Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
Add more filters

Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 625-633, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621866

ABSTRACT

Extracts are important intermediates in the production of traditional Chinese medicines preparations. The drying effect of extracts will directly affect the subsequent production process and the quality of the preparation. To meet the requirements of high drug loading, short time consumption, and simple production process of personalized traditional Chinese medicine preparations, this study explored the application of multi-program microwave vacuum drying process in the extract drying of personalized traditional Chinese medicine preparations. The influencing factors of microwave vacuum drying process were investigated for 5 excipients and 40 prescriptions. Taking the feasibility of drying, drying rate, drying time, and dried extract status as indicators, this study investigated the feeding requirements of microwave vacuum drying. With the dried extract status as the evaluation indicator, the three drying programs(A, B, and C) were compared to obtain the optimal drying condition. The experimental results showed that the optimal feeding conditions for microwave vacuum drying were material layer thickness of 2 cm and C program(a total of 7 drying processes), which solved the problem of easy scorching in microwave drying with process management. Furthermore, the preset moisture content of the dried extract in microwave drying should be 4%-5%, so that the dried extract of traditional Chinese medicine preparation had uniform quality, complete drying, and no scorching. This study lays a foundation for the application of microwave drying in the production of traditional Chinese medicine preparations, promoting the high-quality development of personalized traditional Chinese medicine preparations.


Subject(s)
Medicine, Chinese Traditional , Microwaves , Vacuum , Desiccation/methods , Plant Extracts
2.
J Sci Food Agric ; 104(10): 6053-6061, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38517240

ABSTRACT

BACKGROUND: The study aimed to determine the effects of instant controlled decompression of steam pressure, termed as ICPD (instant controlled pressure drop) on fresh tea leaves, when combined with refractance window drying (RWD) of rolled green teas during green tea manufacturing. The ICPD steam treatment pressure (TP; 0.1-0.3 MPa), treatment time (TT; 10-20 s) and refractance window drying temperature (RWDT; 70-90 °C) were used as the processing parameters for manufacturing of green tea. RESULT: Response surface methodology was employed to enumerate the effects of ICPD process conditions and temperature of RWD on total phenolic content (TPC), total flavonoid content (TFC) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the green tea infusion. An optimum condition for green tea processing was found at TP 0.2 MPa, TT 20 s with RWDT at 70 °C. In comparison to made green tea manufactured without ICPD treatment, the ICPD treated green tea showed enhanced TPC, TFC and DPPH radical scavenging activity along with better colour and sensory attributes. The microstructural study of ICPD treated green tea samples showed more deformed cell surface integrity, larger stomatal pore size and cracks at the leaf surface in comparison with non-treated green tea sample. CONCLUSION: Present study reveals that an ICPD treatment at 0.2 MPa for 20 s can be used as an alternative to the traditional enzyme inactivation step of hot water treatment, for green tea leaves to improve the infusion quality in terms of increased levels of TPC and TFC and DPPH radical scavenging activity. © 2024 Society of Chemical Industry.


Subject(s)
Camellia sinensis , Food Handling , Phenols , Plant Leaves , Pressure , Tea , Camellia sinensis/chemistry , Tea/chemistry , Plant Leaves/chemistry , Food Handling/methods , Food Handling/instrumentation , Phenols/analysis , Phenols/chemistry , Humans , Flavonoids/analysis , Flavonoids/chemistry , Desiccation/methods , Desiccation/instrumentation , Color , Antioxidants/chemistry , Taste , Plant Extracts/chemistry
3.
Phytochem Anal ; 35(4): 903-922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403936

ABSTRACT

INTRODUCTION: The safety and quality of many medicinally important herbs are compromised since farmers and small organizations are involved in the cultivation, aggregation, and primary processing of these herbs. Such organizations often lack adequate quality control facilities. To improve the safety and quality of herbal products, simple, rapid, and affordable quality control systems are required. OBJECTIVES: The aim of this study was to assess the suitability of microwave oven-drying for moisture content (MC) determination and sample preparation of herbs in small organizations. METHODS: Microwave oven-drying (720 W) and convective oven-drying at 105°C for MC determination were compared. The effects of three different drying methods (microwave oven-drying, low-temperature convective drying, and freeze-drying) on in vitro antioxidant and polyphenol oxidase (PPO) activity were determined, similarity analysis was conducted using HPLC signature spectra, and validation was performed with LC-MS focusing on one herb. RESULTS: Microwave oven-drying at 720 W significantly reduced the drying time (from hours to minutes), whereas the spatial variation of temperature in convective ovens set at 105°C can cause about 10% underestimation of MC. Microwave oven-drying showed similar macro-properties like freeze-drying and higher extractability (10%-20%) and in vitro antioxidant capacity (33%-66%) and lower PPO activity compared to low-temperature convective drying. HPLC signature spectra revealed strong similarity of soluble components between freeze-dried and microwave oven-dried herbs. LC-MS analysis demonstrated more common compounds between freeze-dried and microwave oven-dried Centella asiatica extracts, whereas convective tray-dried samples had fewer compounds common with samples obtained by freeze-drying or microwave oven-drying. CONCLUSIONS: Microwave oven-drying is rapid (tens of min) and shows small batch-to-batch variation compared to oven-drying at 105°C. The in vitro antioxidant assays and signature spectra can be used for assessing the source and purity or quality of a specific herb variety.


Subject(s)
Antioxidants , Desiccation , Freeze Drying , Microwaves , Plants, Medicinal , Quality Control , Plants, Medicinal/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Desiccation/methods , Freeze Drying/methods , Chromatography, High Pressure Liquid/methods , Catechol Oxidase/analysis
4.
J Food Sci ; 89(4): 1988-2000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372192

ABSTRACT

Romaine lettuce outer leaves, as opposed to the more commonly marketed heart, are typically discarded and present an opportunity for upcycling as dried powders. Duquesne Romaine lettuce was evaluated to quantify and compare quality attributes of fresh outer and heart leaves, dried powders following hot air drying, and dried powders following an infrared (IR) blanching pretreatment before drying. Attributes measured for fresh leaves included moisture, water activity (Aw), color, total soluble phenolics (TSP), and antioxidant capacity (AC). Drying kinetics and time/energy saving through IR blanching were evaluated. Attributes measured for dried powders included moisture, Aw, color, true density, water vapor isotherms, TSP, AC, cadmium (Cd) content, and pesticide residues. TSP, AC, Cd, and pesticide residues were higher, whereas moisture content and Aw were lower in fresh outer versus heart leaves. Hot air drying reduced TSP and AC to 63.6% and 35.2% of fresh values, respectively, whereas IR blanching further reduced TSP and AC to 37.3% and 25.4% in outer leave powders. On the other hand, TSP and AC increased 237% and 151%, respectively, for unblanched heart powders. Higher increase of TSP than AC in heart leaf powder may indicate synthesis of phenolic compounds activated by abiotic stresses such as cutting and high temperatures at the initial drying stage. IR blanching resulted in significant time/energy savings for drying of outer leaves. Microbial loads were substantially reduced during drying, although microbial population on outer leaves were more resistant. Safe to eat outer leaf Romaine lettuce powders can be produced, assuming appropriate agricultural practices.


Subject(s)
Lactuca , Pesticide Residues , Cadmium/analysis , Pesticide Residues/analysis , Antioxidants/chemistry , Desiccation/methods , Plant Leaves/chemistry
5.
PLoS One ; 19(2): e0296526, 2024.
Article in English | MEDLINE | ID: mdl-38324553

ABSTRACT

The study introduces a methodology that utilizes data-driven approaches to optimize coffee drying operations. This is achieved through the integration of ambient sensor data and chemical analysis. This statement underscores the significance of temperature regulation, humidity levels, and light intensity within the context of coffee production. There exists a positive correlation between elevated temperatures and increased rates of drying, but humidity has a role in determining the duration of the drying process and the preservation of aromatic compounds. The significance of light intensity in dry processing is also crucial, since excessive exposure can compromise both the taste and quality of the product. The findings of chemical investigations demonstrate a correlation between environmental factors and the composition of coffee. Specifically, increased temperatures are associated with higher quantities of caffeine, while the concentration of chlorogenic acid is influenced by humidity levels. The research additionally underscores the variations in sensory characteristics among various processing techniques, underscoring the significance of procedure choice in attaining desirable taste profiles. The integration of weather monitoring, chemical analysis, and sensory assessments is a robust approach to augmenting quality control within the coffee sector, thereby facilitating the provision of great coffee products to discerning consumers.


Subject(s)
Coffee , Volatile Organic Compounds , Coffee/chemistry , Caffeine/analysis , Desiccation/methods , Chromatography, Gas , Volatile Organic Compounds/analysis
6.
Food Res Int ; 178: 114007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309928

ABSTRACT

The objective of this study was to evaluate, during the drying of spent coffee grounds, the application of pretreatments with ethanol and the application of ultrasound assisting the refractive window (RW) drying, and to compare with convective drying by hot air (AC). The effect on the kinetics parameters of the Fick and Page models were evaluated, as well as on the content of total phenolics and antioxidant capacity. For AC drying, samples of spent ground coffee were prepared in the form of fixed rectangular beds 0.7 cm high, which were placed on polyester sheets and pretreated up to 10 times sprayed with ethanol, then dried by AC at 80 °C and 0.8 m/s. For RW drying, the samples prepared in the same way as for AC were used. For this case, the application of ethanol as pretreatment and the use of ultrasound during process were tested. As results, regardless of the conditions applied, drying by RW was up to 50 % faster, evidenced in the highest values of effective diffusivity (from the Fick model) and the kinetic parameter (from the Page model). Regarding the treatments applied and their effect on the drying kinetics, any treatment had a significant effect on AC drying. On the contrary, the strategies applied in RW drying had significant effects, both the application of pretreatment with ethanol as well as the application of ultrasound assisting the process accelerated the drying kinetics. However, the treatment with ethanol and RW drying was the one that best preserved the phenolic compounds and the antioxidant capacity in the samples. Therefore, these strategies could be a good option to improve RW drying by accelerating the process and preserving the bioactive compounds in the spent coffee grounds for subsequent utilization.


Subject(s)
Antioxidants , Coffee , Desiccation/methods , Phenols , Ethanol
7.
Prep Biochem Biotechnol ; 54(7): 872-881, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38174655

ABSTRACT

Ginger (Zingiber officinale Roscoe, Zingeberaceae) is a medicinal plant widely used as food, spice, or flavoring agent worldwide. 6-Shogaol is a compound of prime interest in exhibiting anti-inflammatory, antioxidant and chemopreventive effects. The objective of the study is to investigate the effect of microwave-assisted drying (MAD) followed by microwave-assisted extraction (MAE) so as to produce 6-Shogaol enriched Ginger with improved therapeutic benefits. Various drying techniques viz. shade drying, tray drying, microwave-assisted drying and osmotic dehydration as a pretreatment were used for drying Ginger rhizomes. The dried rhizomes were extracted by conventional solvent extraction and microwave-assisted extraction techniques and tested for content of 6-Shogaol using the newly developed HPLC method whereas total flavonoid and polyphenol content were determined using the UV spectrophotometric method. Subjecting the microwave dried Ginger to microwave-assisted extraction for 45 min at constant power level of 284 W resulted in a significant rise in the extractability of 6-Shogaol (1.660 ± 0.018), total polyphenols (855.46 ± 5.33) and flavonoids (617.97 ± 6.40) compared to the conventional method of extraction. The proposed Ginger processing method of microwave drying followed by microwave extraction outperforms traditional methods in terms of speed, convenience, and performance thus can be scaled up to industrial levels.


Subject(s)
Catechols , Desiccation , Microwaves , Plant Extracts , Zingiber officinale , Zingiber officinale/chemistry , Catechols/isolation & purification , Catechols/chemistry , Desiccation/methods , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Flavonoids/isolation & purification , Flavonoids/analysis , Flavonoids/chemistry , Rhizome/chemistry , Polyphenols/isolation & purification , Polyphenols/analysis
8.
J Sci Food Agric ; 104(7): 4004-4014, 2024 May.
Article in English | MEDLINE | ID: mdl-38252708

ABSTRACT

BACKGROUND: Licorice extract is an important raw material for food additives and medicine. The quality of licorice extract is dictated by the drying process. The commonly used drying methods of licorice extract are not efficient in obtaining high-quality products so alternative techniques need to be developed and researched. In this study, ultrasound-assisted vacuum drying (UAVD) was first utilized to improve drying efficiency and produce a higher-quality product. The changes in water mobility of licorice extract during drying were characterized using low-field nuclear magnetic resonance. In addition, the effects of ultrasonic power on the drying dynamics, the contents of liquiritin and glycyrrhizic acid, the antioxidant capacity and the microstructure formation of licorice extract during the whole drying process were investigated. RESULTS: The drying times for licorice extract to reach equilibrium moisture content were reduced by 9.09-69.70% with UAVD at 40-200 W compared with that without ultrasonic treatment (0 W). Moreover, the proportions of bound water and semi-bound water in fresh concentrate were 3.75% and 96.25%. It was also found that high ultrasonic power promoted the flow of water and the formation of porous structure in licorice extract, which led to the improvement of drying efficiency. The contents of liquiritin (2.444%) and glycyrrhizic acid (6.514%) were retained to a large degree in the dried product at an ultrasonic power of 80 W. The DPPH inhibition rate of UAVD samples with different ultrasonic powers ranged from 84.07 ± 0.46% to 90.65 ± 0.22%. CONCLUSION: UAVD has the advantages of high efficiency and low energy consumption, which may be an alternative technology for vacuum drying widely used in industry. © 2024 Society of Chemical Industry.


Subject(s)
Glycyrrhiza , Glycyrrhizic Acid , Plant Extracts , Ultrasonics , Vacuum , Desiccation/methods , Kinetics , Water
9.
J Sci Food Agric ; 104(1): 83-92, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37566724

ABSTRACT

BACKGROUND: Tomato is an indispensable ingredient of the Mediterranean diet. Reformulation of traditional Mediterranean products to increase the adherence of consumers is becoming popular. In this study, a tomato snack bar enriched with olive powder and pea protein was developed by using microwave-vacuum drying. Formulations also included tomato powder (TP) and low-methoxylated pectin (LMP) as a structuring agent. RESULTS: The moisture content of microwave-vacuum-dried samples varied in the range 13.6-19.8% and water activity (aw ) values were ~0.6. LMP and TP concentrations affected the color of microwave-vacuum-dried samples. However, the color mainly changed in conventionally dried samples due to browning. In microwave-vacuum-dried samples, lycopene content decreased with increasing LMP, but increased with increasing TP. Textural properties of microwave-vacuum-dried snack bars increased with increasing LMP and TP. CONCLUSION: Both texture and Fourier transform infrared spectroscopy results indicated that there was a network formation due to the contribution of protein and pectin; however, the type of interaction was highly dependent on the drying mechanism. Nuclear magnetic resonance relaxometry data showed that microwave-vacuum-dried samples had a more uniform water distribution. Besides its time and energy efficiency, microwave-vacuum drying improved the color and textural properties of tomato snack bars compared to conventionally dried ones. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Solanum lycopersicum , Microwaves , Vacuum , Powders , Snacks , Desiccation/methods , Water , Pectins
10.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6011-6020, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114207

ABSTRACT

Spray drying technology is one of the most commonly used unit operations in the production of traditional Chinese medicine(TCM) preparations, offering advantages such as short drying time and uniform product quality. However, due to the properties of TCM extracts, such as high viscosity, strong hygroscopicity, and poor flowability, there is limited scope to solve the problems of wall adhesion and clumping in spray drying from the macroscopic perspective of pharmaceutical production. Therefore, it has become a trend to study and optimize the spray drying process from the microscopic point of view by investigating single droplet evaporation behavior. Based on the reaction engineering approach(REA), the single droplet drying system, as a novel method for studying droplets, collects parameter data on individual TCM droplets during the drying process and uses the REA to process the data and establish predictive models. This approach is crucial for understanding the mechanism of TCM spray drying. This paper summarized and analyzed the cha-racteristics of various single droplet systems, the application of REA in single droplet drying systems, and its significance in optimizing the process, predicting drying states, and shortening the development cycle in the field of TCM spray drying, and looked ahead to the prospects of this method, including the introduction of new parameters and imaging techniques, aiming to provide a reference for further research in the field of TCM spray drying.


Subject(s)
Medicine, Chinese Traditional , Spray Drying , Desiccation/methods , Temperature , Technology
11.
AAPS PharmSciTech ; 24(7): 210, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821749

ABSTRACT

Traditional methods of producing Xiaochaihu (XCH) capsules, a traditional Chinese medicine, are time-consuming, costly, and labor-intensive, which is not conductive to modernizing TCM. To address the challenges, new fluid-bed granulation and drying processes with water as the binder were developed and optimized guided by the principles of Quality by Design (QbD) in this study. Ishikawa diagram was applied to conduct a preliminary risk assessment, followed by 6-factor definitive screening design (DSD) serving as a QbD statistical tool to develop and optimize the new processes. Multiple potential factors and interactions were studied with a small number of experiments using the DSD. This study identified critical process parameters (CPPs), established quadratic regression models to reveal CPP-critical quality attributes (CQAs) connections within the DSD framework, and defined a dependable design space. Processes conducted by parameter combinations in the design space produced qualified granules with production yield and raw material utilization higher than 90% and moisture content lower than 4%. Furthermore, quantitative analysis of baicalin of all the granules ensured qualified contents of active pharmaceutical ingredient. The newly developed processes for XCH capsules, with advantages of shorter time, environmental friendliness, and decreased cost, exemplify the effective application of QbD and design of experiments (DoE) methodologies in the modernization of TCM manufacturing processes.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Desiccation/methods , Risk Assessment
12.
Food Res Int ; 164: 112333, 2023 02.
Article in English | MEDLINE | ID: mdl-36737926

ABSTRACT

The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA). It was found that depending on solid ratios of WM:FO (1:1, 3:1 and 5:1), encapsulation efficiency of GGM was 88-96%, and GX was 63-98%. At the same encapsulation ratio, both GGM and GX had higher encapsulation efficiency than GA (49-92%) due to their ability to produce feed emulsions with a smaller oil droplet size and higher physical stability. In addition, the presence of phenolic residues in GGM and GX powders enabled them to have a greater ability to protect oil from oxidation during spray drying than GA. Physiochemical properties of encapsulated powders including thermal properties, morphology, molecular structure, particle size and water adsorption intake are also investigated. The study has explored a new value-added proposition for wood hemicelluloses which can be used as effective WMs in the production of microcapsules of polyunsaturated fatty acid-rich oils for healthy and functional products in food, pharmaceutical and cosmetic industries.


Subject(s)
Desiccation , Wood , Powders , Desiccation/methods , Plant Oils/chemistry , Fatty Acids, Unsaturated
13.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36770627

ABSTRACT

Black garlic is obtained from regular garlic (Allium sativum L.) through the aging process and consequently gains many health-promoting properties, including antidiabetic and antioxidant. However, the material is still prone to microbiological deterioration and requires a long time to dry due to its properties. Therefore, this study aimed to investigate the effect of various drying methods on the quality of black garlic as well as determine the influence of selected nonthermal pretreatments on the drying kinetics and quality of black garlic, which is especially important in the case of the materials that are difficult to dry. The Weibull model was chosen to describe drying kinetics. Additionally, color, water activity together with antioxidant activity, phenolic compounds, and antidiabetic potential were determined. This study found that the application of a pulsed electric field (PEF), a constant electric field (CEF) as well as a magnetic field (MF) significantly reduced the time of drying (by 32, 40, and 24 min for a PEF, a CEF, and a MF, respectively, compared to combined drying without the pretreatment), and resulted in high antidiabetic potential. However, the highest content of phenolic compounds (1123.54 and 1125.36 mg/100 g dm for VMD125 and CD3h-VMD, respectively) and antioxidant capacity (ABTS = 6.05 and 5.06 mmol Trolox/100 g dm for VMD500 and CD6h-VMD, respectively) were reported for black garlic treated by vacuum-microwave drying and combined convective pre-drying followed by vacuum-microwave drying. Overall, the nonthermal pretreatment decreased the time of drying and showed very good efficiency in maintaining the antidiabetic potential of black garlic, especially in the case of the materials pretreated by a constant electric field (IC50 = 99 and 56 mg/mL, for α-amylase and α-glucosidase, respectively).


Subject(s)
Garlic , Kinetics , Antioxidants/pharmacology , Desiccation/methods , Phenols
14.
Food Chem ; 404(Pt B): 134571, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36323010

ABSTRACT

Freeze drying (FD) is an important and highly effective technology in food industry for retaining the quality in final dried product. This drying technique is performed at lower temperatures, restricting the damage suffered by thermally sensitive ingredients. However, FD consumes large amount of energy and required more time than conventional drying methods. The utilization of ultrasonic technology (US) as pre-treatment before FD represents a promising alternative in accelerating the drying process, decreases energy consumption and maintaining quality as compared to the non pre-treated sample. This review summarizes research progress and current studies in ultrasonic as pre-treatment for freeze drying (US + FD) technique. The impact of US + FD on phytochemical, color, texture and micro-structure of food are well summarized. The review also suggests that the optimised US treatment parameters are required to improve heat and mass transfer in food samples which help in speed up the drying process and reduction of drying time.


Subject(s)
Desiccation , Food Handling , Freeze Drying/methods , Desiccation/methods , Food Handling/methods , Phytochemicals , Dietary Supplements
15.
J Food Sci ; 88(1): 214-227, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36533940

ABSTRACT

Drying is a key step that affects the chemical composition and quality of tea. In the present study, we reported the impacts of drying temperature and time on drying and color change kinetics, phytochemical composition, antioxidant activity, and surface microstructure of coffee leaves during hot-air drying. The results showed that drying temperature was positively (p < 0.05) correlated with the drying rate (DR), color index a* and total color change ΔE, and total soluble sugar (TSS), while negatively correlated with color indexes b* and L*, soluble protein content, and the DPPH scavenging capacity. Drying time has similar impacts on the color indexes and soluble protein as drying temperature. The content of total free amino acid and TSS increased by 62.5% and 47.4%, respectively, when coffee leaves were dried at 160°C for 24 min, under which the total phenolic content and DPPH and ABTS scavenging capacities reached the maximum of 108.04 mg GAE/g, 515.07 µmol Trolox/g, and 606.70 µmol Trolox/g, respectively. Drying significantly decreased the contents of chlorogenic acids and mangiferin and antioxidant activity, while high-temperature short-time drying helped retain phenolic compounds in coffee leaves. The DR fitted Page kinetic model. The color changes fitted the first-order kinetic models and the activation energies ranged from 16.00 to 31.06 kJ·mol-1 . Prolonged drying time caused serious wrinkles on the surface of coffee leaves and the stomata closed. PRACTICAL APPLICATION: Drying decreased soluble protein while increasing free amino acid and soluble sugar. High-temperature short-time drying helps retain phenolics in the coffee leaves. The color change of coffee leaves during drying follows first-order kinetic. Prolonged drying time resulted in loosened texture of coffee leaves. Our study suggested that drying coffee leaves at 160°C for 24 min results in the coffee leaf tea being of better quality.


Subject(s)
Antioxidants , Coffea , Antioxidants/chemistry , Desiccation/methods , Phenols/analysis , Tea
16.
Molecules ; 27(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500660

ABSTRACT

Mulberry powder was created from the extract using a foam-mat drying process. The studies aimed to evaluate the effects of egg albumin, carboxymethyl cellulose (CMC), digestion-resistant maltodextrin (DRM) contents, and whipping time (5 to 15 min) on the foam properties. The impact of different drying temperatures (60 to 75 °C) on the quality of the finished mulberry powder was also noted. The best foam expansion/stability value was determined using multiple regression models as a function of egg albumin, CMC, DRM, and whipping time. The results indicated that the main influencing factors for the foam properties were whipping time followed by egg albumin, CMC, and DRM. Optimum values of foam expansion and stability were achieved at 467.9% and 97.02%, respectively. The foam had a porous structure and good stability for subsequent drying, with optimal contents of egg albumin, CMC, and DRM used at 7.6%, 0.4%, and 2%, respectively, along with a whipping time of 14.5 min. The established models had a high coefficient of determination (R2 > 0.9) and a high correlation between the predicted and observed values. Therefore, the model could be adjusted to determine the characteristics of the foam suitable for subsequent drying. The optimal values were then also verified. Minimal fluctuations (1.78−2.98%) between the experimental data and the optimal value were found. The drying temperature also significantly affected the quality of the mulberry powder. The foam was dried at 65 °C for 4 h to produce apowder with a beautiful light color (L* = 62.65), a characteristic purple-red color of mulberry (a* = 5.97). The moisture, water activity, and anthocyanin content of the finished mulberry powder were 4.57%, 0.3, and 5.4 mg/g, respectively.


Subject(s)
Morus , Desiccation/methods , Fruit/chemistry , Powders/chemistry , Plant Extracts/analysis , Albumins/analysis
17.
J Food Sci ; 87(9): 4068-4081, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35975880

ABSTRACT

In this study, drying of grated potato in a hot air-assisted radio frequency system (HA-RF) and the associated effects on the final potato flour quality were studied. The drying behavior of the grated potatoes at different electrode distances (70-90 mm) and sample thickness (2-4 cm) was investigated. The safe drying (without burning tendency) of the maximum amount of sample (1000 g) in a reasonable drying time was carried out at 80 mm of electrode gap and 4 cm of sample thickness. HA-RF drying kinetics were studied and compared with hot air (HA) and radio frequency (RF) (without hot air) drying methods. HA-RF drying increased drying rate and shortened drying time by about 58% and 70% compared to HA and RF drying, respectively. The properties of the final potato flour obtained after HA-RF drying were also compared with those produced by RF, HA, and freeze drying. The flour obtained by HA-RF was superior to RF and HA dried samples with better retention of cellular microstructure and color. The drying method significantly affected the functional properties, thermal characteristics, pasting properties, and other characteristics of potato flours. PRACTICAL APPLICATION: HA-RF as an alternative drying technology was used for the first time to produce potato flour. The functional, thermal, and structural properties of the HA-RF dried product were compared with those dried by HA, RF, and freeze drying. The results of this study ensured very useful information for the use of potato flour obtained by different drying methods in the development of products with specific functional and rheological properties.


Subject(s)
Solanum tuberosum , Desiccation/methods , Flour/analysis , Hot Temperature , Radio Waves , Solanum tuberosum/chemistry
18.
Ultrason Sonochem ; 88: 106083, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779429

ABSTRACT

This study evaluated the effect of mono-frequency ultrasound (MFU, 20 kHz), dual-frequency ultrasound (DFU, 20/40 kHz), and tri-frequency ultrasound (TFU, 20/40/60 kHz) on mass transfer, drying kinetics, and quality properties of infrared-dried pineapple slices. Pretreatments were conducted in distilled water (US), 35 °Brix sucrose solution (US-OD), and 75% (v/v) ethanol solution (US-ET). Results indicated that ultrasound pretreatments modified the microstructure of slices and shortened drying times. Compared to the control group, ultrasound application reduced drying time by 19.01-28.8% for US, 15.33-24.41% for US-OD, and 38.88-42.76% for US-ET. Tri-frequency ultrasound provoked the largest reductions, which exhibited time reductions of 6.36-11.20% and better product quality compared to MFU. Pretreatments increased color changes and loss of bioactive compounds compared to the control but improved the flavor profile and enzyme inactivation. Among pretreated sample groups, US-OD slices had lower browning and rehydration abilities, higher hardness values, and better retention of nutrients and bioactive compounds. Therefore, the combination of TFU and osmotic dehydration could simultaneously improve ultrasound efficacy, reduce drying time, and produce quality products.


Subject(s)
Ananas , Desiccation/methods , Fruit/chemistry , Osmosis
19.
Ultrason Sonochem ; 86: 106047, 2022 May.
Article in English | MEDLINE | ID: mdl-35617885

ABSTRACT

The influence of ultrasound (US) pretreatments combined with infrared (IRD) and hot-air (HAD) drying on drying kinetics, mathematical modeling, bioactive compounds (antioxidant activities, Vitamin C, phenolics, and flavonoid contents), qualitative properties (ß-carotene, total carotenoids, color indexes, textural profile), enzyme inactivation, and exergetic analysis of sweet potatoes. The US pretreatment at 40 kHz combined with IRD and HAD (70 °C) significantly lessened the drying time and water contents. Besides, it did not affect the sweet potato's bioactive components and other quality-related attributes. The samples' activation energy (Ea) ranged from 17.60 to 29.86 kJ/mol for both dryers, with R2 (0.999-0.9809). Control samples had the highest specific energy consumption (SEC) due to the extended drying period, whereas ultrasound (40 kHz) treated samples had the lowest SEC during HAD and IRD at 80 °C. The thermodynamic parameters indicated that increasing the drying temperature lowers the enthalpy and Gibbs free energy, while entropy resulted in negative values. HAD had better textural qualities (hardness and resilience). The US pretreatments followed by HAD or IRD may lead to an energy-efficient method with acceptable quality maintenance.


Subject(s)
Ipomoea batatas , Solanum tuberosum , Antioxidants , Desiccation/methods , Technology
20.
J Sci Food Agric ; 102(13): 5628-5641, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35373362

ABSTRACT

BACKGROUND: The active component content is an important factor affecting quality of traditional Chinese medicines. The fume-drying process can effectively improve the content of active components in rhubarb, but the accumulation dynamics and molecular mechanisms are not known. In this study, variations in the active components of rhubarb during the drying process were determined, and the most intense changes in the active components were preferred for transcriptome inquiry. RESULTS: The results showed that the accumulation of active ingredients could be significantly promoted in the early stage of fume-drying and air-drying. In particular, the active ingredients increased by 61.57% (from 44.58 to 72.02 mg g-1 ) on the fourth day of fume-drying. A total of 4191 DEGs (differentially expressed genes) were identified by transcriptome analysis when the active components changed significantly. Transcriptome data of different dried rhubarb samples revealed, that the fume-drying process could significantly improve the expression of genes relevant to respiration, phenolic acid, and anthraquinone synthesis pathways in rhubarb, which was more conducive to the synthesis and accumulation of the active components. CONCLUSION: Fume-drying stimulated respiration and secondary metabolite synthesis in rhubarb cells by exerting strong external stress on freshly harvested rhubarb. This study revealed the variations and molecular mechanism of active component accumulation in the rhubarb drying process and might serve as a guide for the development of alternative methods for rhubarb fumigation and drying process. © 2022 Society of Chemical Industry.


Subject(s)
Drugs, Chinese Herbal , Rheum , Desiccation/methods , Fumigation , Rheum/chemistry , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL