Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 330: 118196, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38631488

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY: This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS: CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS: TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION: RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.


Subject(s)
Autophagy , Chemical and Drug Induced Liver Injury , Cinnamates , Depsides , Janus Kinase 2 , Lysosomes , Rosmarinic Acid , STAT3 Transcription Factor , Signal Transduction , Animals , Humans , Male , Mice , Autophagy/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Cinnamates/pharmacology , Depsides/pharmacology , Drugs, Chinese Herbal/pharmacology , Janus Kinase 2/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mice, Inbred BALB C , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism
2.
Nat Prod Res ; 38(5): 879-884, 2024.
Article in English | MEDLINE | ID: mdl-37004998

ABSTRACT

The use of various herbs and their compounds has been a strategy widely used in the fight against various human diseases. For example, rosmarinic acid, a bioactive phenolic compound commonly found in Rosemary plants (Rosmarinus officinalis Labiatae), has multiple therapeutic benefits in different diseases, such as cancer. Therefore, the study aimed to evaluate in silico and in vitro the inhibition potential of the enzyme Elastase from the porcine pancreas by rosmarinic acid isolated from the plant species R. officinalis Linn. Through Molecular Docking, the mechanism of action was investigated. In addition, rosmarinic acid presented a range of 5-60 µg/mL and significantly inhibited Elastase. At 60 µg/mL, there was an inhibition of 55% on the enzymatic activity. The results demonstrate the inhibition of Elastase by rosmarinic acid, which can lead to the development of new enzyme inhibitors that can be an inspiration for developing various drugs, including anticancer drugs.


Subject(s)
Rosmarinic Acid , Rosmarinus , Humans , Pancreatic Elastase , Molecular Docking Simulation , Plant Extracts/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology
3.
Biomed Pharmacother ; 162: 114687, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062215

ABSTRACT

Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.


Subject(s)
Lamiaceae , Neoplasms , Humans , Plant Extracts/pharmacology , Plants/metabolism , Cinnamates/pharmacology , Depsides/pharmacology , Antioxidants/pharmacology , Neoplasms/drug therapy , Rosmarinic Acid
4.
Molecules ; 27(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630768

ABSTRACT

Polyphenolic acids are the widely occurring natural products in almost each herbal plant, among which rosmarinic acid (RA, C18H16O8) is well-known, and is present in over 160 species belonging to many families, especially the Lamiaceae. Aside from this herbal ingredient, dozens of its natural derivatives have also been isolated and characterized from many natural plants. In recent years, with the increasing focus on the natural products as alternative treatments, a large number of pharmacological studies have been carried out to demonstrate the various biological activities of RA such as anti-inflammation, anti-oxidation, anti-diabetes, anti-virus, anti-tumor, neuroprotection, hepatoprotection, etc. In addition, investigations concerning its biosynthesis, extraction, analysis, clinical applications, and pharmacokinetics have also been performed. Although many achievements have been made in various research aspects, there still exist some problems or issues to be answered, especially its toxicity and bioavailability. Thus, we hope that in the case of natural products, the present review can not only provide a comprehensive understanding on RA covering its miscellaneous research fields, but also highlight some of the present issues and future perspectives worth investigating later, in order to help us utilize this polyphenolic acid more efficiently, widely, and safely.


Subject(s)
Lamiaceae , Plant Extracts , Cinnamates/chemistry , Cinnamates/pharmacology , Depsides/chemistry , Depsides/pharmacology , Humans , Plant Extracts/chemistry , Rosmarinic Acid
5.
J Ethnopharmacol ; 295: 115411, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35636653

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Prunella L. (Lamiaceae) is represented by nine species in the world and four species in Turkey. The infusion prepared from the aerial parts of Prunella vulgaris L. is used internally for abdominal pain and as an expectorant, the decoction prepared from all parts is used internally or externally as a wound healing. AIM OF THE STUDY: This study aims to investigate the wound healing potential of Prunella vulgaris L. on the scientific platform. MATERIAL AND METHODS: The aerial parts of the plant were extracted with 80% methanol. The resulting aqueous methanol extract was partitioned with n-hexane and ethyl acetate, and sub-extracts were obtained. The wound healing effects of the methanol extract and sub-extracts were studied in mice and rats using linear incision and circular excision wound models, and the anti-inflammatory effect was investigated using acetic acid-induced capillary permeability test. Isolation studies were performed using the ethyl acetate sub-extract, which exhibited the highest activity. RESULTS: Using various chromatographic methods, 6 compounds were isolated from the ethyl acetate sub-extract. The structures of the compounds were identified as methyl arginolate, ursolic acid, chlorogenic acid, rosmarinic acid, methyl 3-epimaclinate, and ethyl rosmarinate by spectroscopic techniques (UV, IR, 13C-NMR, 1H-NMR, 2D-NMR, MS). The wound healing mechanisms of the pure compounds were investigated by performing assays to inhibit the enzymes hyaluronidase, collagenase, and elastase. Ursolic acid, chlorogenic acid, and rosmarinic acid were found to be responsible for the anti-inflammatory and wound healing effects. CONCLUSION: The experimental study revealed that Prunella vulgaris showed significant wound healing and anti-inflammatory activities.


Subject(s)
Anti-Inflammatory Agents , Plant Extracts , Prunella , Wound Healing , Animals , Anti-Inflammatory Agents/pharmacology , Chlorogenic Acid/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Methanol , Mice , Plant Extracts/pharmacology , Prunella/chemistry , Rats , Triterpenes/pharmacology , Wound Healing/drug effects , Rosmarinic Acid , Ursolic Acid
6.
Molecules ; 27(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458621

ABSTRACT

Culture of plant cells or tissues is a scalable, sustainable, and environmentally friendly approach to obtain extracts and secondary metabolites of uniform quality that can be continuously supplied in controlled conditions, independent of geographical and seasonal variations, environmental factors, and negative biological influences. In addition, tissues and cells can be extracted/obtained from the by-products of other industrial cultivations such as that of Lavandula angustifolia Miller (L. angustifolia), which is largely cultivated for the collection of flowers. Given that, an extract rich in rosmarinic acid was biotechnologically produced starting from cell suspension of L. angustifolia, which was then loaded in hyalurosomes, special phospholipid vesicles enriched with sodium hyaluronate, which in turn are capable of both immobilizing and stabilizing the system. These vesicles have demonstrated to be good candidates for skin delivery as their high viscosity favors their residence at the application site, thus promoting their interaction with the skin components. The main physico-chemical and technological characteristics of vesicles (i.e., mean diameter, polydispersity index, zeta potential and entrapment efficiency of extract in vesicles) were measured along with their biological properties in vitro: biocompatibility against fibroblasts and ability to protect the cells from oxidative stress induced by hydrogen peroxide. Overall, preliminary results disclosed the promising properties of obtained formulations to be used for the treatment of skin diseases associated with oxidative stress and inflammation.


Subject(s)
Lavandula , Antioxidants/pharmacology , Cinnamates , Depsides/pharmacology , Lavandula/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rosmarinic Acid
7.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409270

ABSTRACT

Stratum corneum (SC) pH regulates skin barrier functions and elevated SC pH is an important factor in various inflammatory skin diseases. Acidic topical formulas have emerged as treatments for impaired skin barriers. Sodium proton exchanger 1 (NHE1) is an important factor in SC acidification. We investigated whether topical applications containing an NHE1 activator could improve skin barrier functions. We screened plant extracts to identify NHE1 activators in vitro and found Melissa officinalis leaf extract. Rosmarinic acid, a component of Melissa officinalis leaf extract, significantly increased NHE1 mRNA expression levels and NHE1 production. Immunofluorescence staining of NHE1 in 3D-cultured skin revealed greater upregulation of NHE1 expression by NHE1 activator cream, compared to vehicle cream. Epidermal lipid analysis revealed that the ceramide level was significantly higher upon application of the NHE1 activator cream on 3D-cultured skin, compared to application of a vehicle cream. In a clinical study of 50-60-year-old adult females (n = 21), application of the NHE1 activator-containing cream significantly improved skin barrier functions by reducing skin surface pH and transepidermal water loss and increasing skin hydration, compared to patients who applied vehicle cream and those receiving no treatment. Thus, creams containing NHE1 activators, such as rosmarinic acid, could help maintain or recover skin barrier functions.


Subject(s)
Cinnamates , Depsides , Adult , Cinnamates/metabolism , Cinnamates/pharmacology , Depsides/metabolism , Depsides/pharmacology , Epidermis/metabolism , Female , Humans , Hydrogen-Ion Concentration , Middle Aged , Skin/metabolism , Rosmarinic Acid
8.
Pharm Biol ; 60(1): 609-620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35286247

ABSTRACT

CONTEXT: Obstructive sleep apnoea (OSA) causes chronic intermittent hypoxia (CIH), which results in mitochondrial dysfunction and generates reactive oxygen species (ROS) in the heart. Excessive free iron could accelerate oxidative damage, which may be involved in this process. Banxia-Houpu decoction (BHD) was reported to improve the apnoea hypopnoea index in OSA patients, but the specific mechanism was still unclear. OBJECTIVE: To investigate whether BHD could reduce CIH-induced heart damage by regulating iron metabolism and mitochondrial function. MATERIALS AND METHODS: C57BL/6N mice were randomly divided into control, CIH and BHD groups. Mice were exposed to CIH (21 - 5% O2, 20 times/h, 8 h/d) and administered BHD (3.51, 7.01 and 14.02 g/kg, intragastrically) for 21 d. Cardiac and mitochondrial function, iron levels, apoptosis and mitophagy were determined. RESULTS: BHD (7.01 g/kg) significantly improved cardiac dysfunction, pathological change and mitochondrial structure induced by CIH. BHD increased the Bcl-2/Bax ratio (1.4-fold) and inhibited caspase 3 cleavage in CIH mice (0.45-fold). BHD activated mitophagy by upregulating Parkin (1.94-fold) and PINK1 (1.26-fold), inhibiting the PI3K-AKT-mTOR pathway. BHD suppressed ROS generation by decreasing NOX2 (0.59-fold) and 4-HNE (0.83-fold). BHD reduced the total iron in myocardial cells (0.72-fold) and mitochondrial iron by downregulating Mfrn2 (0.81-fold) and MtFt (0.78-fold) proteins, and upregulating ABCB8 protein (1.33-fold). Rosmarinic acid, the main component of Perilla Leaf in BHD, was able to react with Fe2+ and Fe3+ in vitro. DISCUSSION AND CONCLUSIONS: These findings encourage the use of BHD to resist cardiovascular injury and provide the theoretical basis for clinical treatment in OSA patients.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Heart Injuries/prevention & control , Hypoxia/drug therapy , Iron/metabolism , Animals , Apoptosis/drug effects , Cinnamates/pharmacology , Depsides/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Heart Injuries/etiology , Hypoxia/complications , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sleep Apnea, Obstructive/complications , Rosmarinic Acid
9.
BMC Complement Med Ther ; 22(1): 27, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086541

ABSTRACT

BACKGROUND: The overuse of antibiotics has led to increased antimicrobial resistance, but plant-derived biological response modifiers represent a potential alternative to these drugs. This investigation examined the immunomodulatory and antibacterial activities of Sida cordifolia (used in ethnomedicinal systems to treat infectious disease). METHODS: Successive extractions were performed from the roots of these plants in hexane, chloroform, methanol and water. Immunomodulatory activity was determined in a series of experiments measuring the responses of splenocytes, macrophages and an in vivo model of innate immunity (Galleria mellonella). Antibacterial activity was assessed by determining minimum inhibitory/bactericidal concentrations (MIC/MBCs) for various Gram-positive and Gram-negative bacterial strains. RESULTS: Immunomodulatory activity was confined to the aqueous extract, and further fractionation and biochemical analysis yielded a highly potent polysaccharide-enriched fraction (SCAF5). SCAF5 is a complex mixture of different polysaccharides with multiple immunomodulatory effects including immune cell proliferation, antibody secretion, phagocytosis, nitric oxide production, and increased expression of pro-inflammatory cytokines. Furthermore, Galleria mellonella pre-treated with SCAF5 produced more haemocytes and were more resistant (P < 0.001) to infection with methicillin-resistant Staphylococcus aureus (MRSA) with a 98% reduction in bacterial load in pre-treated larvae compared to the negative control. The antibacterial activity of Sida cordifolia was confined to the methanolic fraction. Extensive fractionation identified two compounds, rosmarinic acid and its 4-O-ß-d-glucoside derivative, which had potent activity against Gram-positive antibiotic-resistant bacteria, including MRSA. CONCLUSIONS: Sida cordifolia counters bacterial infections through a dual mechanism, and immunomodulatory polysaccharides from this plant should be isolated and characterised to realise their potential as anti-infective agents. Such properties could be developed as an antibiotic alternative (1) in the clinic and (2) alternative growth promoter for the agri-food industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Drug Resistance, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , Immunologic Factors/pharmacology , Malvaceae/chemistry , Polysaccharides/pharmacology , Animals , Female , Gram-Negative Bacteria/drug effects , Larva/microbiology , Medicine, Traditional , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred BALB C , Moths/microbiology , Plant Extracts/pharmacology , Plant Roots/chemistry , Rosmarinic Acid
10.
Nat Prod Res ; 36(9): 2263-2269, 2022 May.
Article in English | MEDLINE | ID: mdl-33034223

ABSTRACT

Chemical investigation of the lichen Usnea ceratina Arch led to the isolation of five depsidones, including one new compound ceratinalone (1) along with four known compounds bailesidone (2), stictic acid (3), 8'-O-methylstictic acid (4) and 8'-O-ethylstictic acid (5). The structures were determined by analysis of their MS and NMR data as well as by comparison with literature values. Compounds 1 and 4 were evaluated the cytotoxic activity against HeLa (human epithelial carcinoma), NCI-H460 (human lung cancer), HepG2 (liver hepatocellular carcinoma), and MCF-7 (human breast cancer) cell lines, showing the moderate activity.


Subject(s)
Lichens , Parmeliaceae , Usnea , Animals , Ascomycota , Depsides/chemistry , Depsides/pharmacology , Humans , Lactones , Usnea/chemistry
11.
Biomed Pharmacother ; 146: 112483, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891112

ABSTRACT

Insomnia, the most common sleep disorder, is characterized by a longer sleep latency, greater sleep fragmentation, and consequent excessive daytime fatigue. Due to the various side effects of prescribed hypnotics, demand for new drugs is still high. Recent studies have suggested the adenosine receptor (AR) as a potential therapeutic target for insomnia, however, clinically useful hypnotics targeting AR are not yet available. In the present study, we evaluated the hypnotic effect of rosmarinic acid, a phenolic compound widely found in medicinal plants, through pentobarbital-induced sleep test, electroencephalography/electromyography (EEG/EMG), and immunohistochemistry in mice. The underlying mechanisms were assessed by pharmacological approach using 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and SCH5826, antagonists for A1R and A2AR, respectively. Receptor-binding assay and functional agonism were also performed. Our study provides a new evidence that rosmarinic acid has a direct binding activity (Ki = 14.21 ± 0.3 µM) and agonistic activity for A1R. We also found that rosmarinic acid significantly decreased sleep fragmentation and onset latency to NREM sleep, and these effects were abolished by DPCPX. The results from c-Fos immunostaining showed that rosmarinic acid decreased the neuronal activity in wake-promoting brain regions, such as the basal forebrain and the lateral hypothalamus, while increasing the neuronal activity in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly inhibited by DPCPX. Taken together, this study suggests that rosmarinic acid possesses novel activity as an A1R agonist and thereby exerts a hypnotic effect, and thus it may serve as a potential therapeutic agent for insomnia through targeting A1R.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Hypnotics and Sedatives/pharmacology , Receptor, Adenosine A1/metabolism , Sleep/drug effects , Animals , Brain/drug effects , Brain/physiology , Electroencephalography , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/drug effects , Neurons/physiology , Pentobarbital , Receptor, Adenosine A2A/metabolism , Rosmarinic Acid
12.
Int J Mol Sci ; 22(23)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34884815

ABSTRACT

BACKGROUND: New strategies are needed to combat multidrug-resistant bacteria. The restriction of iron uptake by bacteria is a promising way to inhibit their growth. We aimed to suppress the growth of Vibrio bacterial species by inhibiting their ferric ion-binding protein (FbpA) using food components. METHODS: Twenty spices were selected for the screening of FbpA inhibitors. The candidate was applied to antibacterial tests, and the mechanism was further studied. RESULTS: An active compound, rosmarinic acid (RA), was screened out. RA binds competitively and more tightly than Fe3+ to VmFbpA, the FbpA from V. metschnikovii, with apparent KD values of 8 µM vs. 17 µM. Moreover, RA can inhibit the growth of V. metschnikovii to one-third of the control at 1000 µM. Interestingly, sodium citrate (SC) enhances the growth inhibition effect of RA, although SC only does not inhibit the growth. The combination of RA/SC completely inhibits the growth of not only V. metschnikovii at 100/100 µM but also the vibriosis-causative pathogens V. vulnificus and V. parahaemolyticus, at 100/100 and 1000/100 µM, respectively. However, RA/SC does not affect the growth of Escherichia coli. CONCLUSIONS: RA/SC is a potential bacteriostatic agent against Vibrio species while causing little damage to indigenous gastrointestinal bacteria.


Subject(s)
Cinnamates/pharmacology , Depsides/pharmacology , Iron/metabolism , Sodium Citrate/pharmacology , Vibrio parahaemolyticus/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Cinnamates/chemistry , Cinnamates/metabolism , Depsides/chemistry , Depsides/metabolism , Drug Synergism , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/metabolism , Molecular Docking Simulation , Plant Extracts/chemistry , Protein Binding , Vibrio parahaemolyticus/metabolism , Rosmarinic Acid
13.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885797

ABSTRACT

The beneficial effect of antioxidant supplementation in maturation culture media of sow oocytes was evaluated by the expression quantification of apoptotic genes and the genes that ensure stability of germ cells during fertilization. The oocytes were cultivated for 44 h in conventional medium (C) or in medium supplemented with 105 µM rosmarinic acid (R) and 0.5 mM ascorbic acid (A) and classified into three quality classes by morphological observation from which the total RNA was isolated. The gene expression of Ptx3 and the apoptotic regulator p53, Bax and BCL-2 were evaluated by quantitative PCR technique. The decreased expression of the Bax gene in the A and R groups, compared to the control, indicates a protective role of antioxidants in the cells. Cell homeostasis was maintained, as reflected in the ratio of Bax/Bcl-2 in class I COCs (cumulus-oocyte complex) regardless of the experimental group, indicating minimum cellular stress. The expression of p53 genes was higher in all class III COC, but in A1 and R1 the expression was lower than in C1, and a similar Ptx-3 gene decreased significantly in groups A1, A2, A3 and R1 compared with control groups. Antioxidant supplementation showed beneficial effects on all morphological classes of pig COCs.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Oocytes/drug effects , Animals , Culture Media/pharmacology , Female , Fertilization in Vitro/veterinary , Gene Expression Regulation, Developmental/drug effects , Oocytes/cytology , Oocytes/metabolism , Oogenesis/drug effects , Swine , Rosmarinic Acid
14.
Molecules ; 26(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34833849

ABSTRACT

Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1ß, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α.


Subject(s)
Adenocarcinoma of Lung/metabolism , Anti-Inflammatory Agents , Antioxidants , Cinnamates , Depsides , Fatty Acids, Omega-3 , Lung Neoplasms/metabolism , Perilla/chemistry , alpha-Linolenic Acid , A549 Cells , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Depsides/chemistry , Depsides/pharmacology , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacology , Humans , Oxidative Stress/drug effects , Plant Oils/chemistry , Plant Oils/pharmacology , alpha-Linolenic Acid/chemistry , alpha-Linolenic Acid/pharmacology , Rosmarinic Acid
15.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834049

ABSTRACT

Salvia przewalskii Maxim is a perennial plant from the genus Salvia (family Lamiaceae). The roots of S. przewalskii were long used as a traditional herb to treat blood circulation related illnesses in China. As part of our continuing interest in polycyclic natural products from medicinal plants, two unprecedented adducts comprised of a dinor-diterpenoid and a 9'-nor-rosmarinic acid derivative, linked by a 1,4-benzodioxane motif (1 and 2), were isolated from the roots of S. przewalskii. Their structures were established by extensive spectroscopic approaches including 1D, 2D NMR, and HRFABMS. Their cytotoxic activities against five human tumor cell lines were evaluated.


Subject(s)
Cinnamates/analysis , Depsides/analysis , Diterpenes/analysis , Salvia/chemistry , Antineoplastic Agents, Phytogenic/analysis , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cinnamates/pharmacology , Depsides/pharmacology , Diterpenes/pharmacology , Humans , Neoplasms/drug therapy , Plant Roots/chemistry , Plants, Medicinal/chemistry , Rosmarinic Acid
16.
Phytother Res ; 35(12): 6974-6989, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34709695

ABSTRACT

Rosmarinic acid (RA), an ester of caffeic acid and 3, 4-dihydroxyphenyllactic acid, has anti-inflammatory and neuroprotective activities. Herein, this study investigated in silico the drug-likeness and the potential molecular targets to RA. Moreover, it tested the antidepressant-like potential of RA in the lipopolysaccharide (LPS)-induced depression model. RA (MW = 360.31 g/mol) meets the criteria of both Lipinski's rule of five and the Ghose filter. It also attends to relevant pharmacokinetic parameters. Target prediction analysis identified RA's potential targets and biological activities, including the peroxisome proliferator-activated receptor (PPAR) and the cannabinoid receptors CB1 and CB2 . In vivo, RA's acute, repetitive, and therapeutic administration showed antidepressant-like effect since it significantly reduced the immobility time in the tail suspension test and increased grooming time in the splash test. Further, the pretreatment with antagonists of CB1 , CB2 , and PPAR-γ receptors significantly blocked the antidepressant-like effect of RA. Altogether, our findings suggest that cannabinoid receptors/PPAR-γ signaling pathways are involved with the antidepressant-like effect of RA. Moreover, this molecule meets important physicochemical and pharmacokinetic parameters that favor its bioavailability. RA constitutes a promising, innovative, and safe molecule for the pharmacotherapy of major depressive disorder.


Subject(s)
Antidepressive Agents , Cinnamates/pharmacology , Depsides/pharmacology , Neuroinflammatory Diseases/drug therapy , PPAR gamma , Receptors, Cannabinoid , Animals , Antidepressive Agents/pharmacology , Lipopolysaccharides , Signal Transduction , Rosmarinic Acid
17.
Nutrients ; 13(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34579088

ABSTRACT

The incidence of atopic dermatitis (AD), a disease characterized by an abnormal immune balance and skin barrier function, has increased rapidly in developed countries. This study investigated the anti-atopic effect of Lithospermum erythrorhizon (LE) using NC/Nga mice induced by 2,4-dinitrochlorobenzene. LE reduced AD clinical symptoms, including inflammatory cell infiltration, epidermal thickness, ear thickness, and scratching behavior, in the mice. Additionally, LE reduced serum IgE and histamine levels, and restored the T helper (Th) 1/Th2 immune balance through regulation of the IgG1/IgG2a ratio. LE also reduced the levels of AD-related cytokines and chemokines, including interleukin (IL)-1ß, IL-4, IL-6, tumor necrosis factor-α (TNF-α), thymic stromal lymphopoietin, thymus and activation-regulated chemokine, macrophage-derived chemokine, regulated on activation, normal T cell expressed and secreted, and monocyte chemoattractant protein-1 in the serum. Moreover, LE modulated AD-related cytokines and chemokines expressed and secreted by Th1, Th2, Th17, and Th22 cells in the dorsal skin and splenocytes. Furthermore, LE restored skin barrier function by increasing pro-filaggrin gene expression and levels of skin barrier-related proteins filaggrin, involucrin, loricrin, occludin, and zonula occludens-1. These results suggest that LE is a potential therapeutic agent that can alleviate AD by modulating Th1/Th2 immune balance and restoring skin barrier function.


Subject(s)
Dermatitis, Atopic/drug therapy , Lithospermum/chemistry , Plant Extracts/pharmacology , Skin/drug effects , Skin/pathology , Animals , Benzofurans/chemistry , Benzofurans/pharmacology , Cytokines/genetics , Cytokines/metabolism , Depsides/chemistry , Depsides/pharmacology , Gene Expression Regulation/drug effects , Immunoglobulin G/blood , Immunoglobulin G/metabolism , Male , Mice , Mice, Inbred Strains , Plant Extracts/chemistry , Skin/immunology , Spleen/cytology , Th1-Th2 Balance/drug effects
18.
Drug Des Devel Ther ; 15: 3523-3533, 2021.
Article in English | MEDLINE | ID: mdl-34408404

ABSTRACT

BACKGROUND: Cancer is a leading cause of death worldwide, with breast cancer being the most common invasive cancer type in women. Several therapeutic strategies have been explored to reduce the mortality rates of breast cancer. Chemotherapy is the most commonly used systemic treatment, but associated with numerous side-effects. Development of anticancer agents with high efficacy and minimal negative effects is therefore an important focus of research. Natural materials provide an excellent source of bioactive compounds. For instance, Garcinia porrecta from the Clusiaceae family has multiple pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antiviral, anti-HIV, antidepressant, and anticancer properties. PURPOSE: The main objective of this study was to investigate the potential anticancer effects of compounds extracted from the bark of G. porrecta. MATERIALS AND METHODS: Our experiments were divided into three steps: (1) chromatographic isolation of compounds using various separation techniques, such as extraction, separation and purification, (2) characterization via infrared (IR), nuclear magnetic resonance (NMR) and mass spectroscopy, and (3) evaluation of anticancer activity in vitro (MTT assay) and in silico (via analysis of molecular docking against caspase-9, tumor necrosis factor alpha (TNF-α), estrogen receptor alpha (ER-α), and human epidermal growth factor receptor 2 (HER-2)). RESULTS: Depsidone (1) and benzophenone (2) from the ethyl acetate extract of bark of G. porrecta were identified as bioactive components. Examination of the activities of these compounds against MCF-7 cells revealed an IC50 value of 119.3 µg/mL for benzophenone, whereas IC50 for depsidone could not be estimated. Benzophenone activity was lower than that of the positive control doxorubicin (6.9 µg/mL). Depsidone showed the highest binding affinity for HER-2 (-9.2 kcal.mol-1) and benzophenone for ER-α (-8.0 kcal.mol-1). CONCLUSION: Benzophenone displays potency as an anticancer agent through blocking ER-α.


Subject(s)
Breast Neoplasms/drug therapy , Garcinia/chemistry , Phenols/pharmacology , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Benzophenones/administration & dosage , Benzophenones/isolation & purification , Benzophenones/pharmacology , Depsides/administration & dosage , Depsides/isolation & purification , Depsides/pharmacology , Doxorubicin/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Female , Humans , Inhibitory Concentration 50 , Lactones/administration & dosage , Lactones/isolation & purification , Lactones/pharmacology , MCF-7 Cells , Molecular Docking Simulation , Phenols/chemistry , Phenols/isolation & purification , Plant Extracts/chemistry
19.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361791

ABSTRACT

As a key enzyme regulating postprandial blood glucose, α-Glucosidase is considered to be an effective target for the treatment of diabetes mellitus. In this study, a simple, rapid, and effective method for enzyme inhibitors screening assay was established based on α-glucosidase catalyzes reactions in a personal glucose meter (PGM). α-glucosidase catalyzes the hydrolysis of maltose to produce glucose, which triggers the reduction of ferricyanide (K3[Fe(CN)6]) to ferrocyanide (K4[Fe(CN)6]) and generates the PGM detectable signals. When the α-glucosidase inhibitor (such as acarbose) is added, the yield of glucose and the readout of PGM decreased accordingly. This method can achieve the direct determination of α-glucosidase activity by the PGM as simple as the blood glucose tests. Under the optimal experimental conditions, the developed method was applied to evaluate the inhibitory activity of thirty-four small-molecule compounds and eighteen medicinal plants extracts on α-glucosidase. The results exhibit that lithospermic acid (52.5 ± 3.0%) and protocatechualdehyde (36.8 ± 2.8%) have higher inhibitory activity than that of positive control acarbose (31.5 ± 2.5%) at the same final concentration of 5.0 mM. Besides, the lemon extract has a good inhibitory effect on α-glucosidase with a percentage of inhibition of 43.3 ± 3.5%. Finally, the binding sites and modes of four active small-molecule compounds to α-glucosidase were investigated by molecular docking analysis. These results indicate that the PGM method is feasible to screening inhibitors from natural products with simple and rapid operations.


Subject(s)
Benzaldehydes/pharmacology , Benzofurans/pharmacology , Blood Glucose/analysis , Catechols/pharmacology , Depsides/pharmacology , Diabetes Mellitus, Type 2/diagnosis , Glycoside Hydrolase Inhibitors/pharmacology , Monitoring, Ambulatory/methods , alpha-Glucosidases/blood , Acarbose/chemistry , Acarbose/pharmacology , Benzaldehydes/chemistry , Benzaldehydes/isolation & purification , Benzofurans/chemistry , Benzofurans/isolation & purification , Binding Sites , Biosensing Techniques/instrumentation , Catechols/chemistry , Catechols/isolation & purification , Depsides/chemistry , Depsides/isolation & purification , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors/chemistry , Humans , Hydrolysis , Kinetics , Maltose/metabolism , Molecular Docking Simulation , Monitoring, Ambulatory/instrumentation , Plant Extracts/chemistry , Plants, Medicinal , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thermodynamics , Wearable Electronic Devices , alpha-Glucosidases/chemistry
20.
J Ethnopharmacol ; 279: 114373, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34181959

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prunella vulgaris L. (P. vulgaris) is a medicinal plant belonging to the Labiatae family, and its dried spikes is called as Xiakucao in China, which is a common traditional Chinese medicine with the activities of clearing the liver and expelling fire, improving eyesight, dispersing nodules and detumescence. Modern pharmacological studies have proved that P. vulgaris has various pharmacological activities such as immunomodulatory, antiviral, antibacterial and anti-insomnia activities. AIMS OF THIS REVIEW: P. vulgaris have been reported to have anti-insomnia effects. Nevertheless, the pharmacodynamic substance basis of this anti-insomnia effect is still unclear. The aim of this study was to identify the active components responsible for evoking the anti-insomnia effect of P. vulgaris and to evaluate its anti-insomnia effect. MATERIALS AND METHODS: In this study, we proposed a method combined with pharmacodynamic experiments, extraction and enrichment of chemical components, and the plasma pharmacochemistry to screen out the anti-insomnia components of P. vulgaris. Firstly, the active eluted fraction of the ethanol extract was screened out based on pharmacodynamic tracing method, and then the chemical composition was analyzed systematically by UPLC-MS/MS. Thirdly, pharmacodynamic tracing method and silica gel column chromatography were employed to screen out the active fraction of 70% ethanol eluted fraction, and its bioactive components in vitro and in vivo were identified by UPLC-MS/MS. Finally, screening out the anti-insomnia components of P. vulgaris by comparing the difference between in vivo and in vitro components, and three potentially bioactive ingredients were validated experimentally. RESULTS: It was confirmed that the fraction eluted with 70% ethanol from macroporous adsorption resin column was responsible for the anti-insomnia efficacy, and 55 compounds were identified or preliminarily identified. Then totally 9 compounds in vitro and 12 compounds in vivo from the active fraction of 70% ethanol eluted fraction were tentatively identified. Among them, mangiferin, rosmarinic acid and salviaflaside were the prototype components of P. vulgaris, which indicated that the three compounds might play the key role in the anti-insomnia activities. In vivo, compared to blank control group, the three compounds significantly shortened the sleeping latency and prolonged the sleeping time produced by pentobarbital sodium. CONCLUSIONS: This study clarified that mangiferin, rosmarinic acid and salviaflaside were considered as the anti-insomnia components of P. vulgaris. This is the first study on screening out the active ingredients responsible for evoking the anti-insomnia effect of P. vulgaris. The three compounds of P. vulgaris may help develop one or more drugs to prevent or treat insomnia. Further investigations are recommended to define the mechanism of the anti-insomnia activity of P. vulgaris.


Subject(s)
Plant Extracts/pharmacology , Prunella/chemistry , Sleep Initiation and Maintenance Disorders/drug therapy , Animals , Chromatography, High Pressure Liquid , Cinnamates/isolation & purification , Cinnamates/pharmacology , Depsides/isolation & purification , Depsides/pharmacology , Glucosides/isolation & purification , Glucosides/pharmacology , Male , Mice , Mice, Inbred ICR , Phenylpropionates/isolation & purification , Phenylpropionates/pharmacology , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Xanthones/isolation & purification , Xanthones/pharmacology , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL