Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Nat Med ; 75(3): 699-706, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33634391

ABSTRACT

In order to differentiate among Valeriana fauriei Briq. and other Eurasian medicinal valerian (V. dioica L., V. hardwickii Wall., V. jatamansi Jones, and V. officinalis L.), we attempted to establish DNA markers. DNA sequences for the psbA-trnH intergenic spacer region of chloroplast DNA (psbA-trnH) and 18S ribosomal RNA, internal transcribed spacer 1 (ITS1), 5.8S ribosomal RNA, internal transcribed spacer 2 (ITS2), and 28S ribosomal RNA of nuclear DNA in V. fauriei and other Eurasian medicinal valerian were compared. Using partial sequences of psbA-trnH (nucleotide positions 1-75 from the 5' end of the intergenic spacer region), V. fauriei and other Eurasian medicinal valerian could be correctly identified to the species level. In addition, the partial sequences of psbA-trnH in V. fauriei contained five different haplotypes, and it was possible to distinguish the origins of valerian from Japan and Eurasia (China and Korea). On the other hand, individuals had heterogeneous sequences of ITS1 and ITS2, making it impossible to use direct sequencing and DNA markers of ITS1 and ITS2 to distinguish species and origins of V. fauriei and other Eurasian medicinal valerian.


Subject(s)
DNA, Chloroplast/genetics , DNA, Intergenic/genetics , Valerian/genetics , China , DNA Barcoding, Taxonomic , DNA, Plant/genetics , Genes, Plant , Genetic Markers , Genetic Variation , Japan , Republic of Korea , Sequence Analysis, DNA , Valerian/classification
2.
Mitochondrial DNA A DNA Mapp Seq Anal ; 31(4): 131-138, 2020 05.
Article in English | MEDLINE | ID: mdl-32233825

ABSTRACT

The purpose of this study was to test the ability of DNA barcoding to identify the herbal raw trade of Tibetan medicine Dida in China. A reference database for plant-material DNA barcodes was successfully constructed and used to identify 36 commercially samples of Dida collected from Southwest China. The ITS sequence was amplified from these samples and the efficiency of the PCR amplification of ITS was 100%. The DNA sequencing results revealed that 3 samples (8.3%) were authenticated as Swertia chirayita, 2 sequences (5.6%) were authenticated as Swertia mussotii, 3 sequences (8.3%) were authenticated as Swertia ciliata, as recorded in the Tibetan Pharmacopeia. The other samples were authenticated as adulterants and all of them originated from common plants belonging to Saxifraga, Swertia and Halenia. This result indicates Dida pieces that are available in the market have complex origins and may indicate a potential safety issue and DNA barcoding is a convenient tool for market supervision.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , Drugs, Chinese Herbal/analysis , Swertia/classification , Base Sequence , DNA, Intergenic/genetics , Databases, Factual , Drugs, Chinese Herbal/classification , Medicine, Tibetan Traditional , Phylogeny , Polymerase Chain Reaction , Swertia/genetics
3.
J Microbiol Methods ; 171: 105867, 2020 04.
Article in English | MEDLINE | ID: mdl-32061906

ABSTRACT

A reliable method for quantification of non-viable microbe-based nutritional and zootechnical additives introduced into feed is essential in order to ensure regulatory compliance, feed safety and product authenticity in industrial applications. In the present work, we developed a novel real-time quantitative polymerase chain reaction (qPCR) -based analysis protocol for monitoring two microbial additives in feed matrices. To evaluate the applicability of the method, pelleted wheat- and maize-based broiler chicken diets containing a non-viable phytase-producing strain of Aspergillus niger produced in solid state fermentation (150 or 300 g/t) and a non-viable selenium-enriched Saccharomyces cerevisiae (100 or 200 g/t) as model feed ingredients, were manufactured and subjected to analysis. Power analysis of the qPCR results indicated that 2 to 6 replicate feed samples were required to distinguish the product doses applied, which confirms that the microbial DNA was efficiently recovered and that potential PCR inhibitors present in the feed material were successfully removed in DNA extraction. The analysis concept described here was shown to be an accurate and sensitive tool for monitoring the inclusion levels of non-viable, unculturable microbial supplements in animal diets.


Subject(s)
Animal Feed/analysis , Animal Feed/microbiology , Aspergillus niger/genetics , Real-Time Polymerase Chain Reaction/methods , Saccharomyces cerevisiae/genetics , Animals , Aspergillus niger/isolation & purification , Chickens , DNA, Fungal/genetics , DNA, Intergenic/genetics , Food Additives/analysis , Livestock , RNA, Ribosomal/genetics , RNA, Ribosomal, 28S/genetics , Saccharomyces cerevisiae/isolation & purification
4.
Int J Food Microbiol ; 319: 108496, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-31911209

ABSTRACT

Cassiae Semen (CS) has been widely used as roasted tea and traditional Chinese medicine for decades. However, CS is easily contaminated by fungi and mycotoxins during pre-harvest and post-harvest process, thus posing a potential threat to consumer health. In this study, we used the Illumina MiSeq PE300 platform and targeted the internal transcribed spacer 2 sequences to survey the occurrence of fungi in raw and roasted CS samples. Results showed the fungal contamination in all 12 test samples. Ascomycota was the prevailing fungus at the phylum level, with the relative abundance of 66.50%-99.42%. At the genus level, Aspergillus, Cladosporium, and Penicillium were the most dominant genera, accounting for 0.66%-85.51%, 0.20%-29.11%, and 0.11%-32.92% of the fungal reads, respectively. A total of 68 species were identified, among which six potential toxigenic fungi belonging to Aspergillus, Penicillium, Candida, and Schizophyllum genera were detected. Moreover, differences in fungal communities were observed in raw and roasted CS samples. In conclusion, amplicon sequencing is feasible for analyzing fungal communities in CS samples, which provides a new approach to investigate the fungal contamination in edible-medicinal herb, thereby ensuring food safety and drug efficacy.


Subject(s)
Cinnamomum aromaticum/microbiology , Fungi/classification , Fungi/genetics , Pollen/microbiology , Aspergillus/genetics , Candida/genetics , Cladosporium/genetics , DNA, Intergenic/genetics , Food Contamination/analysis , Food Safety/methods , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Medicine, Chinese Traditional , Mycobiome , Mycotoxins/analysis , Penicillium/genetics , Tea/microbiology
5.
J Nat Med ; 74(1): 282-293, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31587135

ABSTRACT

The dried fruits of Terminalia plant (Combretaceae) called "Samo" have been used as herbal medicine in Thai traditional medicine. Four "Samo" crude drugs, namely, Samo thai, Samo thed, Samo dee-ngu, and Samo phiphek, are used as the main ingredients in Triphala and Trisamo recipes. Their commercial products are available in processed and powdered form, but are difficult to authenticate by conventional methods. In this study, we aimed to discriminate species of genus Terminalia for the identification of their crude drugs by a DNA barcoding technique. A total of 208 closely related nucleotide sequences were obtained from nine Terminalia species collected from Thailand and the DDBJ/EMBL/GenBank database. An effective DNA barcode marker was selected from six DNA loci (matK, rbcL, psbA-trnH, ITS, ITS1, and ITS2) and their two-locus combination. All sequences were analyzed by three major methods: (1) BLAST search; (2) the genetic divergence method using Kimura 2-parameter (K2P) distance matrices; and (3) tree topology analysis based on the neighbor-joining method. Comparison of the six candidate DNA loci indicated that ITS identified Terminalia with 100% accuracy at the species and genus levels in the BLAST1 method. ITS2 showed the highest K2P variability. The data from the single markers and the two-locus combinations revealed that only the two-locus combinations, namely, the combinations of rbcL, ITS, ITS1, and ITS2 with psbA-trnH, clearly discriminated all the species. From the results of DNA sequence analysis and the three methods, ITS2 is recommended for the identification of Terminalia species to supplement psbA-trnH.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Intergenic/genetics , Photosystem II Protein Complex/genetics , Terminalia/classification , Terminalia/genetics , Base Sequence , DNA, Plant/genetics , Genetic Markers/genetics , Phytotherapy , Plant Extracts/chemistry , Plants, Medicinal/genetics , Sequence Analysis, DNA , Thailand
6.
J Nat Med ; 74(1): 106-118, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31377923

ABSTRACT

The tuberous roots of Pueraria candollei Grah. ex Benth. (Fabaceae), commonly known as white Kwao Krua, are used to relieve menopausal symptoms in Thai traditional medicine because they contain phytoestrogens. Black and red Kwao Krua crude drugs exist as well, but they have different botanical origins and pharmacological activities. There is a high demand for white Kwao Krua products, but because of the limited availability of the plant material, it is suspected that the adulteration and misidentification of white Kwao Krua crude drugs and products occur. In this study, we authenticated white Kwao Krua products collected from Thai herbal markets by molecular, chemical, and microscopic analyses. The nucleotide sequences in the internal transcribed spacer (ITS) and trnH-psbA regions of 23 samples of authentic P. candollei were analyzed, and both regions were found to have intraspecific DNA polymorphisms. Based on the single nucleotide polymorphisms in the ITS1 region, species-specific primer sets of P. candollei were designed to authenticate white Kwao Krua and differentiate it from red and black Kwao Krua. Only the PCR products of KWP02 were not amplified by the primer sets. Isoflavonoid contents and microscopic features were used to support the results of molecular analysis to clarify the botanical origin of white Kwao Krua. Molecular, chemical and microscopic methods confirmed that all the Thai Kwao Krua products examined in this study contained authentic "white Kwao Krua" as claimed on their labels.


Subject(s)
Plant Preparations/pharmacology , Plant Roots/chemistry , Pueraria/chemistry , Pueraria/classification , DNA, Intergenic/genetics , Phytoestrogens/analysis , Plant Preparations/analysis , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Pueraria/genetics , Thailand
7.
Mol Cell Probes ; 48: 101441, 2019 12.
Article in English | MEDLINE | ID: mdl-31470078

ABSTRACT

The potato cyst nematodes Globodera pallida and G. rostochiensis (PCN), and tobacco cyst nematode (TCN), G. tabacum, are the most important parasitic nematodes of potato and tobacco worldwide. Ribosomal DNA provides useful molecular data for diagnostics, the study of polymorphisms and for evolutionary research in eukaryotic organisms including nematodes. Here we present data on the structure and organization of a rarely studied part of the intergenic spacer (IGS) region of the PCN and TCN genome of cyst nematodes. This region has shown potential for diagnostic purposes and population studies in other organisms including nematodes. In nematodes, the ribosomal RNA gene cluster comprises three genes: 5.8S, 18S and 28S rRNA, which are separated by spacer regions: the intergenic spacer (IGS), non-transcribed spacer (NTS), externally transcribed spacer (EST) and the internally transcribed spacer (ITS). The intergenic spacer (IGS) region consists of an external transcribed spacer (ETS) and a non-transcribed spacer (NTS) which is located between the 28S of one repeat and the 18S gene of the next repeat within the rRNA genes cluster. In this study, the first flanking portion of the IGS was amplified, cloned and sequenced from PCN and TCN. Primers were then designed to amplify the whole IGS sequence. PCR amplification of IGS from G. tabacum, G. pallida, and G. rostochiensis yielded respectively: a single amplicon of 3 kb, three amplicons sized 2.5, 2.6 and 2.9 kb, and two amplicons sized 2.8 and 2.9 kb. Results showed that Globodera spp. has more than one variant copy of the IGS, with both long and short repetitive DNA elements. An approximately 400 bp long region without any internal repetitive elements, were identified in a position between the two repetitive regions suggesting that there is a 5S gene in the IGS of these species.


Subject(s)
DNA, Intergenic/genetics , Nicotiana/parasitology , Ribosomes/genetics , Solanum tuberosum/parasitology , Tylenchoidea/genetics , Animals , Base Sequence , DNA Primers/genetics , DNA, Ribosomal/genetics , Genetic Variation/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Sequence Alignment
8.
Genes (Basel) ; 10(5)2019 05 22.
Article in English | MEDLINE | ID: mdl-31121984

ABSTRACT

Schisandrae Chinensis Fructus (Wuweizi) is often adulterated with Schisandrae Sphenantherae Fructus (Nanwuweizi) in the herbal market. This adulteration is a threat to clinical treatment and safety. In this study, we aimed to develop a nucleotide signature for the identification of Wuweizi and its Chinese patent medicines based on the mini-DNA barcoding technique. We collected 49 samples to obtain internal transcribed spacer 2 (ITS2) sequences and developed a 26-bp nucleotide signature (5'-CGCTTTGCGACGCTCCCCTCCCTCCC-3') on the basis of a single nucleotide polymorphism (SNP) site within the ITS2 region that is unique to Wuweizi. Then, using the nucleotide signature, we investigated 27 batches of commercial crude drug samples labeled as Wuweizi and eight batches of Chinese patent medicines containing Wuweizi. Results showed that eight commercial crude drug samples were adulterants and one of the Chinese patent medicines contained adulterants. The nucleotide signature can serve as an effective tool for identifying Wuweizi and its Chinese patent medicines and can thus be used to ensure clinical drug safety.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Intergenic/genetics , Medicine, Chinese Traditional , Schisandra/genetics , Chromatography, High Pressure Liquid , Drug Contamination , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Fruit/chemistry , Humans , Nonprescription Drugs , Nucleotide Motifs/genetics , Schisandra/chemistry
9.
Genes (Basel) ; 10(5)2019 05 07.
Article in English | MEDLINE | ID: mdl-31067783

ABSTRACT

DNA barcoding has been used for decades, although it has mostly been applied to somesingle-species. Traditional Chinese medicine (TCM), which is mainly used in the form ofcombination-one type of the multi-species, identification is crucial for clinical usage.Next-generation Sequencing (NGS) has been used to address this authentication issue for the pastfew years, but conventional NGS technology is hampered in application due to its short sequencingreads and systematic errors. Here, a novel method, Full-length multi-barcoding (FLMB) vialong-read sequencing, is employed for the identification of biological compositions in herbalcompound formulas in adequate and well controlled studies. By directly sequencing the full-lengthamplicons of ITS2 and psbA-trnH through single-molecule real-time (SMRT) technology, thebiological composition of a classical prescription Sheng-Mai-San (SMS) was analyzed. At the sametime, clone-dependent Sanger sequencing was carried out as a parallel control. Further, anotherformula-Sanwei-Jili-San (SJS)-was analyzed with genes of ITS2 and CO1. All the ingredients inthe samples of SMS and SJS were successfully authenticated at the species level, and 11 exogenousspecies were also checked, some of which were considered as common contaminations in theseproducts. Methodology analysis demonstrated that this method was sensitive, accurate andreliable. FLMB, a superior but feasible approach for the identification of biological complexmixture, was established and elucidated, which shows perfect interpretation for DNA barcodingthat could lead its application in multi-species mixtures.


Subject(s)
DNA, Plant/analysis , Drugs, Chinese Herbal/analysis , Sequence Analysis, DNA/methods , Chloroplast Proteins/genetics , DNA, Intergenic/genetics , DNA, Ribosomal/genetics , Drug Combinations
10.
Genome ; 62(5): 341-348, 2019 May.
Article in English | MEDLINE | ID: mdl-30920312

ABSTRACT

The unique medicinal and nutritional properties of honey are determined by its chemical composition. To evaluate the quality of honey, it is essential to study the surrounding vegetation where honeybees forage. In this study we used conventional melissopalynological and DNA barcoding techniques to determine the floral source of honey samples collected from different districts of the state of Mizoram, India. Pollen grains were isolated and genomic DNA was extracted from the honey samples. PCR amplification was carried out using universal barcode candidates ITS2 and rbcL to identify the plant species. Furthermore, TA cloning was carried out to screen the PCR amplicon libraries to identify the presence of multiple plant species. Results from both the melissopalynological and DNA barcoding analyses identified almost exactly the same 22 species, suggesting that both methods are suitable for analysis. However, DNA barcoding is easier and widely practiced. Hence, it can be concluded that DNA barcoding is a useful tool in determining the medicinal and commercial value of honey.


Subject(s)
Bees/physiology , DNA Barcoding, Taxonomic , Honey/analysis , Plants/classification , Pollen/classification , Animals , DNA, Intergenic/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Flowers/classification , Flowers/genetics , India , Plants/genetics , Pollen/genetics , Polymerase Chain Reaction , Ribulose-Bisphosphate Carboxylase/genetics
11.
Anal Chim Acta ; 1056: 62-69, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30797461

ABSTRACT

The traditional Chinese medicine Citri Reticulatae Pericarpium (CRP) was mainly originated from the dried pericarp of Citrus reticulata 'Chachi' (Crc), Citrus reticulata 'Dahongpao' (Crd), Citrus reticulata 'Unshiu' (Cru) and Citrus reticulata 'Tangerina' (Crt) in China. Since these four cultivars have great similarities in morphology, reliable methods to differentiate CRP cultivars have rarely been reported. To discriminate the differences of these CRP cultivars, herein an efficient and reliable method by combining metabolomics, DNA barcoding and electronic nose was first established. The hierarchical three-step filtering metabolomics analysis based on liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) indicated that 9 species-specific chemical markers including 6 flavanone glycosides and 3 polymethoxyflavones could be considered as marker metabolites for discrimination of the geoherb Crc from other cultivars. A total of 19 single nucleotide polymorphism (SNP) sites were found in nuclear internal transcribed spacer 2 (ITS2) of CRP, and three stable SNP sites (33, 128 and 174) in the ITS2 region can distinguish the four CRP cultivars. The electronic nose coupled with chemometrics could also be used to effectively distinguish Crc from other CRP cultivars. Therefore, our results indicated that the integrated method will be an effective strategy for discrimination of similar herbal medicines.


Subject(s)
Citrus/classification , DNA Barcoding, Taxonomic , Electronic Nose , Metabolomics , Citrus/genetics , Citrus/growth & development , Citrus/metabolism , DNA, Intergenic/genetics
12.
Int J Med Mushrooms ; 21(10): 943-954, 2019.
Article in English | MEDLINE | ID: mdl-32450032

ABSTRACT

A broad literature concerns the genus Hericium, mainly regarding the medicinal properties of H. erinaceus. Congeneric species of H. erinaceus have been poorly investigated. We collected basidiomata of H. alpestre, H. coralloides and H. erinaceus in Italy and isolated the corresponding mycelia in pure culture. Analysis of the respective internal transcribed spacer regions confirmed the morphological identification of the strains. Internal transcribed spacer sequences from the Italian strains were phylogenetically compared along with 64 other sequences available from Gen-Bank, the CBS Strain Database, and the European Nucleotide Archive (ENA) for the same Hericium . Geographic origin and host plant species were cross-checked using the above data banks. Bayesian phylogenetic analysis produced a phylogram that permitted good discrimination among Hericium species. It provides an updated phylogeny within the genus Hericium and a better understanding of affinity among the species analyzed. The main Hericium clade includes the following: the H. erinaceus group and the H. alpestre/H. coralloides group, where the two species cluster separately. This study also allowed us to differentiate the H. erinaceus group on a biogeographical basis. The phylogenetic comparison further confirms the importance of a joint morphological-molecular approach to avoid misidentification and to guarantee the quality of strains for further chemical and medicinal characterization.


Subject(s)
Basidiomycota/classification , Basidiomycota/genetics , Genetic Variation , Mycelium/genetics , Phylogeny , DNA, Fungal/genetics , DNA, Intergenic/genetics , Fruiting Bodies, Fungal , Italy
13.
PLoS One ; 13(12): e0208032, 2018.
Article in English | MEDLINE | ID: mdl-30507961

ABSTRACT

This study reports the construction of high density linkage maps of Japanese plum (Prunus salicina Lindl.) using single nucleotide polymorphism markers (SNPs), obtained with a GBS strategy. The mapping population (An x Au) was obtained by crossing cv. "Angeleno" (An) as maternal line and cv. "Aurora" (Au) as the pollen donor. A total of 49,826 SNPs were identified using the peach genome V2.1 as a reference. Then a stringent filtering was carried out, which revealed 1,441 high quality SNPs in 137 An x Au offspring, which were mapped in eight linkage groups. Finally, the consensus map was built using 732 SNPs which spanned 617 cM with an average of 0.96 cM between adjacent markers. The majority of the SNPs were distributed in the intragenic region in all the linkage groups. Considering all linkage groups together, 85.6% of the SNPs were located in intragenic regions and only 14.4% were located in intergenic regions. The genetic linkage analysis was able to co-localize two to three SNPs over 37 putative orthologous genes in eight linkage groups in the Japanese plum map. These results indicate a high level of synteny and collinearity between Japanese plum and peach genomes.


Subject(s)
Chromosome Mapping , Genome, Plant/genetics , Prunus domestica/genetics , Prunus persica/genetics , Synteny , DNA, Intergenic/genetics , DNA, Plant/genetics , Genetic Linkage , Genotyping Techniques , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
14.
PLoS One ; 13(10): e0205891, 2018.
Article in English | MEDLINE | ID: mdl-30379951

ABSTRACT

Aconitum carmichaelii, commonly known as Fuzi, is a typical traditional Chinese medicine (TCM) herb that has been grown for more than one thousand years in China. Although root rot disease has been seriously threatening this crop in recent years, few studies have investigated root rot disease in Fuzi, and no pathogens have been identified. In this study, fungal libraries from rhizosphere soils were constructed by internal transcribed spacer (ITS) sequencing using the HiSeq 2500 high-throughput platform. A total of 948,843 tags were obtained from 17 soil samples, and these corresponded to 195,583,495 nt. At 97% identity, the libraries yielded 12,266 operational taxonomic units (OTUs), of which 97.5% could be annotated. In sick soils, Athelia, Mucor and Mortierella were the dominant fungi, comprising 10.3%, 10.1% and 7.7% of the fungal community, respectively. These fungi showed 2.6-, 1.53- to 6.31- and 1.38- to 2.65-fold higher enrichment in sick soils compared with healthy soils, and their high densities reduced the fungal richness in the areas surrounding the rotted Fuzi roots. An abundance analysis suggested that A. rolfsii and Mucor racemosus, as the dominant pathogens, might play important roles in the invading Fuzi tissue, and Phoma adonidicola could be another pathogenic fungus of root rot. In contrast, Mortierella chlamydospora, Penicillium simplicissimum, Epicoccum nigrum, Cyberlindnera saturnus and Rhodotorula ingeniosa might antagonize root rot pathogens in sick soils. In addition, A. rolfsii was further verified as a main pathogen of Fuzi root rot disease through hypha purification, morphological observation, molecular identification and an infection test. These results provide theoretical guidance for the prevention and treatment of Fuzi root rot disease.


Subject(s)
Aconitum/microbiology , DNA, Fungal/genetics , DNA, Intergenic/genetics , Fungi/genetics , Plant Roots/microbiology , Soil Microbiology , Biodiversity , Expressed Sequence Tags , Fungi/classification , Fungi/isolation & purification , Fungi/pathogenicity , Genomic Library , High-Throughput Nucleotide Sequencing , Mortierella/classification , Mortierella/genetics , Mortierella/isolation & purification , Mortierella/pathogenicity , Penicillium/classification , Penicillium/genetics , Penicillium/isolation & purification , Penicillium/pathogenicity , Phylogeny , Plant Diseases/microbiology , Rhizosphere , Rhodotorula/classification , Rhodotorula/genetics , Rhodotorula/isolation & purification , Rhodotorula/pathogenicity , Saccharomycetales/classification , Saccharomycetales/genetics , Saccharomycetales/isolation & purification , Saccharomycetales/pathogenicity , Soil/chemistry
15.
Microbiome ; 6(1): 203, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30419937

ABSTRACT

BACKGROUND: The interplay between host genotype and commensal microbiota at different body sites can have important implications for health and disease. In dairy cows, polymorphism of bovine major histocompatibility complex (BoLA) gene has been associated with susceptibility to several infectious diseases, most importantly mastitis. However, mechanisms underlying this association are yet poorly understood. In the present study, we sought to explore the association of BoLA gene polymorphism with the dynamics of mammary microbiota during the first week of lactation. RESULTS: Colostrum and milk samples were collected from multiparous Holstein dairy cows at the day of calving and days 1 and 6 after calving. Microbiota profiling was performed using high-throughput sequencing of the V1-V2 regions of the bacterial 16S rRNA genes and ITS2 region of the fungal ribosomal DNA. Polymorphism of BoLA genes was determined using PCR-RFLP of exon 2 of the BoLA-DRB3. In general, transition from colostrum to milk resulted in increased species richness and diversity of both bacterial and fungal communities. The most dominant members of intramammary microbiota included Staphylococcus, Ruminococcaceae, and Clostridiales within the bacterial community and Alternaria, Aspergillus, Candida, and Cryptococcus within the fungal community. Comparing the composition of intramammary microbiota between identified BoLA-DRB3.2 variants (n = 2) revealed distinct clustering pattern on day 0, whereas this effect was not significant on the microbiota of milk samples collected on subsequent days. On day 0, proportions of several non-aureus Staphylococcus (NAS) OTUs, including those aligned to Staphylococcus equorum, Staphylococcus gallinarum, Staphylococcus sciuri, and Staphylococcus haemolyticus, were enriched within the microbiota of one of the BoLA-DRB3.2 variants, whereas lactic acid bacteria (LAB) including Lactobacillus and Enterococcus were enriched within the colostrum microbiota of the other variant. CONCLUSION: Our results suggest a potential role for BoLA-gene polymorphism in modulating the composition of colostrum microbiota in dairy cows. Determining whether BoLA-mediated shifts in the composition of colostrum microbiota are regulated directly by immune system or indirectly by microbiota-derived colonization resistant can have important implications for future development of preventive/therapeutic strategies for controlling mastitis.


Subject(s)
Colostrum/microbiology , Histocompatibility Antigens Class II/genetics , Lactation/genetics , Mastitis, Bovine/genetics , Milk/microbiology , Animals , Cattle , DNA, Intergenic/genetics , Female , Genetic Predisposition to Disease , Mastitis, Bovine/microbiology , Microbiota , Polymorphism, Single Nucleotide/genetics , RNA, Ribosomal, 16S/genetics , Symbiosis
16.
Nucleic Acids Res ; 46(21): 11405-11422, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30321409

ABSTRACT

Tauopathies such as Alzheimer's Disease (AD) are neurodegenerative disorders for which there is presently no cure. They are named after the abnormal oligomerization/aggregation of the neuronal microtubule-associated Tau protein. Besides its role as a microtubule-associated protein, a DNA-binding capacity and a nuclear localization for Tau protein has been described in neurons. While questioning the potential role of Tau-DNA binding in the development of tauopathies, we have carried out a large-scale analysis of the interaction of Tau protein with the neuronal genome under physiological and heat stress conditions using the ChIP-on-chip technique that combines Chromatin ImmunoPrecipitation (ChIP) with DNA microarray (chip). Our findings show that Tau protein specifically interacts with genic and intergenic DNA sequences of primary culture of neurons with a preference for DNA regions positioned beyond the ±5000 bp range from transcription start site. An AG-rich DNA motif was found recurrently present within Tau-interacting regions and 30% of Tau-interacting regions overlapped DNA sequences coding for lncRNAs. Neurological processes affected in AD were enriched among Tau-interacting regions with in vivo gene expression assays being indicative of a transcriptional repressor role for Tau protein, which was exacerbated in neurons displaying nuclear pathological oligomerized forms of Tau protein.


Subject(s)
DNA, Intergenic/genetics , DNA/chemistry , Neurons/metabolism , tau Proteins/genetics , Alzheimer Disease/genetics , Animals , Brain/embryology , Chromatin Immunoprecipitation , Hyperthermia, Induced , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Phosphorylation , Protein Binding , Tauopathies , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
17.
Chin J Nat Med ; 16(10): 749-755, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30322608

ABSTRACT

To accelerate the breeding process of cultivated Ophiocordyceps sinensis and increase its yield, it is important to identify molecular fingerprint of dominant O. sinensis. In the present study, we collected 3 batches of industrially cultivated O. sinensis product with higher yield than the others and compared their internal transcribed spacer (ITS) sequences with the wild and the reported. The ITS sequence was obtained by bidirectional sequencing and analyzed with molecular systematics as a DNA barcode for rapid and accurate identification of wild and cultivated O. sinensis collected. The ITS sequences of O. sinensis with detailed collection loci on NCBI were downloaded to construct a phylogenetic tree together with the sequences obtained from the present study by using neighbor-joining method based on their evolution relationship. The information on collection loci was analyzed with ArcGIS 10.2 to demonstrate the geographic distribution of these samples and thus to determine the origin of the dominant samples. The results showed that all wild and cultivated samples were identified as O. sinensis and all sequences were divided into seven phylogenetic groups in the tree. Those groups were precisely distributed on the map and the process of their system evolution was clearly presented. The three cultivated samples were clustered into two dominant groups, showing the correlation between the industrially cultivated samples and the dominant wild samples, which can provide references for its optimized breeding in the future.


Subject(s)
DNA, Fungal/genetics , DNA, Intergenic/genetics , Hypocreales/growth & development , Hypocreales/genetics , Phylogeny , Breeding , Genes, Mating Type, Fungal , Hypocreales/chemistry , Hypocreales/classification
18.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Article in English | MEDLINE | ID: mdl-29878113

ABSTRACT

Flower pollen represents a unique microbial habitat, however the factors driving microbial assemblages and microbe-microbe interactions remain largely unexplored. Here we compared the structure and diversity of the bacterial-fungal microbiome between eight different pollen species (four wind-pollinated and four insect-pollinated) from close geographical locations, using high-throughput sequencing of the 16S the rRNA gene fragment (bacteria) and the internal transcribed spacer 2 (ITS2, fungi). Proteobacteria and Ascomycota were the most abundant bacterial and fungal phyla, respectively. Pseudomonas (bacterial) and Cladosporium (fungal) were the most abundant genera. Both bacterial and fungal microbiota were significantly influenced by plant species and pollination type, but showed a core microbiome consisting of 12 bacterial and 33 fungal genera. Co-occurrence analysis highlighted significant inter- and intra-kingdom interactions, and the interaction network was shaped by four bacterial hub taxa: Methylobacterium (two OTUs), Friedmanniella and Rosenbergiella. Rosenbergiella prevailed in insect-pollinated pollen and was negatively correlated with the other hubs, indicating habitat complementarity. Inter-kingdom co-occurrence showed a predominant effect of fungal on bacterial taxa. This study enhances our basic knowledge of pollen microbiota, and poses the basis for further inter- and intra-kingdom interaction studies in the plant reproductive organs.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Mycobiome/genetics , Plants/microbiology , Proteobacteria/classification , Proteobacteria/genetics , Ascomycota/isolation & purification , DNA, Intergenic/genetics , High-Throughput Nucleotide Sequencing , Microbial Interactions , Microbiota/genetics , Plants/genetics , Pollen/microbiology , Pollination/physiology , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics
19.
Mol Cell ; 70(1): 21-33.e6, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576529

ABSTRACT

Immunoglobulin heavy-chain (IgH) genes are assembled by DNA rearrangements that juxtapose a variable (VH), a diversity (DH), and a joining (JH) gene segment. Here, we report that in the absence of intergenic control region 1 (IGCR1), the intronic enhancer (Eµ) associates with the next available CTCF binding site located close to VH81X via putative heterotypic interactions involving YY1 and CTCF. The alternate Eµ/VH81X loop leads to formation of a distorted recombination center and altered DH rearrangements and disrupts chromosome conformation that favors distal VH recombination. Cumulatively, these features drive highly skewed, Eµ-dependent recombination of VH81X. Sequential deletion of CTCF binding regions on IGCR1-deleted alleles suggests that they influence recombination of single proximal VH gene segments. Our observations demonstrate that Eµ interacts differently with IGCR1- or VH-associated CTCF binding sites and thereby identify distinct roles for insulator-like elements in directing enhancer activity.


Subject(s)
Chromatin Assembly and Disassembly , DNA, Intergenic/genetics , Enhancer Elements, Genetic , Genes, Immunoglobulin Heavy Chain , Genetic Loci , Immunoglobulin Variable Region/genetics , Precursor Cells, B-Lymphoid/metabolism , Recombination, Genetic , Animals , Binding Sites , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Line , DNA, Intergenic/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Mice, 129 Strain , Mice, Knockout , Nucleic Acid Conformation , Precursor Cells, B-Lymphoid/immunology , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
20.
Molecules ; 23(3)2018 Mar 04.
Article in English | MEDLINE | ID: mdl-29510531

ABSTRACT

Dendranthema indicum var. aromaticum, which is an aromatic plant with a strong and special fragrance throughout the whole plant, is used for the treatment of colds and headaches, and as a mosquito repellant in Shennongjia, Hubei province, China. To analyze the composition of the essential oil from this medicinal herb, we developed a gas chromatography-mass Spectrometry (GC-MS) method including microwave-assisted extraction, hydrodistillation and direct headspace analysis in two different stationary phase columns. In total, 115 volatile compounds were identified, of which 90 compounds were identified using Rxi-5MS and 78 using HP-INNOWAX. Our results revealed that the oil was mainly composed of five categories of compound: oxygenated monoterpenes (28.76-78.10%), oxygenated sesquiterpenes (4.27-38.06%), sesquiterpenes (3.22-11.57%), fatty hydrocarbons (1.65-9.81%) and monoterpenes (0-3.32%). The major constituents are α-thujone, ß-thujone, cis-sabinol, sabinyl acetate and (-)-neointermedeol.However, the essential oil composition in the published literature differs significantly. Therefore, a cluster analysis was carried out using the top ten compositions in the reported literature as well as this study, using Minitab software. To provide detailed information on plant origin, the ITS1-5.8s-ITS2 region was amplified and sequenced (Accession No. MF668250). Besides, in order to provide a macroscopic view of the chemical composition, the biosynthetic pathway of the main components was summarized according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the published literatures.


Subject(s)
Analgesics/isolation & purification , Chrysanthemum/chemistry , DNA, Intergenic/genetics , Insect Repellents/isolation & purification , Liquid-Liquid Extraction/methods , Oils, Volatile/isolation & purification , Analgesics/chemistry , Bicyclic Monoterpenes , Chrysanthemum/classification , Chrysanthemum/genetics , Chrysanthemum/metabolism , DNA, Plant/genetics , Gas Chromatography-Mass Spectrometry , Humans , Insect Repellents/chemistry , Microwaves , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plants, Medicinal , Sequence Analysis, DNA , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Terpenes/chemistry , Terpenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL