Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 546
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
ACS Appl Mater Interfaces ; 16(12): 15143-15155, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38481099

ABSTRACT

Realizing controllable input of botanical pesticides is conducive to improving pesticide utilization, reducing pesticide residues, and avoiding environmental pollution but is extremely challenging. Herein, we constructed a smart pesticide-controlled release platform (namely, SCRP) for enhanced treatment of tobacco black shank based on encapsulating honokiol (HON) with mesoporous hollow structured silica nanospheres covered with pectin and chitosan oligosaccharide (COS). The SCRP has a loading capacity of 12.64% for HON and could effectively protect HON from photolysis. Owing to the pH- and pectinase-sensitive property of the pectin, the SCRP could smartly release HON in response to a low pH or a rich pectinase environment in the black shank-affected area. Consequently, the SCRP effectively inhibits the infection of P. nicotianae on tobacco with a controlled rate for tobacco black shank of up to 87.50%, which is mainly due to the SCRP's capability in accumulating ROS, changing cell membrane permeability, and affecting energy metabolism. In addition, SCRP is biocompatible, and the COS layer enables SCRP to show a significant growth-promoting effect on tobacco. These results indicate that the development of a stimuli-responsive controlled pesticide release system for plant disease control is of great potential and value for practical agriculture production.


Subject(s)
Pesticides , Pesticides/pharmacology , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/chemistry , Polygalacturonase , Agriculture , Pectins
2.
Food Res Int ; 174(Pt 1): 113590, 2023 12.
Article in English | MEDLINE | ID: mdl-37986529

ABSTRACT

This study aimed at producing pectin hydrogel beads by ionic gelation proce to carry pomegranate extract (PE) evaluating approaches to increase its retention and protect the polyphenols from environmental conditions that interfere in the stability and color of these compounds, such as the pH of the medium. Several strategies were tested to reduce the mass transfer and consequently increase its retention. The insertion of a filler (gelatinized starch), the employment of different concentrations from the external environment, the adsorption using blank pectin-starch beads, and the electrostatic coating using chitosan were performed. The release of entrapped compounds over time was employed to evaluate the release pattern of PE in water media. Diffusion coefficients calculated from these experiments were then used to estimate the PE release behavior. The encapsulation efficiency (EE) was significantly improved (42 % to 101 %) when equalizing the concentration of the external medium with that from the beads formulation. Furthermore, the increase in the PE concentration was proportional to the rise in the mechanical strength (MS) of the beads which indicates a modification of internal structure due to the presence of polyphenols. The adsorption was efficient in entrapping the active compound, and despite the high PE content observed for all beads (average value of 2960.26 mg of gallic acid equivalent/100 g sample), they had the lowest diffusion coefficient from the release in water media. Finally, the coating was able to reduce the release rate in most of the tests (DAB uncoated = 0.5 DAB coated), however, during the electrostatic deposition a loss of about 32 % of the phenolic compounds in the chitosan solution was observed which led to a reduced EE. Despite the obtention of retarded release, coating studies need to be improved. Some adjustments in the execution of this technique are necessary so that the losses are reduced and the process becomes viable for the use of beads in food.


Subject(s)
Chitosan , Pomegranate , Chitosan/chemistry , Alginates/chemistry , Delayed-Action Preparations/chemistry , Polyphenols/chemistry , Pectins/chemistry , Starch/chemistry , Water/chemistry
3.
Int J Biol Macromol ; 236: 123994, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36914059

ABSTRACT

The porous structure and hydrophilicity of coating shells affect the nutrient controlled-release performance of castor oil-based (CO) coated fertilizers. In order to solve these problems, in this study, the castor oil-based polyurethane (PCU) coating material was modified with liquefied starch polyol (LS) and siloxane, and a new coating material with cross-linked network structure and hydrophobic surface was synthesized, and used it to prepare the coated controlled-release urea (SSPCU). The results demonstrated that the cross-linked network formed by LS and CO improved the density and reduced the pores on the surface of the coating shells. The siloxane was grafted on the surface of coating shells to improve its hydrophobicity and thus delayed water entry. The nitrogen release experiment indicated that the synergistic effects of LS and siloxane improved the nitrogen controlled-release performance of bio-based coated fertilizers. Nutrient released longevity of SSPCU with 7 % coating percentage reached >63 days. Moreover, the nutrient release mechanism of coated fertilizer was further revealed by the analysis of the release kinetics analysis. Therefore, the results of this study provide a new idea and technical support for development of efficient and environment-friendly bio-based coated controlled-release fertilizers.


Subject(s)
Fertilizers , Siloxanes , Delayed-Action Preparations/chemistry , Castor Oil , Nitrogen/chemistry
4.
ACS Appl Mater Interfaces ; 14(50): 56046-56055, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36484480

ABSTRACT

Bio-based polyurethanes are promising for the controlled release of nutrients and fertilizers, but their toughness and plasticity need to be improved. We developed a smooth, dense, elastic, and indestructible bio-based polyurethane (BPU) coating with a nutrient controlled release ∼150% superior, a tensile strength ∼300% higher, and a toughness ∼1200% higher than those for the original BPU coating. Through a one-step reaction of soybean oil polyols (accounting for more than 60%), isocyanate, and benzil dioxime, the dynamic covalent network based on oxime-carbamate replaces part of irreversible covalent cross-linking. The dynamic fracture-bonding reaction in the modified coating BPU can effectively promote the hydrogen bond recombination and oxime-carbamate chain migration in the coating process, which avoids the structural defects caused by coating tear and fertilizer collision. This work provides a simple and versatile strategy for building controlled-release fertilizer coatings.


Subject(s)
Fertilizers , Polyurethanes , Polyurethanes/chemistry , Delayed-Action Preparations/chemistry , Isocyanates , Soybean Oil/chemistry
5.
Polim Med ; 52(2): 83-92, 2022.
Article in English | MEDLINE | ID: mdl-36268746

ABSTRACT

BACKGROUND: Mucilage and pectin are both natural polymers with the advantages of availability and biodegradability. Microspheres made from biodegradable polymers can break down naturally after performing their tasks. OBJECTIVES: The study aimed to use mucilage and pectin from the leaves of Talinum triangulare (Jacq.) Willd. as polymer matrices for the formulation of microspheres, with ibuprofen as the model drug. MATERIAL AND METHODS: Both polymers were examined under a microscope and evaluated using measurements of viscosity, density, flow properties, swelling power, elemental analysis, Fourier-transform infrared spectroscopy (FTIR), and the degree of esterification (DE) for pectin. The microspheres were prepared using the ionotropic gelation method and alginate:mucilage/pectin at ratios of 1:1 and 1:2. They were assessed for swellability, drug entrapment effectiveness and drug release profile. RESULTS: The mucilage particles were ovoid while pectin particles were irregularly shaped. Pectin had higher particle, bulk and tapped densities than mucilage, while mucilage had a higher swelling power and a better flow than pectin. Talinum triangulare pectin is a low-methoxyl pectin with a DE of 7.14%. The FTIR spectra showed no interaction between the polymers and ibuprofen. The surface morphology of the microspheres without ibuprofen was smooth, while those with ibuprofen revealed a spongy-like mesh. The swelling power of the microspheres was higher in phosphate buffer with a pH of 7.2 than in distilled water. The entrapment efficiency ranged within 39.57-60.43% w/w, with microspheres containing alginate:mucilage/pectin ratio of 1:1 having higher entrapment efficiency. Microspheres with polymer at a ratio of 1:1 provided a longer release (>2 h), while microspheres with polymer blend of 1:2 provided an immediate release of ibuprofen. CONCLUSIONS: The polymers of T. triangulare could be used as matrices in microsphere formulations.


Subject(s)
Ibuprofen , Pectins , Pectins/chemistry , Microspheres , Polymers/chemistry , Alginates/chemistry , Particle Size , Delayed-Action Preparations/chemistry
6.
Int J Biol Macromol ; 222(Pt A): 915-926, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36181884

ABSTRACT

Low methoxy pectin (LM pectin) suffers from burst release owing to its high swellability and solubility in water. Consequently, in ways to design an ideal drug delivery system, these obstacles must be surmounted. Therefore, the work aimed to design dual crosslinked LM pectin -neem gum (NG) mediated interpenetrating polymer network (IPN) floating mucoadhesive microbeads for lansoprazole (LNZ) gastro-retentive delivery. In short, LNZ-loaded floating microbeads were achieved by using the ionic gelation method wherein zinc acetate was preferred as a crosslinking agent. The optimization of IPN microbeads was performed employing a 32factorial design wherein concentration of pectin and NG was considered as independent factors whereas dependant factors are entrapment efficiency and drug release. Importantly, carboxylic functionality of low methoxy (LM) pectin and hydroxylic functionality NG cross-linked with Zn+2 forms a 3D network. Diffractogram and thermogram revealed that conversion of drug from crystalline to amorphous form because of entrapment of drug within polymeric network. Anticipated floating microbeads showed that polymer concentration had considerable effect on drug encapsulation efficiency and drug release. Briefly, optimizing floating microbeads (Batch B:5) showed maximum drug entrapment (87.47 %) with a delayed drug release (69.20 %, at 8 h) due to formation of strong IPN. Moreover, it showed good mucoadhesive aptitude with goat stomach mucosa because of entanglement between gum and mucus layer. In addition, use of calcium silicate assists to modulate floating profile of IPN microbeads. Therefore, designing dual crosslinked zinc-pectinate-NG mediated IPN floating mucoadhesive microbeads will offer a new substitute for floating delivery.


Subject(s)
Polymers , Zinc , Microspheres , Polymers/chemistry , Lansoprazole , Drug Delivery Systems/methods , Pectins/chemistry , Delayed-Action Preparations/chemistry
7.
Molecules ; 27(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296688

ABSTRACT

The exploration of safe antibiotic substitutes is one of the research hotspots in animal husbandry. Adding suitable plant essential oils into feed could improve the growth performance and immune capacity of animals. In order to make plant essential oil play a better role in feed application, sodium alginate and chitosan were used as the wall materials, and blended plant essential oils (BEO) as the core material to prepare BEO microcapsules by the sharp-hole condensation method. On the basis of single-factor experiments, the optimal preparation conditions for BEO microcapsules were obtained by response surface experiments. The physicochemical properties were characterized and analyzed by Fourier-transform infrared spectroscopy (FTIR) and field scanning electron microscope (FSEM). Meanwhile, the release mechanism was studied by simulating a gastrointestinal sustained-release experiment. The results showed that under the optimal preparation conditions, the encapsulation efficiency of BEO microcapsules could reach 80.33 ± 2.35%. FTIR and SEM analysis displayed that the microcapsules obtained had uniform color and size and a complete and compact structure. In vitro study indicated that the release amount of BEO microcapsules in the simulated intestinal fluid is higher than that in the simulated intestinal fluid, which was consistent with animal digestive and absorptive characteristics.


Subject(s)
Chitosan , Oils, Volatile , Animals , Capsules/chemistry , Oils, Volatile/chemistry , Chitosan/chemistry , Delayed-Action Preparations/chemistry , Plant Oils/chemistry , Alginates/chemistry , Anti-Bacterial Agents
8.
Adv Sci (Weinh) ; 9(30): e2202829, 2022 10.
Article in English | MEDLINE | ID: mdl-36041051

ABSTRACT

Antibiotics provide promising strategies for treating periodontitis, while their delivery and controllable release with desired oral retention remain challenging. Here, inspired by the unique suction-cup structures of abalones, a novel adhesive and photo-responsive microparticle (MP) delivery system is developed to treat periodontitis through microfluidic electrospray technology. Such MPs are generated by quickly ionic cross-linking of sodium alginate together with photo-curing of poly(ethylene glycol) diacrylate of the distorted microfluidic droplets during their high-speed dropping into calcium chloride solution. Attributing to their unique concave structures, the abalone-inspired MPs exhibit desired underwater adhesion ability and stability under running water. In addition, due to the loading of antibiotics minocycline hydrochloride and near-infrared (NIR)-responsive black phosphorus during their fabrication, the resultant MPs can not only eradicate bacteria directly, but also realize a controllable and effective drug release upon NIR irradiation. Based on these features, it is demonstrated from in vivo periodontitis that the abalone-inspired MPs are firmly adhesive and can controlled-release drugs on the tooth, and thus have outstanding antibacterial efficacy against Porphyromonas gingivalis. These results indicate the particular values of the abalone-inspired MPs for oral-related disease treatment.


Subject(s)
Minocycline , Periodontitis , Humans , Minocycline/pharmacology , Minocycline/chemistry , Minocycline/therapeutic use , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/therapeutic use , Adhesives/therapeutic use , Calcium Chloride/therapeutic use , Alginates/chemistry , Periodontitis/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polyethylene Glycols/therapeutic use , Water , Phosphorus/therapeutic use
9.
Biomolecules ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-36008951

ABSTRACT

The inefficient use of water-insoluble drugs is a major challenge in drug delivery systems. Core-sheath fibers with various shell thicknesses based on cellulose acetate (CA) were prepared by the modified triaxial electrospinning for the controlled and sustained release of the water-insoluble Chinese herbal active ingredient curcumin. The superficial morphology and internal structure of core-sheath fibers were optimized by increasing the flow rate of the middle working fluid. Although the prepared fibers were hydrophobic initially, the core-sheath structure endowed fibers with better water retention property than monolithic fibers. Core-sheath fibers had flatter sustained-release profiles than monolithic fibers, especially for thick shell layers, which had almost zero-order release for almost 60 h. The shell thickness and sustained release of drugs brought about a good antibacterial effect to materials. The control of flow rate during fiber preparation is directly related to the shell thickness of core-sheath fibers, and the shell thickness directly affects the controlled release of drugs. The fiber preparation strategy for the precise control of core-sheath structure in this work has remarkable potential for modifying water-insoluble drug release and improving its antibacterial performance.


Subject(s)
Curcumin , Nanofibers , Anti-Bacterial Agents/pharmacology , Curcumin/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Nanofibers/chemistry , Water
10.
J Mater Chem B ; 10(39): 7955-7966, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35792081

ABSTRACT

Here, a novel joint chemo/photothermal/chemodynamic therapy was developed using a pH/GSH/photo triple-responsive 2D-covalent organic framework (COF) drug carriers for passive target treatment of tumors with extraordinarily high efficiency. The well-designed COF (DiSe-Por) with simultaneous dynamic diselenium and imine bonds, synthesized by the copolymerization of 4,4'-diselanediyldibenzaldehyde (DiSe) with 5,10,15,20-(tetra-4-aminophenyl)-porphyrin (Por) via Schiff base chemistry, which was applied as the host for effective encapsulation and highly controlled release of anticancer drug (DOX), was stable under normal physiological settings and can effectively accumulate in tumor sites. After being internalized into the tumor cells, the unique microenvironment i.e., acidic pH and overexpressed GSH, triggered substantial degradation of DiSe-Por-DOX, promoting DOX release to kill the cancer cells. Meanwhile, the breaking of Se-Se bonds boosted the generation of intracellular ROS, disturbing the redox balance of tumor cells. The highly extended 2D structure endowed the drug delivery system with significant photothermal performance. The rise of temperature with external laser irradiation (808 nm) further promoted drug release. Additionally, the phototherapy effect was further augmented after the loading of DOX, guaranteeing an almost complete drug release to tumor tissue. As a result, the triple-responsive drug delivery system achieved a synergistic amplified therapeutic efficacy with a growth inhibitory rate of approximately 93.5% for the tumor xenografted in nude mice. Moreover, the body metabolizable and clearable DiSe-Por-DOX presented negligible toxicities toward major organs in vivo. All these characteristics verified the great potential of DiSe-Por-DOX nanosheets for multi-modality tumor treatment, accelerating the application range of COFs in biomedical fields.


Subject(s)
Antineoplastic Agents , Hyperthermia, Induced , Metal-Organic Frameworks , Neoplasms , Porphyrins , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Metal-Organic Frameworks/metabolism , Metal-Organic Frameworks/pharmacology , Mice , Mice, Nude , Neoplasms/drug therapy , Phototherapy , Porphyrins/metabolism , Reactive Oxygen Species/metabolism , Schiff Bases
11.
J Microencapsul ; 39(2): 125-135, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35282781

ABSTRACT

AIM: This work studies the development and evaluation of Gymnema sylvestre (GYM) extract loaded sustained release polymeric nanoparticles (PNPs) for enhanced bioavailability and reduced nephrotoxicity. The current therapy is associated with the drawbacks of addiction and repeated administration. METHOD: The sustained release PNPs were developed and evaluated for toxicity. PNPs of GYM were prepared by double emulsion solvent evaporation technique utilising Taguchi model and evaluated for physicochemical properties (particle size, zeta potential, entrapment efficiency), in vitro drug release, compatibility, and stability. Further, the bioavailability and in vivo nephrotoxicity studies in diabetic rat model were also carried out. RESULT: The developed optimised nanoparticles were 205.7 ± 1.20 nm in size, -40.68 mV zeta potential, compatible, and stable in nature with improved entrapment efficiency (67.1 ± 0.2%) and sustained release. Moreover, nanoparticles were found to lower the blood glucose level in single as well as multiple doses. Results of in vivo study indicated that GYM-NPs increased the phosphorylase activity and thus enhanced insulin secretion. Furthermore, the nanoparticles were free from toxicity, which was confirmed by the estimation of kidney biomarker. CONCLUSION: The nanoparticles increased the bioavailability of GYM extract and have a great potential for the treatment of diabetes in reduced dose, and so these can be potential candidates for treating diabetes.


Subject(s)
Gymnema sylvestre , Nanoparticles , Animals , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Gymnema sylvestre/chemistry , Nanoparticles/chemistry , Particle Size , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polymers/chemistry , Rats
12.
J Sci Food Agric ; 102(2): 523-530, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34143501

ABSTRACT

BACKGROUND: Use of slow-release fertilizers derived from biological sources is important in sustainable agricultural development. Struvite-K (KMgPO4 ·6H2 O) is magnesium potassium phosphate mineral that has high potential for use as fertilizer in agriculture. Struvite-K is particularly suitable for slow-release fertilizer systems since struvite-K crystals are sparingly soluble in water. Seeds of pumpkin Cucurbita pepo L. are recovered and consumed as food, but the remaining pulp has no economic value. RESULTS: The present study evaluated the feasibility of struvite-K crystals recovery from pyrolysis products of pumpkin wastes. In the study C. pepo pulp was decomposed at high temperatures and potassium was extracted from the residue and then crystalized from the solution by addition of NaH2 PO4 ·2H2 O and MgCl2 ·6H2 O salts. Struvite-K was characterized by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) spectroscopy and X-ray diffraction (XRD) analysis. CONCLUSIONS: The study revealed pumpkin wastes can be evaluated as source of potassium and 80% of potassium could be recovered as struvite-K crystals, which have a potential use as a slow-release mineral fertilizer for sustainable agriculture operations. © 2021 Society of Chemical Industry.


Subject(s)
Cucurbita/chemistry , Plant Extracts/chemistry , Struvite/chemistry , Waste Products/analysis , Crystallization , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/isolation & purification , Fertilizers/analysis , Plant Extracts/isolation & purification , Seeds/chemistry , Struvite/isolation & purification
13.
Sci Rep ; 11(1): 21386, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725388

ABSTRACT

Xylanase improves poultry nutrition by degrading xylan in the cell walls of feed grains and release the entrapped nutrients. However, the application of xylanase as a feed supplement is restricted to its low stability in the environment and gastrointestinal (GI) tract of poultry. To overcome these obstacles, Zeozyme NPs as a smart pH-responsive nanosystem was designed based on xylanase immobilization on zeolitic nanoporous as the major cornerstone that was modified with L-lysine. The immobilized xylanase was followed by encapsulating with a cross-linked CMC-based polymer. Zeozyme NPs was structurally characterized using TEM, SEM, AFM, DLS, TGA and nitrogen adsorption/desorption isotherms at liquid nitrogen temperature. The stability of Zeozyme NPs was evaluated at different temperatures, pH, and in the presence of proteases. Additionally, the release pattern of xylanase was investigated at a digestion model mimicking the GI tract. Xylanase was released selectively at the duodenum and ileum (pH 6-7.1) and remarkably preserved at pH ≤ 6 including proventriculus, gizzard, and crop (pH 1.6-5). The results confirmed that the zeolite equipped with the CMC matrix could enhance the xylanase thermal and pH stability and preserve its activity in the presence of proteases. Moreover, Zeozyme NPs exhibited a smart pH-dependent release of xylanase in an in vitro simulated GI tract.


Subject(s)
Animal Feed , Delayed-Action Preparations/chemistry , Endo-1,4-beta Xylanases/administration & dosage , Zeolites/chemistry , Animal Feed/analysis , Animals , Dietary Supplements/analysis , Endo-1,4-beta Xylanases/chemistry , Enzymes, Immobilized/administration & dosage , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Poultry
14.
ACS Appl Mater Interfaces ; 13(36): 43820-43829, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34460222

ABSTRACT

Biomimetic membrane materials have been widely explored and developed for drug loading and tissue engineering applications due to their excellent biocompatibility and abundant reaction sites. However, novel cytomembrane mimics have been lacking for a long time. In this study, black phosphorus (BP) was used as the foundation for a new generation of promising cytomembrane mimics due to its multiple similarities to cytomembranes. Inspired by the dual function of endotoxins on membranes, we prepared a BP-based cytomembrane mimic with controllable antibacterial ability via electrostatic interaction between BP and [1-pentyl-1-quaternary ammonium-3-vinyl-imidazole]Br ([PQVI]Br). The release of PQVI could be manipulated in different conditions by adjusting the electrostatic force, thereby achieving controllable antibacterial ability. This report confirms the possibility of using BP as a new material to mimic cytomembranes and provides a new concept of controllable antibacterial action based on endotoxins.


Subject(s)
Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations/chemistry , Imidazoles/pharmacology , Membranes, Artificial , Phosphorus/chemistry , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/chemistry , Drug Liberation , Escherichia coli/drug effects , Imidazoles/chemistry , Microbial Sensitivity Tests , Quaternary Ammonium Compounds/chemistry
15.
Macromol Biosci ; 21(12): e2100229, 2021 12.
Article in English | MEDLINE | ID: mdl-34390189

ABSTRACT

The integration of hypoxia-activated chemotherapy with photodynamic therapy (PDT) has newly become a potent strategy for tumor treatment. Herein, a reactive oxygen species (ROS)-responsive drug carriers (PS@AQ4N/mPEG-b-PSe NPs) are fabricated based on the amphiphilic selenium-containing methoxy poly(ethylene glycol)-polycarbonate (mPEG-b-PSe), the hydrophobic photosensitizer (PS), and hypoxia-activated prodrug Banoxantrone (AQ4N). The obtained nanoparticles are spherical with an average diameter of 100 nm as characterized by transmission electron microscope (TEM) and dynamic laser scattering (DLS) respectively. The encapsulation efficiency of the PS and AQ4N reaches 92.83% and 51.04% at different conditions, respectively, by UV-vis spectrophotometer. It is found that the drug release is accelerated due to the good ROS responsiveness of mPEG-b-PSe and the cumulative release of AQ4N is up to 89% within 30 h. The cell test demonstrates that the nanoparticles dissociate when triggered by the ROS stimuli in the cancer cells, thus the PS is exposed to more oxygen and the ROS generation efficiency is enhanced accordingly. The consumption of oxygen during PDT leads to the increased tumor hypoxia, and subsequently activates AQ4N into cytotoxic counterpart to inhibit tumor growth. Therefore, the synergistic therapeutic efficacy demonstrates this drug delivery has great potential for antitumor therapy.


Subject(s)
Drug Carriers , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Prodrugs , Reactive Oxygen Species/metabolism , Selenium , Cell Line, Tumor , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Photosensitizing Agents/pharmacology , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Selenium/chemistry , Selenium/pharmacokinetics , Selenium/pharmacology
16.
Molecules ; 26(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200922

ABSTRACT

The use of paper as a sustainable packaging material is favored, but it lacks sufficient barrier properties in terms of water repellence and oil resistance. Novel approaches consider active packaging materials or coatings with controlled release providing additional functionality for delivery of specific components to the surface. In this study, the development of a waterborne coating with organic nanoparticles and encapsulated sunflower oils is presented as a system for thermal release of the oil and on-demand tuning of the final barrier properties of the paper substrate. After synthesis of the nanoparticles, it seems that the encapsulation of various grades of sunflower oil (i.e., either poly-unsaturated or mono-unsaturated) strongly affects the encapsulation efficiency and thermal release profiles. The water contact angles are controlled by the oil release and chemical surface composition of the coating upon thermal heating. The oil resistance of the paper improves as a more continuous oil film is formed during thermal release. In particular, the chemical surface composition of the paper coatings is detailed by means of micro-Raman spectroscopy and surface imaging, which provide an analytical quantification tool to evaluate surface coverage, oil delivery, and variations in organic coating moieties.


Subject(s)
Delayed-Action Preparations/chemistry , Sunflower Oil/chemistry , Food Packaging/methods , Nanoparticles/chemistry , Paper , Water/chemistry
17.
AAPS PharmSciTech ; 22(5): 170, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34085150

ABSTRACT

A novel nanofiber insert was prepared with a modified electrospinning method to enhance the ocular residence time of ofloxacin (OFX) and to provide a sustained release pattern by covering hydrophilic polymers, chitosan/polyvinyl alcohol (CS/PVA) nanofibers, with a hydrophobic polymer, Eudragit RL100 in layers, and by glutaraldehyde (GA) cross-linking of CS-PVA nanofibers for the treatment of infectious conjunctivitis. The morphology of the prepared nanofibers was studied using scanning electron microscopy (SEM). The average fiber diameter was found to be 123 ± 23 nm for the single electrospun nanofiber with no cross-linking (OFX-O). The single nanofibers, cross-linked for 10 h with GA (OFX-OG), had an average fiber diameter of 159 ± 30 nm. The amount of OFX released from the nanofibers was measured in vitro and in vivo using UV spectroscopy and microbial assay methods against Staphylococcus aureus, respectively. The antimicrobial efficiency of OFX formulated in cross-linked and non-cross-linked nanofibers was affirmed by observing the inhibition zones of Staphylococcus aureus and Escherichia coli. In vivo studies using the OFX nanofibrous inserts on a rabbit eye confirmed a sustained release pattern for up to 96 h. It was found that the cross-linking of the nanofibers by GA vapor could reduce the burst release of OFX from OFX-loaded CS/PVA in one layer and multi-layered nanofibers. In vivo results showed that the AUC0-96 for the nanofibers was 9-20-folds higher compared to the OFX solution. This study thus demonstrates the potential of the nanofiber technology is being utilized to sustained drug release in ocular drug delivery systems.


Subject(s)
Acrylic Resins/chemistry , Administration, Ophthalmic , Chitosan/chemistry , Nanofibers/chemistry , Ofloxacin/chemistry , Polyvinyl Alcohol/chemistry , Acrylic Resins/administration & dosage , Acrylic Resins/pharmacokinetics , Animals , Anti-Bacterial Agents/chemistry , Chemistry, Pharmaceutical/methods , Chitosan/administration & dosage , Chitosan/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Delivery Systems/methods , Drug Evaluation, Preclinical/methods , Escherichia coli/drug effects , Escherichia coli/physiology , Nanofibers/administration & dosage , Ofloxacin/administration & dosage , Ofloxacin/pharmacokinetics , Polyvinyl Alcohol/administration & dosage , Polyvinyl Alcohol/pharmacokinetics , Rabbits , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
18.
Carbohydr Polym ; 264: 118047, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33910749

ABSTRACT

Unsaturated guluronate oligosaccharide (GOS) was prepared from alginate-derived homopolymeric blocks of guluronic acid by alginate lyase-mediated depolymerization. In this study, a GOS-based water-in-oil-in-water (W1/O/W2) nanoemulsion was prepared, and different influencing factors were investigated. First, linseed oil was selected as the optimal carrier oil. Then, other optimal conditions of the GOS nanoemulsion were determined based on response surface methodology (RSM). Under the optimal conditions, the obtained GOS nanoemulsion showed a spherical structure with an average particle size of 273.93 ±â€¯8.91 nm, and its centrifugal stability was 91.37 ±â€¯0.45 %. Moreover, the GOS nanoemulsion could achieve the aim of sustained release in vitro and be stably stored at 4°C for at least 5 days. This work prepared a novel GOS-based W1/O/W2 nanoemulsion that may effectively address the storage difficulties of unsaturated GOS and provides a valuable contribution to the application of GOS in the food and medicine fields.


Subject(s)
Hexuronic Acids/chemistry , Nanostructures/chemistry , Oligosaccharides/chemistry , Alginates/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Drug Compounding/methods , Drug Stability , Emulsions/chemistry , Humans , Linseed Oil/chemistry , Oxidation-Reduction , Particle Size , Polysaccharide-Lyases/chemistry
19.
Sci Rep ; 11(1): 5528, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750868

ABSTRACT

Magnetic nano/micro-particles based on clinoptilolite-type of natural zeolite (CZ) were fabricated and were expected to act as carriers for controlled drug delivery/release, imaging and local heating in biological systems. Adsorption of rhodamine B, sulfonated aluminum phthalocyanine and hypericin by magnetic CZ nano/micro-particles was investigated, as was the release of hypericin. Using an alternating magnetic field, local temperature increase by 10 °C in animal tissue with injected magnetic CZ particles was demonstrated. In addition, the CZ-based particles have been found to exhibit an anti-amyloidogenic effect on the amyloid aggregation of insulin and lysozyme in a dose- and temperature-dependent manner. Therefore, the mesoporous structure of CZ particles provided a unique platform for preparation of multifunctional magnetic and optical probes suitable for optical imaging, MRI, thermo- and phototherapy and as effective containers for controlled drug delivery. We concluded that magnetic CZ nano/micro-particles could be evaluated for further application in cancer hyperthermia therapy and as anti-amyloidogenic agents.


Subject(s)
Hyperthermia, Induced , Nanocomposites/chemistry , Zeolites/chemistry , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/chemistry
20.
Int J Biol Macromol ; 176: 459-467, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33607143

ABSTRACT

This study was carried out to project a safe nano-drug carrier composed of chitosan and cyanocobalamin (CNCbl) to improve oral delivery of ciprofloxacin hydrochloride (CIP). CIP is classified in class IV of the biopharmaceutical classification system with low solubility and permeabilityA, so it has some problems if given orally. Novel conjugate of low molecular weight chitosan, as a natural biopolymer, and CNCbl was synthesized, and then drug loading and in-vitro drug release were assessed. The loading of CIP was optimized by the Design-Expert software and the central composite design method, and that the optimal drug loading efficiency (57%) was obtained via analysis of variance (ANOVA). In-vitro drug release studies showed controlled release patterns in two various conditions, namely phosphate buffer saline (pH = 7.4) and 0.1 N HCl. Functionalized nano-drug-loaded carrier showed cytotoxicity as much as that of free drug, particle size less than 100 nm as well as positive zeta potential. Due to the beneficial properties of the chitosan-based drug carrier and the suitable features of the CIP-loaded carrier, this chitosan-based nano-drug delivery system can be regarded as an ideal candidate for oral delivery of the CIP as a drug model.


Subject(s)
Chitosan , Ciprofloxacin , Nanoparticles/chemistry , Vitamin B 12 , Chitosan/chemistry , Chitosan/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacokinetics , Ciprofloxacin/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Vitamin B 12/chemistry , Vitamin B 12/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL