Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Food Funct ; 15(8): 4122-4139, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38573168

ABSTRACT

The health-promoting effects of berries have attracted attention due to the possible application of their extracts as functional ingredients in food products. Natural deep eutectic solvents (NADESs) are a new generation of environmentally friendly solvents for the extraction of natural products, and they are green alternatives to organic solvents, and they can improve the solubility, stability, and bioavailability of isolated biocompounds. In this study, an efficient eco-friendly method was used for the extraction of phenolic compounds from different berries: chokeberries, blueberries, and black goji berries with a range of eutectic solvents consisting of hydrogen bond acceptors (HBAs) such as choline chloride, L-proline, L-glycine, and L-lysine and hydrogen bond donors (HBDs) such as malic, citric, tartaric, lactic and succinic acids, glucose and glycerol. The obtained results indicated the ability of NADESs towards selective extraction of phenolics; the eutectic system choline chloride : malic acid showed selective extraction of anthocyanins, while choline chloride : glycerol and choline chloride : urea showed selectivity towards flavonoids and phenolic acids. The methodology for screening of the NADES extraction performance, which included chromatographic profiling via high-performance thin layer chromatography combined with chemometrics and spectrophotometric essays, allowed effective assessment of optimal eutectic solvents for isolation of different groups of phenolics. Great antioxidant and antimicrobial activities of extracts, along with the green nature of eutectic solvents, enable NADES berry extracts to be used as "green-labelled" functional foods or ingredients.


Subject(s)
Deep Eutectic Solvents , Fruit , Functional Food , Phenols , Plant Extracts , Fruit/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phenols/isolation & purification , Deep Eutectic Solvents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Blueberry Plants/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Coriandrum/chemistry
2.
PLoS One ; 19(3): e0300969, 2024.
Article in English | MEDLINE | ID: mdl-38551952

ABSTRACT

This study employed novel extraction methods with natural deep eutectic solvents (NADES) to extract bioactive compounds and proteins from Bacopa monnieri leaves. The conditional influence of ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzymatic-assisted extraction (EAE) on the recovery efficiency of phenolics, proteins, flavonoids, and terpenoids was evaluated. The conditions of UAE were 50 mL/g LSR, 600W of ultrasonic power, and 30% water content with 40°C for 1 min to obtain the highest bioactive compounds and protein contents. The conditions of MAE were 40 mL/g LSR, 400W of microwave power with 30% water content for 3 min to reach the highest contents of biological compounds. The conditions of EAE were 30 mL/g of LSR, 20 U/g of enzyme concentration with L-Gly-Na molar ratio at 2:4:1, and 40% water content for 60 min to acquire the highest bioactive compound contents. Scanning electron microscopy (SEM) is employed to analyze the surface of Bacopa monnieri leaves before and after extraction. Comparing seven extraction methods was conducted to find the most favorable ones. The result showed that the UMEAE method was the most effective way to exploit the compounds. The study suggested that UMEAE effectively extracts phenolics, flavonoids, terpenoids, and protein from DBMP.


Subject(s)
Bacopa , Plant Extracts , Deep Eutectic Solvents , Solvents , Flavonoids , Water , Phenols , Terpenes
3.
Food Chem ; 448: 139061, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537550

ABSTRACT

Recently, deep eutectic solvents (DES) have been extensively researched as a more biocompatible and efficient alternative to conventional solvents for extracting pigments from natural resources. The efficiency of DES extraction for the anthocyanin and carotenoid can be enhanced by microwave-assisted extraction (MAE) and/or ultrasound-assisted extraction (UAE) techniques. Apart from the extraction efficiency, the toxicity and recovery of the pigments and their bioavailability are crucial for potential applications. A plethora of studies have explored the extraction efficiency, toxicity, and recovery of pigments from various natural plant-based matrices using DES. Nevertheless, a detailed review of the deep eutectic solvent extraction of natural pigments has not been reported to date. Additionally, the toxicity, safety, and bioavailability of the extracted pigments, and their potential applications are not thoroughly documented. Therefore, this review is designed to understand the aforementioned concepts in using DES for anthocyanin and carotenoid extraction.


Subject(s)
Anthocyanins , Carotenoids , Deep Eutectic Solvents , Green Chemistry Technology , Plant Extracts , Anthocyanins/chemistry , Anthocyanins/isolation & purification , Carotenoids/chemistry , Carotenoids/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Deep Eutectic Solvents/chemistry , Chemical Fractionation/methods , Microwaves
4.
Food Chem ; 447: 138971, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461718

ABSTRACT

This study introduces an innovative approach for the valorization and protection of anthocyanins from 'Benihoppe' strawberry (Fragaria × ananassa Duch.) based on acidified natural deep eutectic solvent (NADES). Choline chloride-citric acid (ChCl-CA, 1:1) was selected and acidified to enhance the valorization and protection of anthocyanins through hydrogen bond. The optimal conditions (ultrasonic power of 318 W, extraction temperature of 61 °C, liquid-to-solid ratio of 33 mL/g, ultrasonic time of 19 min), yielded the highest anthocyanins of 1428.34 µg CGE/g DW. UPLC-Triple-TOF/MS identified six anthocyanins in acidified ChCl-CA extract. Stability tests indicated that acidified ChCl-CA significantly increased storage stability of anthocyanins in high temperature and light treatments. Molecular dynamics results showed that acidified ChCl-CA system possessed a larger diffusion coefficient (0.05 m2/s), hydrogen bond number (145) and hydrogen bond lifetime (4.38 ps) with a reduced intermolecular interaction energy (-1329.74 kcal/mol), thereby efficiently valorizing and protecting anthocyanins from strawberries.


Subject(s)
Anthocyanins , Fragaria , Solvents/chemistry , Anthocyanins/chemistry , Fragaria/chemistry , Deep Eutectic Solvents , Plant Extracts/chemistry
5.
Food Chem ; 447: 139036, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518615

ABSTRACT

In this study, a UV-Vis Spectroscopy-based method was developed for the determination of tin(IV) in epilobium parviflorum tea samples after preconcentration. The preconcentration process was carried out using the liquid-liquid microextraction technique. Before starting the analysis, optimization studies were carried out for the variables likely to affect the experimental results. As a result of the analyzes performed under optimum conditions, the detection limit of our method was calculated as 16.83 µg/L. The percent relative standard deviation value was calculated as 1.25% (n = 8) and linearity was found in the range of 10-1000 µg/L. Recovery experiments were performed on epilobium parviflorum tea samples using the matrix matching method. As a result of the analyzes made on teas belonging to three different brands, recovery results ranging from 92 to 117% were obtained.


Subject(s)
Epilobium , Liquid Phase Microextraction , Solvents , Deep Eutectic Solvents , Tin , Liquid Phase Microextraction/methods , Spectrum Analysis , Tea , Limit of Detection
6.
Langmuir ; 40(10): 5098-5105, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38412279

ABSTRACT

As a serious public health issue, malaria threatens the health of millions of people. Artemisinin, a gift from traditional Chinese medicine, has been used in the treatment of malaria and has shown good therapeutic efficiency. However, due to its low solubility, poor bioavailability, and short half-life time, some smart delivery strategies are still required. Herein, a multifunctional DES prepared from ibuprofen and menthol was prepared. This DES was shown to efficiently promote the solubility of artemisinin up to 400-fold. Then, it was further applied as the oil phase to construct an O/W microemulsion with the help of Tween-80 + Span-20 mixed surfactants. The prepared microemulsion displayed high efficiency in improving the permeability of artemisinin, which can be ascribed to the presence of the permeation enhancer menthol in DES and the microstructure of the O/W microemulsion. Moreover, the simultaneous permeation of artemisinin and ibuprofen further indicated the potential benefits of the presented formulation in the treatment of malaria. To sum up, the microemulsion based on multifunctional DES presented herein provided an effective method for transdermal delivery of artemisinin.


Subject(s)
Artemisinins , Malaria , Humans , Ibuprofen/chemistry , Deep Eutectic Solvents , Solvents , Drug Delivery Systems/methods , Menthol , Emulsions/chemistry , Administration, Cutaneous , Surface-Active Agents/chemistry , Malaria/drug therapy
7.
Food Chem ; 445: 138793, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38382256

ABSTRACT

Our research aimed to cost-effectively enhance apigenin content in Chrysanthemum indicum L. extract using soybeans combined with a deep eutectic solvent. First, various deep eutectic solvents were investigated for the extraction of apigenin, followed by soybean treatment to increase aglycon levels. Combining single factor experiments with response surface methodology and optimization algorithms (genetic algorithm and particle swarm optimization), the optimal conditions were also determined. The results revealed that choline chloride-propylene glycol emerged as the optimal solvent. The optimized treatment conditions involved a temperature of 54 °C, a time of 2 h, and the addition of 3 mL of soybean extract, yielding an apigenin content of 3.380 ± 0.031 mg/g - a remarkable eightfold increase compared to the initial extract. The computational study suggested that the deep eutectic solvent may play an important role in stabilizing ß-glucosidase in soybeans. However, further research is needed to scale up and fully elucidate soybean's mechanism.


Subject(s)
Apigenin , Glycine max , Solvents , Deep Eutectic Solvents , Plant Extracts
8.
Molecules ; 29(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338357

ABSTRACT

With a growing focus on green chemistry, the extraction of natural products with natural deep eutectic solvents (NADES), which are eutectic mixtures of hydrogen bond donors and acceptors, has become an ever-expanding field of research. However, the use of NADES for the extraction of spilanthol from Acmella oleracea (L.) R.K.Jansen has not yet been investigated. Therefore, in this study, 20 choline chloride-based NADES, and for comparison, ethanol, were used as green extraction agents for spilanthol from Acmella oleracea flower heads. The effects of time, water addition, and temperature on NADES extractions were investigated and analysed by HPLC-DAD quantification. Additionally, UHPLC-DAD-ESI-MSn results for dichloromethane extracts, as well as the isolation of spilanthol and other main constituents as reference compounds, are reported. The best green extraction results were achieved by choline chloride (ChCl) with 1,2-propanediol (P, 1:2 molar ratio, +20% water) at 244.58 µg/mL, comparable to yields with ethanol (245.93 µg/mL). Methylurea (MeU, 1:2, +20% water) also showed promising results as a hydrogen bond donor in combination with choline chloride (208.12 µg/mL). In further experiments with NADES ChCl/P (1:2) and ChCl/MeU (1:2), extraction time had the least effect on spilanthol extraction with NADES, while yield decreased with water addition over 20% and increased with extraction temperature up to 80 °C. NADES are promising extraction agents for the extraction of spilanthol, and these findings could lead to applicable extracts for medicinal purposes, due to their non-toxic constituents.


Subject(s)
Asteraceae , Deep Eutectic Solvents , Polyunsaturated Alkamides , Solvents/chemistry , Plant Extracts/chemistry , Water/chemistry , Ethanol , Choline/chemistry
9.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338480

ABSTRACT

To increase the effectiveness of using typical biomass waste as a resource, iridoids, chlorogenic acid, and flavonoids from the waste biomass of Eucommia ulmoides leaves (EULs) were extracted by deep eutectic solvents (DESs) in conjunction with macroporous resin. To optimize the extract conditions, the experiment of response surface was employed with the single-factor of DES composition molar ratio, liquid-solid ratio, water percentage, extraction temperature, and extraction time. The findings demonstrated that the theoretical simulated extraction yield of chlorogenic acid (CGA), geniposidic acid (GPA), aucubin (AU), geniposide (GP), rutin (RU), and isoquercetin (IQU) were 42.8, 137.2, 156.7, 5.4, 13.5, and 12.8 mg/g, respectively, under optimal conditions (hydrogen bond donor-hydrogen bond acceptor molar ratio of 1.96, liquid-solid ratio of 28.89 mL/g, water percentage of 38.44%, temperature of 317.36 K, and time of 55.59 min). Then, 12 resins were evaluated for their adsorption and desorption capabilities for the target components, and the HPD950 resin was found to operate at its optimum. Additionally, the HPD950 resin demonstrated significant sustainability and considerable potential in the recyclability test. Finally, the hypoglycemic in vitro, hypolipidemic in vitro, immunomodulatory, and anti-inflammatory effects of EUL extract were evaluated, and the correlation analysis of six active components with biological activity and physicochemical characteristics of DESs by heatmap were discussed. The findings of this study can offer a theoretical foundation for the extraction of valuable components by DESs from waste biomass, as well as specific utility benefits for the creation and development of natural products.


Subject(s)
Eucommiaceae , Flavonoids , Flavonoids/chemistry , Solvents/chemistry , Chlorogenic Acid/chemistry , Eucommiaceae/chemistry , Deep Eutectic Solvents , Plant Extracts/chemistry , Water , Iridoids
10.
J Sep Sci ; 47(4): e2300842, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403445

ABSTRACT

The study explored ferulic acid extraction from palm empty fruit bunch (EFB) fiber using deep eutectic solvent (DES) of chlorine chloride-acetic acid as the extraction medium and the way to recover and recycle the DES thereafter. Antisolvent was added to selectively precipitate the ferulic acid, which was recovered by filtration thereafter. Recycling the DES without further purification led to increased ferulic acid yield with each subsequent extraction, likely due to retained ferulic acid. The retained ferulic acid and other impurities could be removed by precipitation brought upon by the addition of a second antisolvent. 1H nuclear magnetic resonance revealed that there was no excess ferulic acid in the recycled DES-treated with two types of antisolvents (ethanol and water). The yield of ferulic acid increased from 0.1367-0.1856 g/g when treated with only one antisolvent to 0.1368-0.2897 g/g with two antisolvent treatments. Oil droplets were also observed in the DES upon the addition of antisolvent 2, with recovered oil ranging from 0.6% to 3%. The study emphasized the significance of using DES as an extraction medium for ferulic acid from oil palm EFB fiber and the method to recycle the DES for subsequent processes.


Subject(s)
Coumaric Acids , Deep Eutectic Solvents , Fruit , Palm Oil , Carbohydrates
11.
Sci Rep ; 14(1): 148, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167968

ABSTRACT

Deep eutectic solvents in the extraction of plant metabolites have found many advantages, such as low toxicity, biodegradability, low cost and ease of preparation over the conventional methods. This work aims to compare natural deep eutectic solvents in extraction and optimization of oleoresin from Ferula gummosa and determining its chemical and structure properties. Box-Behnken design was applied to optimize the extraction of oleoresin from Ferula gummosa using eutectic solvents. The variables of extraction were extraction time, temperature, and ratio of eutectic solvents. Six mixtures of eutectic solvents including choline chloride/urea, acetic acid, lactic acid, formic acid, formamide and glycerol at ratios of 2:1 and 3:1 were evaluated. The highest yields were obtained for choline chloride/formic acid, choline chloride/formamide. The quadratic regression equation was set up as a predictive model with an R2 value of 0.85. The optimum condition was 6 h, 40 °C, and ratio 12.5% (w/v). No significant difference was found between the predicted and experimental yield. The main components of the oleoresin were ß-pinene (40.27%), cylcofenchen (11.93%) and α-pinene (7.53%) as characterized by gas chromatography-mass spectrometry. The chemical structure study by spectroscopy showed that no solvents remained in the oleoresin. Therefore, F. gummosa oleoresin can be explored as a novel promising natural pharmaceutical ingredient extracted with eutectic solvents.


Subject(s)
Deep Eutectic Solvents , Ferula , Solvents/chemistry , Plant Extracts/chemistry , Choline/chemistry , Formamides
12.
Food Res Int ; 177: 113898, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225118

ABSTRACT

Anthocyanins extracted with deep eutectic solvent (NADES) (chlorine-chloride: xylitol, 5:2) were used to produce polyethylene oxide (PEO) composites through electrospinning technique, analyzing their microscopic and physical characteristics. The coated anthocyanins were then subjected to in vitro gastrointestinal digestion to evaluate their bioaccessibility compared to lyophilized jussara pulp. The remaining total anthocyanin content (TAC) after intestinal in vitro digestion did not change significantly among the assessed samples, and both showed around 30% recovery. The TAC recovery after the gastric phase, on the other hand, showed a major difference (70.84% vs. 48.13%), revealing that the composites fabricated by the electrospinning technique can significantly maintain anthocyanins NADES-extracted stability during the gastric phase of digestion, potentially allowing better absorption trough stomach wall. The results can be considered a first step to applying anthocyanins-encapsulated in foodstuff as a natural pigment.


Subject(s)
Anthocyanins , Deep Eutectic Solvents , Polyethylene Glycols , Plant Extracts , Solvents
13.
Anal Chim Acta ; 1290: 342197, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246739

ABSTRACT

BACKGROUND: Pretreatment techniques should be introduced before metal ion determination because there is very low content of heavy metals in Chinese medicinal plants and environmental samples. Magnetic dispersive micro solid phase extraction (MDMSPE) has been widely used for the separation and adsorption of heavy metal pollutants in medicinal plants and environmental samples. However, the majority of MDMSPE adsorbents have certain drawbacks, including low selectivity, poor anti-interference ability, and small adsorption capacity. Therefore, modifying currently available adsorption materials has gained attention in research. RESULTS: In this study, a novel adsorbent MCOF-DES based on a magnetic covalent organic framework (MCOF) modified by a new deep eutectic solvent (DES) was synthesized for the first time and used as an adsorbent of MDMSPE. The MDMSPE was combined with inductively coupled plasma optical emission spectrometry (ICP-OES) for selective separation, enrichment, and accurate determination of trace copper ion (Cu2+) in medicinal plants and environmental samples. Various characterization results show the successful preparation of new MCOF-DES. Under the optimal conditions, the enrichment factor (EF) of Cu2+ was 30, the limit of detection (LOD) was 0.16 µg L-1, and the limit of quantitation (LOQ) was 0.54 µg L-1. The results for the determination of Cu2+ were highly consistent with those of inductively coupled plasma mass spectrometry (ICP-MS), which verified the accuracy and reliability of the method. SIGNIFICANCE: The established method based on a new adsorption material MCOF-DES has achieved the selective separation and determination of trace Cu2+ in medicinal and edible homologous medicinal materials (Phyllanthus emblica Linn.) and environmental samples (soil and water), which provides a promising, selective, and sensitive approach for the determination of trace Cu2+ in other real samples.


Subject(s)
Metal-Organic Frameworks , Plants, Medicinal , Copper , Deep Eutectic Solvents , Reproducibility of Results , Magnetic Phenomena
14.
Ultrason Sonochem ; 102: 106761, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38219550

ABSTRACT

In China, Jiang Fructus aurantii (JFA) has attracted increasing interest as a famous traditional herbal medicine and valuable economic food for its valuable medicinal and industrial properties. In the current work, contrasted with conventional extraction techniques, natural flavonoids from JFA (naringin and neohesperidin) were extracted with remarkable effectiveness utilizing a sustainable deep eutectic solvents combined ultrasonic-assisted extraction (DESs-UAE) protocol. The optimal extraction capacity can be achieved by mixing 30 % water with a molar ratio of 1:3 for choline chloride and ethylene glycol, as opposed to the classical extraction solvents of 95 % ethanol, methanol, and water. Moreover, the DESs-UAE extraction programs were also systematically optimized employing Box-Behnken design (BBD) trials, and the eventual findings suggested that the best parameters were a 27 % water content in DES, a 16 mL/g liquid-solid ratio, a 72 min extraction time, and a 62 °C extraction temperature, along with the corresponding greatest contents of NAR (48.18 mg/g) and NEO (34.50 mg/g), respectively. Notably, by comparison with the pre-optimization data, the optimized DES extraction efficiency of flavonoids is markedly higher. Thereafter, the characterization of the solvents before and after extraction, as well as the differences between the four extraction solvent extracts, were compared using the FT-IR analyses. Furthermore, SEM results suggested that the penetration and erosion abilities of the plant cell wall of DES-1 were stronger than those of the other three traditional solvents, thus allowing more release of flavonoid compounds. In conclusion, the present research develops a straightforward, sustainable, and exceedingly efficient approach for the extraction of bioactive flavonoids from JFA, which has the potential to facilitate the efficient acquisition of active ingredients from TCM.


Subject(s)
Deep Eutectic Solvents , Flavonoids , Flavonoids/analysis , Spectroscopy, Fourier Transform Infrared , Ultrasonics , Solvents , Water , Plant Extracts
15.
Talanta ; 270: 125558, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38183713

ABSTRACT

Deep eutectic solvents (DES), regarded as promising green solvents, have gained attention due to their distinctive properties, particularly in analytical chemistry. While the use of DES in solvent extraction and separation has been extensively studied, its application in the synthesis of adsorbents has just begun. Phenolic resin, with its polyhydroxy structure and stable spherical morphology, could serve as an effective as adsorbents for enrichment of active ingredients in herbal medicine. Designing adsorbents with high selectivity and adsorption capacity presents a critical challenge in the enrichment of active ingredients in herbal medicine. In this study, alcohol-based DESs were employed as regulators of morphology and structure instead of organic solvents, facilitating the creation of polyhydroxy structure, adjustable pores and high specific surface areas. The resulting DES-regulated porous phenolic resin demonstrated enhanced extraction and separation capacity for active ingredients compared to conventional spherical phenolic resin owing to the alcohol-based DES offering more interaction modes with the analytes.


Subject(s)
Abietanes , Formaldehyde , Phenols , Polymers , Salvia miltiorrhiza , Solvents/chemistry , Salvia miltiorrhiza/chemistry , Deep Eutectic Solvents , Porosity , Plant Extracts/chemistry , Ethanol
16.
J Sep Sci ; 47(1): e2300796, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234030

ABSTRACT

In this study, a hydroxyl-rich ferrofluid was prepared by dispersing silica-coated magnetic nanoparticles into a methyltrioctylammonium chloride-glycerol deep eutectic solvent and then employed in the preconcentration of trace-level of cinnamic acid derivatives (caffeic acid, p-hydroxycinnamic acid, ferulic acid, and cinnamic acid) in traditional Chinese medicine prior to high-performance liquid chromatography analysis. The structures of the synthesized materials were characterized by X-ray diffraction and infrared spectroscopy. The experimental parameters affecting the extraction performance, such as deep eutectic solvent composition, dosage of ferrofluid, pH of aqueous sample solution, salt concentration, extraction time, type, and volume of desorption solvent, were studied and optimized. Under the optimum conditions, the enrichment factors of four cinnamic acid derivatives were in the range of 107-114. Low detection limits (0.2-0.9 ng/mL), good precisions (relative standard deviations 1.2%-9.5%), and satisfactory recoveries (96.0%-104.7%) were achieved. Subsequently, the possible microextraction mechanism of the proposed method was explored and elucidated. It showed that the prepared ferrofluid is easily dispersed in the aqueous sample and achieved recovery after the extraction. The developed approach is a simple, convenient, and efficient method for preconcentration and determination of cinnamic acid derivatives in complex matrices.


Subject(s)
Liquid Phase Microextraction , Medicine, Chinese Traditional , Liquid Phase Microextraction/methods , Deep Eutectic Solvents , Cinnamates/analysis , Colloids/analysis , Solvents/chemistry , Limit of Detection , Chromatography, High Pressure Liquid
17.
Phytochem Anal ; 35(1): 53-63, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37545032

ABSTRACT

INTRODUCTION: Deep eutectic solvents (DESs) are promising extractants with tuneable properties. However, there is a lack of reports about the influence of the nature of the original DES on obtaining the metabolomic profile of a plant. OBJECTIVE: The aim of this study is to investigate the possibility of obtaining Iris sibirica L. chromatographical profiles with DESs based on various hydrogen bond donors and acceptors as extraction solvents. METHODOLOGY: DESs were prepared by mixing choline chloride or tetrabutylammonium bromide with various hydrogen bond donors and investigated for the extraction of bioactive substances from biotechnological raw materials of I. sibirica L. The obtained extracts were analysed by HPLC with diode array detector (DAD) and Q-MS. RESULTS: Chromatographic profiles for I. sibirica L. extracts by eight choline chloride DESs and six tetrabutylammonium DESs have been obtained. It has been found that selective recovery of bioactive substances can be achieved by varying the composition of DESs. Eleven phenolic compounds were identified in I. sibirica L. using HPLC-MS. Phase separation was observed with acetonitrile for four DESs. New flavonoid derivatives have been found in DES extracts compared with methanol extracts. CONCLUSION: The results showed the possibility of DES usage for extraction without water addition. Selectivity of DESs varies depending on the chemical composition of hydrogen bond donors and acceptors. Choline chloride is a more suitable hydrogen bond acceptor for the flavonoid extraction. Choline chloride-lactic acid (1:1) DES has demonstrated a metabolic profile that was the closest to the methanol one and enhanced the extraction up to 2.6-fold.


Subject(s)
Deep Eutectic Solvents , Iris Plant , Methanol , Solvents/chemistry , Flavonoids , Plant Extracts/chemistry , Choline/chemistry , Phytochemicals
18.
Phytochem Anal ; 35(2): 391-400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37886892

ABSTRACT

INTRODUCTION: Natural deep eutectic solvents (NADES) have emerged as interesting extractants to develop botanical ingredients. They are nontoxic and biodegradable, nonflammable, easy to prepare, and able to solubilize a wide range of molecules. However, NADES extracts remain difficult to analyze because the metabolites of interest stay highly diluted in the nonvolatile viscous NADES matrix. OBJECTIVE: This study presents a robust analytical workflow for the chemical profiling of NADES extracts. It is applied to Hypericum perforatum aerial parts extracted with the neutral mixture fructose/glycerol/water (3/1/1, w/w/w), and compared to the chemical profiling of a classical dry methanol extract. METHODS: Exploiting polarity differences between metabolites, the H. perforatum NADES extract was partitioned in a liquid-liquid solvent system to trap the hydrophilic NADES constituents in the lower phase. The upper phase, containing a diversity of secondary metabolites from H. perforatum, was fractionated by centrifugal partition chromatography. All fractions were chemically investigated using a 13 C NMR dereplication method which involves hierarchical clustering analysis of the whole NMR dataset, a natural metabolite database for metabolite identification, and 2D NMR analyses for validation. Liquid chromatography-mass spectrometry (LC-MS) analyses were also performed to complete the identification process. RESULTS: A range of 21 metabolites were unambiguously identified, including glycosylated flavonols, lactones, catechins, phenolic acids, lipids, and simple sugars, and 15 additional minor extract constituents were annotated by LC-MS based on exact mass measurements. CONCLUSION: The proposed identification process is rapid and nondestructive and provides good prospects to deeply characterize botanical extracts obtained in nonvolatile and viscous NADES systems.


Subject(s)
Deep Eutectic Solvents , Hypericum , Plant Extracts/chemistry , Solvents/chemistry , Chromatography, Liquid
19.
Int J Biol Macromol ; 256(Pt 1): 128688, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092122

ABSTRACT

In this study, hawthorn pectin was extracted from dried hawthorn with deep eutectic solvent(DES) and compared with the traditional extraction methods such as acid extraction (AE) and ultrasonic-assisted extraction (UAE). Under optimal conditions, with a molar ratio of choline chloride to urea at 1:3, a water content of 30 %, a liquid-to-solid ratio of 30:1 (mL/g), an extraction temperature of 80 °C, an extraction time of 60 min, and a pH of 1, the yield of hawthorn pectin was 4.33 % ± 0.02 %. The measured results were consistent with the prediction. In addition, compared with AE and UAE, the experimental results showed that DES had a higher yield, a lower degree of esterification, and a slightly different monosaccharide composition from other extraction methods. The results of infrared spectroscopy and scanning electron microscopy showed that DES had a fine microstructure and coarser surface, and the main chemical structure of DES didn't change. The rheological analysis showed that DES had lower apparent viscosity than AE and UAE. These results represent a green source for pectin extraction with high pectin yield and good performance. In conclusion, the deep eutectic solvent has good application prospects in extracting hawthorn pectin.


Subject(s)
Crataegus , Pectins , Pectins/chemistry , Solvents/chemistry , Deep Eutectic Solvents , Water/chemistry
20.
J Food Sci ; 89(1): 294-305, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010748

ABSTRACT

This study aimed to investigate the ultrasound-assisted extraction of bioactive compounds from persimmon (Diospyros kaki) calyx by deep eutectic solvents (DES) with different molar ratios. For this reason, the prepared DES extracts' total phenolic-flavonoid compounds and antioxidant activities (1,1-diphenyl-2-picrilhydrazyl radical scavenging activity [DPPH•], Cupric Reducing Antioxidant Capacity (CUPRAC), and ferric reducing antioxidant power [FRAP]) were investigated as a result of the experimental design and optimization study conducted for this purpose. A sonication time of 20 min was determined as the optimal condition. Under these conditions, a molar ratio of 1.9:1 (lactic acid:choline chloride) and a water ratio of 70% provided the highest phenolic/flavonoid compounds and antioxidative activity. Correlations among water ratio, molar ratio, and sonication time were determined using principal component analysis (PCA). In conditions where total flavonoid compound, FRAP, and DPPH• are high due to PCA, it can be concluded that the sonication time is at high level; on the contrary, the water and molar ratios are at low level. In conclusion, ultrasound-assisted extraction using DES proved effective in persimmon calyx. Therefore, it can be recommended to use these environmentally friendly green solvents as an alternative to organic solvents in preparing extracts in various fields. PRACTICAL APPLICATION: This study shows the effectiveness of the ultrasound-assisted green extraction method using persimmon calyx specified as waste. These findings are compelling in the food industry in terms of consumers being now aware of green technology and the discovery that calyx is a good source of bioactive compounds.


Subject(s)
Antioxidants , Diospyros , Antioxidants/chemistry , Deep Eutectic Solvents , Solvents/chemistry , Flavonoids/chemistry , Water/chemistry , Phenols/chemistry , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL