Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Gut Microbes ; 16(1): 2315632, 2024.
Article in English | MEDLINE | ID: mdl-38375831

ABSTRACT

Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.


Subject(s)
Gastrointestinal Microbiome , Resistant Starch , Mice , Male , Female , Animals , Gastrointestinal Microbiome/physiology , Bile Acids and Salts , Dietary Supplements , Bacteria/genetics , Deoxycholic Acid
2.
Gut Microbes ; 16(1): 2323236, 2024.
Article in English | MEDLINE | ID: mdl-38416424

ABSTRACT

Deoxycholic acid (DCA) serves essential functions in both physiological and pathological liver processes; nevertheless, the relationship among DCA, gut microbiota, and metabolism in chronic liver injury remain insufficiently understood. The primary objective of this study is to elucidate the potential of DCA in ameliorating chronic liver injury and evaluate its regulatory effect on gut microbiota and metabolism via a comprehensive multi-omics approach. Our study found that DCA supplementation caused significant changes in the composition of gut microbiota, which were essential for its antagonistic effect against CCl4-induced chronic liver injury. When gut microbiota was depleted with antibiotics, the observed protective efficacy of DCA against chronic liver injury became noticeably attenuated. Mechanistically, we discovered that DCA regulates the metabolism of bile acids (BAs), including 3-epi DCA, Apo-CA, and its isomers 12-KLCA and 7-KLCA, IHDCA, and DCA, by promoting the growth of A.muciniphila in gut microbiota. This might lead to the inhibition of the IL-17 and TNF inflammatory signaling pathway, thereby effectively countering CCl4-induced chronic liver injury. This study illustrates that the enrichment of A. muciniphila in the gut microbiota, mediated by DCA, enhances the production of secondary bile acids, thereby mitigating chronic liver injury induced by CCl4. The underlying mechanism may involve the inhibition of hepatic IL-17 and TNF signaling pathways. These findings propose a promising approach to alleviate chronic liver injury by modulating both the gut microbiota and bile acids metabolism.


Subject(s)
Carbon Tetrachloride , Gastrointestinal Microbiome , Carbon Tetrachloride/toxicity , Interleukin-17 , Multiomics , Liver , Bile Acids and Salts , Deoxycholic Acid
3.
J Am Acad Dermatol ; 90(4): 767-774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38086517

ABSTRACT

BACKGROUND: People with Neurofibromatosis Type 1 (NF1) suffer disfigurement and pain when hundreds to thousands of cutaneous neurofibromas (cNFs) appear and grow throughout life. Surgical removal of cNFs under anesthesia is the only standard therapy, leaving surgical scars. OBJECTIVE: Effective, minimally-invasive, safe, rapid, tolerable treatment(s) of small cNFs that may prevent tumor progression. METHODS: Safety, tolerability, and efficacy of 4 different treatments were compared in 309, 2-4 mm cNFs across 19 adults with Fitzpatrick skin types (FST) I-IV: radiofrequency (RF) needle coagulation, 755 nm alexandrite laser with suction, 980 nm diode laser, and intratumoral injection of 10 mg/mL deoxycholate. Regional pain, clinical responses, tumor height and volume (by 3D photography) were assessed before, 3 and 6 months post-treatment. Biopsies were obtained electively at 3 months. RESULTS: There was no scarring or adverse events > grade 2. Each modality significantly (P < .05) reduced or cleared cNFs, with large variation between tumors and participants. Alexandrite laser and deoxycholate were fast and least painful; 980 nm laser was most painful. Growth of cNFs was not stimulated by treatment(s) based on height and volume values at 3 and 6 months compared to baseline. LIMITATIONS: Intervention was a single treatment session; dosimetry has not been optimized. CONCLUSIONS: Small cNFs can be rapidly and safely treated without surgery.


Subject(s)
Neurofibroma , Neurofibromatosis 1 , Neuroma , Skin Neoplasms , Adult , Humans , Prospective Studies , Neurofibroma/surgery , Treatment Outcome , Skin Neoplasms/surgery , Neurofibromatosis 1/complications , Neurofibromatosis 1/therapy , Cicatrix , Pain , Deoxycholic Acid
4.
J Ethnopharmacol ; 321: 117568, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38092317

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liansu capsule could alleviate dyspeptic symptoms; however, the mechanisms underlying its role in treating functional dyspepsia (FD) remain unclear. AIM OF THE STUDY: To elucidate the mechanism underlying the efficacy of Liansu capsule in alleviating FD symptoms. MATERIALS AND METHODS: Thirty-six male mice were randomly divided into the following six groups: control, model, low-strength Liansu, moderate-strength Liansu, high-strength Liansu, and domperidone groups. Small intestine propulsion rate, gastric residual rate and histopathological analysis were performed to evaluate efficacy of Liansu capsule. Levels of interleukin-1ß, interleukin-6, tumor necrosis factor α, phosphorylation of p65, ghrelin and gastrin were verified by real-time quantitative polymerase chain reaction and immunofluorescence assays. Targeted metabolomic analyses, western blotting and immunofluorescence assays were used to explore the mechanism of Liansu capsule in ameliorating FD. RESULTS: The Liansu capsule significantly ameliorated the symptoms of FD, and markedly increased the levels of ghrelin and gastrin. Moreover, Liansu capsule significantly downregulated the levels of the proinflammatory cytokine interleukin-1ß, interleukin-6, tumor necrosis factor α, and inhibited the phosphorylation of p65. Targeted metabolomic analyses showed that Liansu capsule significantly reduced the levels of deoxycholic acid and hyodeoxycholic acid, which were significantly elevated in the model group. Furthermore, these results showed that deoxycholic acid and hyodeoxycholic acid markedly promoted the levels of Takeda G-protein-coupled receptor 5 (TGR5), phosphorylated signal transducer and activator of transcription 3 (STAT3), and Kruppel-like factor 5 (KLF5) in vitro. whereas, Liansu capsule significantly reduced the levels of TGR5, phosphorylated STAT3, and KLF5. CONCLUSION: Our findings indicated that Liansu capsule improved FD by regulating the deoxycholic acid/hyodeoxycholic acid-TGR5-STAT3-KLF5 axis. The findings reveal a novel mechanism underlying the role of Liansu capsule, which may be a promising therapeutic strategy for FD.


Subject(s)
Dyspepsia , Male , Mice , Animals , Dyspepsia/drug therapy , Ghrelin/therapeutic use , Tumor Necrosis Factor-alpha , Gastrins , Interleukin-6 , Interleukin-1beta , Deoxycholic Acid
5.
Drug Deliv Transl Res ; 13(12): 3059-3076, 2023 12.
Article in English | MEDLINE | ID: mdl-37273147

ABSTRACT

Zolmitriptan (ZT) is a potent second generation triptan, commonly administered to alleviate migraine attacks. ZT suffers various limitations; massive hepatic first pass metabolism, P-gp efflux transporters susceptibility, and limited (≈40%) oral bioavailability. Transdermal route of administration could be explored to enhance its bioavailability. A 23.31 full factorial design was constructed to developed twenty-four ZT loaded terpesomes via thin film hydration technique. The influence of drug: phosphatidylcholine ratio, terpene type, terpene concentration and sodium deoxycholate concentration on the characterization of the developed ZT-loaded terpesomes was assessed. Particle size (PS), zeta potential (ZP), ZT entrapment efficiency (EE%), drug loading (DL%) and drug released percentages after 6 h (Q6h) were the selected dependent variables. Further morphological, crystallinity, and in-vivo histopathological studies were conducted for the optimum terpesomes (T6). 99mTc-ZT and 99mTc-ZT-T6 gel were radio-formulated for in-vivo biodistribution studies in mice following transdermal application of 99mTc-ZT-T6 gel, relative to 99mTc-ZT oral solution. T6 terpesomes [comprising ZT and phosphatidylcholine (1:15), cineole (1% w/v) and sodium deoxycholate (0.1% w/v)] were optimum with respect to spherical PS (290.2 nm), ZP (-48.9 mV), EE% (83%), DL% (3.9%) and Q6h (92.2%) with desirability value of 0.85. The safety of the developed T6 terpesomes was verified by the in-vivo histopathological studies. 99mTc-ZT-T6 gel showed maximum brain concentration (5 ± 0.1%ID/ g) with highest brain to blood ratio of 1.92 ± 0.1 at 4 h post transdermal application. Significant improvement of ZT brain relative bioavailability (529%) and high brain targeting efficiency (315%) were revealed with 99mTc-ZT-T6 gel, which confirmed successful ZT delivery to the brain. Terpesomes could be safe, successful systems capable of improving ZT bioavailability with high brain targeting efficiency.


Subject(s)
Drug Delivery Systems , Tryptamines , Mice , Animals , Drug Delivery Systems/methods , Tissue Distribution , Administration, Cutaneous , Brain , Lecithins , Deoxycholic Acid , Terpenes , Particle Size , Drug Carriers
6.
Aesthet Surg J ; 43(10): NP797-NP806, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37348516

ABSTRACT

BACKGROUND: Tapencarium (RZL-012) (5-(3.6-dibromo-9H-carbazol-9-yl)-N, N, N-trimethylpentan-1-aminium chloride) is a novel injectable synthetic molecule with cytolytic properties, capable of reducing subcutaneous fat volume. OBJECTIVES: The goal of this 3-armed, randomized, double-blind, placebo-controlled phase 2b study was to determine the safety and efficacy of low- and high-dose RZL-012 vs placebo on submental fat (SMF) reduction. METHODS: Patients (n = 151, age 18-65 years) with excess SMF received a single treatment session of RZL-012 or placebo in the submental area, after which they were monitored for 84 days. SMF was assessed at baseline and after dosing with newly developed scales, namely the Clinician Chin Assessment Tool (C-CAT) and Subject Chin Assessment Tool (S-CAT). SMF was also assessed by magnetic resonance imaging (MRI) at screening and on Day 84 after treatment. RESULTS: The proportion of patients who had a 1-grade or 2-grade improvement in C-CAT and/or S-CAT on Day 84 vs baseline was significantly higher in the high-dose RZL-012 group vs the placebo group (P < .002). The relative percentage reduction in MRI-measured SMF volume (Day 84 vs screening) was significantly greater in the high-dose RZL-012 group vs the low-dose RZL-012 or the placebo group (P < .0001). Local injection site reactions were the most common adverse events (AEs). CONCLUSIONS: A single administration of RZL-012 into SMF resulted in significant improvement in submental appearance as assessed by clinicians, patients, and MRI. From a safety perspective, there were no serious AEs and no clinically significant changes in vital signs or laboratory tests over the course of the study.


Subject(s)
Cosmetic Techniques , Deoxycholic Acid , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Injections, Subcutaneous , Cosmetic Techniques/adverse effects , Subcutaneous Fat/diagnostic imaging , Double-Blind Method , Treatment Outcome
7.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36555220

ABSTRACT

High-fat exposure leads to impaired intestinal barrier function by disrupting the function of intestinal stem cells (ISCs); however, the exact mechanism of this phenomenon is still not known. We hypothesize that high concentrations of deoxycholic acid (DCA) in response to a high-fat diet (HFD) affect aryl hydrocarbon receptor (AHR) signalling in ISCs and the intestinal barrier. For this purpose, C57BL/6J mice feeding on a low-fat diet (LFD), an HFD, an HFD with the bile acid binder cholestyramine, and a LFD with the DCA were studied. We found that high-fat feeding induced an increase in faecal DCA concentrations. An HFD or DCA diet disrupted the differentiation function of ISCs by downregulating AHR signalling, which resulted in decreased goblet cells (GCs) and MUC2, and these changes were reversed by cholestyramine. In vitro experiments showed that DCA downregulated the differentiation function of ISCs, which was reversed by the AHR agonist 6-formylindolo [3,2-b]carbazole (FICZ). Mechanistically, DCA caused a reduction in indoleamine 2,3-dioxygenase 1 (IDO1) in Paneth cells, resulting in paracrine deficiency of the AHR ligand kynurenine in crypts. We demonstrated for the first time that DCA disrupts intestinal mucosal barrier function by interfering with AHR signalling in ISCs. Supplementation with AHR ligands may be a new therapeutic target for HFD-related impaired intestinal barrier function.


Subject(s)
Cholestyramine Resin , Receptors, Aryl Hydrocarbon , Mice , Animals , Receptors, Aryl Hydrocarbon/metabolism , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Deoxycholic Acid/pharmacology , Stem Cells/metabolism
8.
Gut Microbes ; 14(1): 2120744, 2022.
Article in English | MEDLINE | ID: mdl-36067404

ABSTRACT

Intestinal metaplasia (IM) is the inevitable precancerous stage to develop intestinal-type gastric cancer (GC). Deoxycholic acid (DCA) is the main bile acid (BA) component of duodenogastric reflux and has shown an increased concentration during the transition from chronic gastritis to IM associated with continued STAT3 activation. However, the mechanisms underlying how DCA facilitates IM in the gastric epithelium need exploration. We evaluated IM and bile reflux in corpus tissues from 161 subjects undergoing GC screening. Cell survival and proliferation, proinflammatory cytokine expression and TGR5/STAT3/KLF5 axis activity were measured in normal human gastric cells, cancer cells, and organoid lines derived from C57BL/6, FVB/N and insulin-gastrin (INS-GAS) mice treated with DCA. The effects of DCA on IM development were determined in INS-GAS mice with long-term DCA supplementation, after which the gastric bacterial and BA metabolic profiles were measured by 16S rRNA gene sequencing and LC-MS. We revealed a BA-triggered TGR5/STAT3/KLF5 pathway in human gastric IM tissues. In gastric epithelial cells, DCA promoted proliferation and apoptotic resistance, upregulated proinflammatory cytokines and IM markers, and facilitated STAT3 phosphorylation, nuclear accumulation and DNA binding to the KLF5 promoter. DCA triggered STAT3 signaling and the downstream IM marker KLF5 in mouse gastric organoids in vitro and in vivo. In INS-GAS mice, DCA promoted the accumulation of serum total BAs and accelerated the stepwise development of gastric IM and dysplasia. DCA induced gastric environmental alterations involving abnormal BA metabolism and microbial dysbiosis, in which the Gemmobacter and Lactobacillus genera were specifically enriched. Lactobacillus genus enrichment was positively correlated with increased levels of GCA, CA, T-α-MCA, TCA and ß-MCA in DCA-administrated INS-GAS mice. DCA promotes nuclear STAT3 phosphorylation, which mediates KLF5 upregulation associated with gastric inflammation and IM development. DCA disturbs the gastric microbiome and BA metabolism homeostasis during IM induction.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Precancerous Conditions , Animals , Bile Acids and Salts , Deoxycholic Acid/toxicity , Humans , Metaplasia/chemically induced , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
9.
World J Gastroenterol ; 28(29): 3825-3837, 2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36157544

ABSTRACT

BACKGROUND: Recent studies have demonstrated that dysfunction of the intestinal barrier is a significant contributing factor to the development of severe acute pancreatitis (SAP). A stable intestinal mucosa barrier functions as a major anatomic and functional barrier, owing to the balance between intestinal epithelial cell (IEC) proliferation and apoptosis. There is some evidence that calcium overload may trigger IEC apoptosis and that calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) signaling might play an important role in calcium-mediated apoptosis. AIM: To investigate the potential mechanisms underlying the therapeutic effect of Qingyi decoction (QYD) in SAP. METHODS: A rat model of SAP was created via retrograde infusion of sodium deoxycholate. Serum levels of amylase, tumor necrosis factor (TNF-α), interleukin (IL)-6, D-lactic acid, and diamine oxidase (DAO); histological changes; and apoptosis of IECs were examined in rats with or without QYD treatment. The expression of the two subunits of CaN and NFAT in intestinal tissue was measured via quantitative real-time polymerase chain reaction and western blotting. For in vitro studies, Caco-2 cells were treated with lipopolysaccharide (LPS) and QYD serum, and then cell viability and intracellular calcium levels were detected. RESULTS: Retrograde infusion of sodium deoxycholate increased the severity of pancreatic and intestinal pathology and the levels of serum amylase, TNF-α, and IL-6. Both the indicators of intestinal mucosa damage (D-lactic acid and DAO) and the levels of IEC apoptosis were elevated in the SAP group. QYD treatment reduced the serum levels of amylase, TNF-α, IL-6, D-lactic acid, and DAO and attenuated the histological findings. IEC apoptosis associated with SAP was ameliorated under QYD treatment. In addition, the protein expression levels of the two subunits of CaN were remarkably elevated in the SAP group, and the NFATc3 gene was significantly upregulated at both the transcript and protein levels in the SAP group compared with the control group. QYD significantly restrained CaN and NFATc3 gene expression in the intestine, which was upregulated in the SAP group. Furthermore, QYD serum significantly decreased the LPS-induced elevation in intracellular free Ca2+ levels and inhibited cell death. CONCLUSION: QYD can exert protective effects against intestinal mucosa damage caused by SAP and the protective effects are mediated, at least partially, by restraining IEC apoptosis via the CaN/NFATc3 pathway.


Subject(s)
Amine Oxidase (Copper-Containing) , Pancreatitis , Acute Disease , Amine Oxidase (Copper-Containing)/metabolism , Amine Oxidase (Copper-Containing)/pharmacology , Amylases , Animals , Caco-2 Cells , Calcineurin/adverse effects , Calcineurin/metabolism , Calcium/metabolism , Deoxycholic Acid/metabolism , Deoxycholic Acid/pharmacology , Deoxycholic Acid/therapeutic use , Drugs, Chinese Herbal , Epithelial Cells/pathology , Humans , Interleukin-6/metabolism , Intestinal Mucosa/pathology , Lactic Acid/metabolism , Lipopolysaccharides/pharmacology , Pancreatitis/pathology , Rats , Rats, Sprague-Dawley , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Chem Biol Interact ; 365: 110063, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35872051

ABSTRACT

Astragali Radix (HQ), a common traditional Chinese medicine (TCM), is widely used to treat chronic atrophic gastritis (CAG). However, its mechanism in treating CAG is still not clear. Accumulating evidence highlights the link between gut microbiota and CAG. We hypothesized that the gut microbiota might be involved in the effect of HQ. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-Q-TOF/MS) based metabolomics and 16S rRNA gene sequencing techniques of the cecal contents were applied to study its mechanisms. As a result, nine metabolites and fifteen gut microbiotas changed significantly in cecal contents samples between control group and model group. Among them, two metabolites (7-keto-3A ·12-α-hydroxyalkanoic acid and deoxycholic acid) and two gut microbiota genera (Acetobacter and Escherichia), had the most obvious callback effect after the administration of HQ. Sixty-seven correlated pairs exhibited the significant link between the involved metabolites and gut microbiotas through the correlation analysis, where two strong correlation pairs: Tetrahydrohydroxone âˆ¼ Bacteroides (r = 0.895) and Deoxycholic acid âˆ¼ Acetobacter (r = -0.843) were regulated by HQ. The results showed that HQ had the potential protection from metabolic perturbation involved into gut microbiotas induced by CAG. Two gut microbiotas, Acetobacter and Escherichia, and two metabolites, 7-keto-3A ·12-α-hydroxyalkanoic acid and deoxycholic acid were the potential targets of HQ.


Subject(s)
Drugs, Chinese Herbal , Gastritis, Atrophic , Gastrointestinal Microbiome , Animals , Deoxycholic Acid , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Gastritis, Atrophic/drug therapy , Gastritis, Atrophic/genetics , Genes, rRNA , Metabolomics/methods , RNA, Ribosomal, 16S/genetics , Rats
11.
Phytomedicine ; 101: 154110, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35487039

ABSTRACT

BACKGROUND: Renal fibrosis is the final common pathological feature of various chronic kidney diseases (CKD). Despite recent advances, development of new treatments strategy is needed. Emodin (EMO), an important ingredient of Chinese medicine, rhubarb (Polygonaceae Rheum palmatum l.), has been reported to inhibit the development of renal fibrosis effectively. However, the poor oral bioavailability of EMO and the insufficient monotherapy therapy compromise its efficacy. PURPOSE: In order to enhance renal fibrosis therapy of emodin, an innovative combination therapy based on deoxycholic acid-chitosan coated liposomes (DCS-Lips) and in situ colonic gel (IGE) was developed. METHODS: For one, the DCS-Lips were prepared via electrostatic interaction by mixing anionic conventional Lips with cationic DCS, deoxycholic acid conjugated on the backbone of chitosan. The cellular uptake of FITC-labeled DCS-Lips in Caco-2 cell monolayer was evaluated by CLSM and flow cytometry, respectively. Permeability study was carried out using Caco-2 cell monolayer. For another, EMO-loaded in situ colonic gel (EMO-IGE) was prepared by mixing EMO nanosuspensions and plain in situ gel, which was obtained by the cold method. The EMO-IGE was assessed for morphology, gelation temperature, viscosity and in vitro drug release. Finally, the therapeutic efficacy of the combination strategy, oral DCS-Lips formulations and in situ colonic gel, was evaluated in unilateral ureteral obstruction (UUO) rat model. Additionally, 16S rDNA sequencing was performed on rats faces to investigate whether the combination strategy improves the microbial dysbiosis in UUO rats. RESULTS: The prepared DCS-Lips produced small, uniformly sized nanoparticles, and significantly enhanced the cellular uptake and in vitro permeability of EMO compared to non-coated liposomes. Moreover, the EMO-IGE was characterized by short gelation time, optimal gelling temperature, and excellent viscosity. In UUO model, the combination of DCS-Lips (gavage) and IGE (enema) attenuated renal fibrosis effectively. The results of 16S rDNA sequencing illustrated that IGE could restore the gut microbial dysbiosis of UUO rats. CONCLUSION: Overall, the combination of DCS-Lips and EMO-IGE alleviated renal fibrosis effectively, resulting from the improved oral bioavailability of EMO by DCS-Lips and the restoration of gut microbiota by EMO-IGE, thus, presenting an innovative and promising potential for renal fibrosis treatment.


Subject(s)
Chitosan , Emodin , Kidney Diseases , Rheum , Ureteral Obstruction , Animals , Caco-2 Cells , DNA, Ribosomal , Deoxycholic Acid , Dysbiosis/drug therapy , Emodin/pharmacology , Female , Fibrosis , Humans , Immunoglobulin E , Kidney Diseases/drug therapy , Liposomes , Male , Rats , Ureteral Obstruction/drug therapy
12.
Eur J Pharm Biopharm ; 170: 70-76, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34879228

ABSTRACT

The decades-long effort to deliver peptide drugs orally has resulted in several clinically successful formulations. These formulations are enabled by the inclusion of permeation enhancers that facilitate the intestinal absorption of peptides. Thus far, these oral peptide drugs have been limited to peptides less than 5 kDa, and it is unclear whether there is an upper bound of protein size that can be delivered with permeation enhancers. In this work, we examined two permeation enhancers, 1-phenylpiperazine (PPZ) and sodium deoxycholate (SDC), for their ability to increase intestinal transport of a model macromolecule (FITC-Dextran) as a function of its size. Specifically, the permeability of dextrans with molecular weights of 4, 10, 40, and 70 kDa was assessed in an in vitro and in vivo model of the intestine. In Caco-2 monolayers, both PPZ and SDC significantly increased the permeability of only FD4 and FD10. However, in mice, PPZ and SDC behaved differently. While SDC improved the absorption of all tested sizes of dextrans, PPZ was effective only for FD4 and FD10. This work is the first report of PPZ as a permeation enhancer in vivo, and it highlights the ability of permeation enhancers to improve the absorption of macromolecules across a broad range of sizes relevant for protein drugs.


Subject(s)
Adjuvants, Pharmaceutic/pharmacology , Deoxycholic Acid/pharmacology , Intestinal Absorption/drug effects , Macromolecular Substances/administration & dosage , Macromolecular Substances/metabolism , Piperazines/pharmacology , Administration, Oral , Animals , Biological Transport/drug effects , Caco-2 Cells , Humans , Mice , Permeability
13.
Zhongguo Zhong Yao Za Zhi ; 46(19): 4898-4906, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34738383

ABSTRACT

Bile of animal(mainly chicken, pig, snake, cow, and bear) has long been used as medicine. As the major active components of bile, bile acids mainly include cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and taurochenodeoxycholic acid. They interact with intestinal microorganisms in enterohepatic circulation, thereby playing an important part in nutrient absorption and allocation, metabolism regulation, and dynamic balance. Bile acids have pharmacological effects such as protecting liver, kidney, heart, brain, and nerves, promoting bile secretion, dissolving gallstones, anti-cancer, relieving cough and dyspnea, dispelling phlegm, treating eye diseases, and regulating intestinal function and blood glucose, which are widely used in clinical practice. This study summarized and analyzed the research on the chemical constituents and pharmacological effects of bile acids from medicinal animals, in a bid to provide scientific basis and reference for the further development and utilization of bile acids.


Subject(s)
Bile Acids and Salts , Deoxycholic Acid , Animals , Cattle , Chenodeoxycholic Acid , Cholic Acids , Female , Swine , Ursodeoxycholic Acid
14.
Lancet Infect Dis ; 21(9): e259-e271, 2021 09.
Article in English | MEDLINE | ID: mdl-33872594

ABSTRACT

Cryptococcal meningoencephalitis was first described over a century ago. This fungal infection is preventable and treatable yet continues to be associated with excessive morbidity and mortality. The largest burden of disease resides in people living with HIV in low-income and middle-income countries. In this group, mortality with the best antifungal induction regimen (7 days of amphotericin B deoxycholate [1·0 mg/kg per day] and flucytosine [100·0 mg/kg per day]) in a clinical trial setting was 24% at 10 weeks. The world is now at an inflection point in terms of recognition, research, and action to address the burden of morbidity and mortality from cryptococcal meningoencephalitis. However, the scope of interventional programmes needs to increase, with particular attention to implementation science that is specific to individual countries. This Review summarises causes of excessive mortality, interventions with proven survival benefit, and gaps in knowledge and practice that contribute to the ongoing high death toll from cryptococcal meningoencephalitis. TRANSLATIONS: For the Vietnamese and Chichewa translations of the abstract see Supplementary Materials section.


Subject(s)
Antifungal Agents/therapeutic use , Cryptococcosis , Meningoencephalitis/drug therapy , Meningoencephalitis/mortality , Amphotericin B , Databases, Factual , Deoxycholic Acid , Drug Combinations , Drug Therapy, Combination , Fluconazole , Flucytosine/pharmacology , Flucytosine/therapeutic use , Humans , Meningoencephalitis/microbiology , Meningoencephalitis/pathology
15.
J Agric Food Chem ; 69(13): 3982-3991, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33755449

ABSTRACT

As important signal metabolites within enterohepatic circulation, bile acids (BAs) play a pivotal role during the occurrence and development of diet-induced nonalcoholic fatty liver disease (NAFLD). Here, we evaluated the functional effects of BAs and gut microbiota contributing to sucralose consumption-induced NAFLD of mice. The results showed that sucralose consumption significantly upregulated the abundance of intestinal genera Bacteroides and Clostridium, which produced deoxycholic acid (DCA) accumulating in multiple biological matrixes including feces, serum, and liver of mice. Subsequently, elevated hepatic DCA, one of the endogenous antagonists of the farnesol X receptor (Fxr), inhibited hepatic gene expression including a small heterodimer partner (Shp) and Fxr leading to sucralose-induced NAFLD in mice. Dietary supplements with fructo-oligosaccharide or metformin markedly restored genera Bacteroides and Clostridium abundance and the DCA level of sucralose-consuming mice, which eventually ameliorated NAFLD. These findings highlighted the effects of gut microbiota and its metabolite DCA on sucralose-induced NAFLD of mice.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Bile Acids and Salts , Deoxycholic Acid , Liver , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Sucrose/analogs & derivatives
16.
Carbohydr Polym ; 258: 117706, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33593576

ABSTRACT

Combination treatment through the co-delivery of drugs and genes by nanoformulations may achieve a synergistic effect. In our previous study, poly(amidoamine) dendronized chitosan derivative (PAMAM-Cs) showed good gene transfection efficiency and low cytotoxicity. Here, we incorporated hydrophobic deoxycholic acid (DCA) onto the chitosan backbone of PAMAM-Cs to obtain an amphiphilic derivative-PAMAM-Cs-DCA, which could self-assemble into cationic nanoparticles (NPs). The resulting NPs with diameters of 140-220 nm can encapsulate the hydrophobic anticancer drug doxorubicin (DOX) in the core while bind pDNA via the positively charged PAMAM shell. PAMAM-Cs-DCA NPs could completely complex with pDNA at a ratio of nitrogen to phosphorous (N/P) low as 1 and the complexes achieved a transfection efficiency up to 74 % at N/P 20. Moreover, low-dose co-delivered DOX could enhance the transgene expression, showing a synergistic effect. These results suggest that PAMAM-Cs-DCA NPs hold great promise to co-deliver chemotherapeutics and nucleic acid drugs.


Subject(s)
Chitosan/chemistry , Deoxycholic Acid/chemistry , Doxorubicin/administration & dosage , Genetic Vectors , Polyamines/chemistry , Antineoplastic Agents/pharmacology , Cations , Cell Survival/drug effects , Dendrimers/chemistry , Dendrimers/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Gene Transfer Techniques , Genetic Therapy/methods , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques , Nanoparticles/chemistry , Nitrogen/chemistry , Nucleic Acids/chemistry , Particle Size , Phosphorus/chemistry
17.
Molecules ; 27(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35011303

ABSTRACT

A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π-π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.


Subject(s)
Deoxycholic Acid/analogs & derivatives , Deoxycholic Acid/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/chemistry , Binding Sites , Cell Line , Chemical Phenomena , Chemistry Techniques, Synthetic , Deoxycholic Acid/pharmacology , Enzyme Activation/drug effects , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Protein Binding , Recombinant Proteins/chemistry , Structure-Activity Relationship
18.
Angew Chem Int Ed Engl ; 60(2): 961-969, 2021 01 11.
Article in English | MEDLINE | ID: mdl-32979004

ABSTRACT

Immune potentiators, termed adjuvants, trigger early innate immune responses to ensure the generation of robust and long-lasting adaptive immune responses of vaccines. Presented here is a study that takes advantage of a self-assembling small-molecule library for the development of a novel vaccine adjuvant. Cell-based screening of the library and subsequent structural optimization led to the discovery of a simple, chemically tractable deoxycholate derivative (molecule 6, also named cholicamide) whose well-defined nanoassembly potently elicits innate immune responses in macrophages and dendritic cells. Functional and mechanistic analyses indicate that the virus-like assembly enters the cells and stimulates the innate immune response through Toll-like receptor 7 (TLR7), an endosomal TLR that detects single-stranded viral RNA. As an influenza vaccine adjuvant in mice, molecule 6 was as potent as Alum, a clinically used adjuvant. The studies described here pave the way for a new approach to discovering and designing self-assembling small-molecule adjuvants against pathogens, including emerging viruses.


Subject(s)
Adjuvants, Immunologic/chemistry , Amides/chemistry , Amides/immunology , Amides/pharmacology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Deoxycholic Acid/chemistry , Drug Evaluation, Preclinical , Fluorescent Dyes/chemistry , Immunity, Innate , Immunoglobulin G/blood , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Interleukin-6/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanostructures/chemistry , RAW 264.7 Cells , Structure-Activity Relationship , Toll-Like Receptor 7/metabolism
19.
Dig Dis Sci ; 66(2): 568-576, 2021 02.
Article in English | MEDLINE | ID: mdl-32198567

ABSTRACT

BACKGROUND: A Western diet is a risk factor for the development of inflammatory bowel disease (IBD). High levels of fecal deoxycholic acid (DCA) in response to a Western diet contribute to bowel inflammatory injury. However, the mechanism of DCA in the natural course of IBD development remains unanswered. AIMS: The aim of this study is to investigate the effect of DCA on the induction of gut dysbiosis and its roles in the development of intestinal inflammation. METHODS: Wild-type C57BL/6J mice were fed an AIN-93G diet, either supplemented with or without 0.2% DCA, and killed at 24 weeks. Distal ileum and colon tissues were assessed by histopathological analysis. Hepatic and ileal gene expression was examined by qPCR, and the gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. HPLC-MS was used for fecal bile acid quantification. RESULTS: Mice fed the DCA-supplemented diet developed focal areas of ileal and colonic inflammation, accompanied by alteration of the composition of the intestinal microbiota and accumulation of fecal bile acids. DCA-induced dysbiosis decreased the deconjugation of bile acids, and this regulation was associated with the repressed expression of target genes in the enterohepatic farnesoid X receptor-fibroblast growth factor (FXR-FGF15) axis, leading to upregulation of hepatic de novo bile acid synthesis. CONCLUSIONS: These results suggest that DCA-induced gut dysbiosis may act as a key etiologic factor in intestinal inflammation, associated with bile acid metabolic disturbance and downregulation of the FXR-FGF15 axis.


Subject(s)
Bile Acids and Salts/metabolism , Deoxycholic Acid/toxicity , Diet, Western/adverse effects , Dysbiosis/metabolism , Enterohepatic Circulation/physiology , Inflammatory Bowel Diseases/metabolism , Animals , Deoxycholic Acid/administration & dosage , Dysbiosis/chemically induced , Dysbiosis/pathology , Enterohepatic Circulation/drug effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/pathology , Mice , Mice, Inbred C57BL
20.
Gut Microbes ; 12(1): 1-20, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33006494

ABSTRACT

High-fat diet (HFD) leads to systemic low-grade inflammation, which has been involved in the pathogenesis of diverse metabolic and inflammatory diseases. Colon is thought to be the first organ suffering from inflammation under HFD conditions due to the pro-inflammatory macrophages infiltration, however, the mechanisms concerning the induction of pro-inflammatory phenotype of colonic macrophages remains unclear. In this study, we show that HFD increased the percentage of gram-positive bacteria, especially genus Clostridium, and resulted in the significant increment of fecal deoxycholic acid (DCA), a gut microbial metabolite produced by bacteria mainly restricted to genus Clostridium. Notably, reducing gram-positive bacteria with vancomycin diminished fecal DCA and profoundly alleviated pro-inflammatory macrophage infiltration in colon, whereas DCA-supplemented feedings to vancomycin-treated mice provoked obvious pro-inflammatory macrophage infiltration and colonic inflammation. Meanwhile, intra-peritoneal administration of DCA also elicited considerable recruitment of macrophages with pro-inflammatory phenotype. Mechanistically, DCA dose-dependently promoted M1 macrophage polarization and pro-inflammatory cytokines production at least partially through toll-like receptor 2 (TLR2) transactivated by M2 muscarinic acetylcholine receptor (M2-mAchR)/Src pathway. In addition, M2-mAchR mediated increase of TLR2 transcription was mainly achieved via targeting AP-1 transcription factor. Moreover, NF-κB/ERK/JNK signalings downstream of TLR2 are involved in the DCA-induced macrophage polarization. In conclusion, our findings revealed that high level DCA induced by HFD may serve as an initiator to activate macrophages and drive colonic inflammation, thus offer a mechanistic basis that modulation of gut microbiota or intervening specific bile acid receptor signaling could be potential therapeutic approaches for HFD-related inflammatory diseases.


Subject(s)
Colitis/etiology , Deoxycholic Acid/metabolism , Diet, High-Fat , Gastrointestinal Microbiome , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Colitis/immunology , Colitis/microbiology , Colon/immunology , Colon/microbiology , Cytokines/metabolism , Deoxycholic Acid/analysis , Deoxycholic Acid/pharmacology , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , MAP Kinase Signaling System , Macrophage Activation , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphorylation , Receptor, Muscarinic M2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Tyrosine/metabolism , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL