucleases/metabolism , Escherichia coli/enzymology , Magnesium/metabolism , Models, Biological , Nucleic Acid Conformation , Templates, Genetic , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL