Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Nutrients ; 16(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612951

ABSTRACT

BACKGROUND: The study investigated the impact of starch degradation products (SDexF) as prebiotics on obesity management in mice and overweight/obese children. METHODS: A total of 48 mice on a normal diet (ND) and 48 on a Western diet (WD) were divided into subgroups with or without 5% SDexF supplementation for 28 weeks. In a human study, 100 overweight/obese children were randomly assigned to prebiotic and control groups, consuming fruit and vegetable mousse with or without 10 g of SDexF for 24 weeks. Stool samples were analyzed for microbiota using 16S rRNA gene sequencing, and short-chain fatty acids (SCFA) and amino acids (AA) were assessed. RESULTS: Results showed SDexF slowed weight gain in female mice on both diets but only temporarily in males. It altered bacterial diversity and specific taxa abundances in mouse feces. In humans, SDexF did not influence weight loss or gut microbiota composition, showing minimal changes in individual taxa. The anti-obesity effect observed in mice with WD-induced obesity was not replicated in children undergoing a weight-loss program. CONCLUSIONS: SDexF exhibited sex-specific effects in mice but did not impact weight loss or microbiota composition in overweight/obese children.


Subject(s)
Pediatric Obesity , Solanum tuberosum , Child , Humans , Male , Female , Animals , Mice , Dextrins , Diet, Western , Dysbiosis , Overweight , RNA, Ribosomal, 16S/genetics , Body Weight , Starch/pharmacology , Fruit
2.
Food Chem ; 439: 138161, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38070233

ABSTRACT

In this work, the biological properties of fractionated Riceberry bran protein hydrolysate obtained by ultrafiltration (URBPH) were evaluated and the possibility of using cluster dextrin to produce hydrolysate powder by spray-drying was investigated. Fractionation into peptides < 3 kDa was observed to improve antioxidant activity. URBPH < 3 kDa was then freeze-dried (FD-URBPH) and spray-dried (SD-URBPH) at different inlet air temperatures of 100-160 °C. The water solubility and antioxidant activity of FD-URBPH were higher than those of SD-URBPH. Nevertheless, encapsulation of hydrolysate with 10% cluster dextrin and an inlet temperature of 120 °C was also successful in maintaining protein qualities, which showed high 2,2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic (ABTS•+) scavenging activity (89.14%) and water solubility index (92.49%) and low water activity (aw = 0.53). Moreover, encapsulation preserved the antioxidant activity of peptides during gastrointestinal digestion better than the free form. URBPH and its spray-dried microcapsules could be used as bioactive ingredients in functional drinks or foods.


Subject(s)
Antioxidants , Protein Hydrolysates , Antioxidants/chemistry , Bromelains , Powders , Dextrins , Peptides , Water
3.
J Nutr Biochem ; 120: 109420, 2023 10.
Article in English | MEDLINE | ID: mdl-37516314

ABSTRACT

The consumption of resistant dextrin improves constipation, while its fermentation and degradation by the intestinal microbiota produce short-chain fatty acids (SCFA) and lactic acid, which have beneficial effects on host metabolism and immunity. Mg oxide (MgO) is an important mineral that is used to treat constipation. Therefore, resistant dextrin and MgO are often administered together to improve constipation. However, limited information is available regarding the effect of this combination on SCFA and lactic acid production. Crl:CD1(ICR) mice were fed a Mg-free diet with 5% resistant dextrin, followed by oral administration of MgO. We collected the cecum contents and measured SCFA and lactic acid levels. Additionally, the human subjects received resistant dextrin and Mg supplements as part of their habitual diet. The results of this study demonstrate that intestinal microbiota cannot promote SCFA and lactic acid production in the absence of Mg. In a mouse model, low doses of MgO promoted the production of SCFA and lactic acid, whereas high doses decreased their production. In humans, the combined consumption of resistant dextrin and Mg supplements increased the production of SCFA and lactic acid. The production of SCFA and lactic acid from dietary fiber may be augmented by the presence of MgO.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Humans , Dextrins/pharmacology , Dextrins/metabolism , Magnesium Oxide , Mice, Inbred ICR , Fatty Acids, Volatile/metabolism , Dietary Fiber/metabolism , Constipation
4.
Medicine (Baltimore) ; 101(40): e30829, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36221338

ABSTRACT

BACKGROUND: Immunity is a major system that defends the human body from the outside. Recently, interest in foods related to immunity has been increasing. METHODS: The purpose of this clinical trial was to determine the safety and efficacy of Phellinus linteus (PL) extract in improving immune function. A total of 30 participants were randomly assigned to 3 groups: the PL1000 group (n = 10) took 1000 mg of PL extract and 1000 mg of dextrin per day; the PL2000 group (n = 10) took 2000 mg of PL extract per day; and the placebo group (n = 10) took 2000 mg of dextrin per day. All participants took 2 capsules twice a day for 8 weeks. We measured their natural killer cell activity and cytokine levels in blood before and after consuming the clinical trial food. Variables were also investigated to evaluate safety, such as adverse reactions, vital signs, and abnormal findings. Student t test or the Mann-Whitney U test, a paired t test or the Wilcoxon signed-rank test, a chi-square test, analysis of variance, and Kruskal-Wallis test were conducted according to the characteristics of the data to compare the differences between each group before and after participants ate the clinical trial food. RESULTS: The natural killer cell activity and interleukin-6 levels of the PL1000 group tended to improve compared to those of the placebo group. Immunoglobulin G1, immunoglobulin G2, and immunoglobulin M levels did not show significant changes, but tended to improve in the PL1000 and PL2000 groups compared to those of the placebo group. Both the Per Protocol and Intention to Treat populations had improved validation parameters. It is safe because no hazards were found in the safety assessment. CONCLUSION: PL extract can help improve immunity. Evidences to conduct the main clinical trial is secured through this pilot study. A future large-scale main trial will be conducted based on this pilot study results.


Subject(s)
Dextrins , Interleukin-6 , Cytokines , Double-Blind Method , Humans , Immunoglobulin M , Phellinus , Pilot Projects , Plant Extracts/therapeutic use
5.
Medicine (Baltimore) ; 101(35): e30073, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36107535

ABSTRACT

BACKGROUND: The respiratory system is the first line of defense against outside pollutants. Recently, respiratory health has been receiving increasing attention due to the increase in fine dust, which reduces respiratory function and increases incidence of chronic obstructive pulmonary disease, and in coronavirus pandemic, which can cause severe acute respiratory syndrome. METHODS: This clinical pilot trial was designed to secure evidence for a main clinical trial and to confirm the efficacy and safety of Liriope platyphylla (LP) extract for improving respiratory function. We conducted a double-blind randomized placebo-controlled trial with 22 participants from June 30, 2021, to August 25, 2021. The primary outcome was Breathlessness, Cough, and Sputum Scale score. Secondary outcomes included forced vital capacity, forced expiratory volume at 1 second (FEV1), forced expiratory volume at 1 s/forced vital capacity ratio, cough assessment test score, chronic obstructive pulmonary disease assessment test score, peripheral blood mononuclear cell counts (white blood cells, eosinophils, T cells, and B cells), high-sensitivity C-reactive protein level, erythrocyte sedimentation rate, cytokine (interleukin-1ß, interleukin-4, tumor necrosis factor-α, interleukin-6, interleukin-8, interferon-γ, and immunoglobulin E) levels, antioxidant (glutathione peroxidase and superoxide dismutase) levels, and nitric oxide level. RESULTS: A total of 22 participants were randomly assigned to 2 groups: the LP group (n = 11), who took 1000 mg of LP extract per day, and the placebo group, who took 1000 mg of dextrin per day. Participants took 1 capsule twice a day for 4 weeks. For the Breathlessness, Cough, and Sputum Scale, the interaction between group and visit was statistically significant in a blend of analyses of variance. interleukin-8, tumor necrosis factor-α, and interferon-γ levels decreased more in the LP group than in the placebo group. The sample size required for large-scale clinical trials in the future was 50. There were no side effects. CONCLUSION: LP extract can enhance respiratory function. The detailed data we obtained support conducting the future main large-scale clinical trial.


Subject(s)
Interleukin-8 , Pulmonary Disease, Chronic Obstructive , Antioxidants/therapeutic use , C-Reactive Protein , Cough/etiology , Dextrins/therapeutic use , Dust , Dyspnea/complications , Glutathione Peroxidase , Humans , Immunoglobulin E , Interferon-gamma , Interleukin-1beta , Interleukin-4 , Interleukin-6/therapeutic use , Leukocytes, Mononuclear , Nitric Oxide , Pilot Projects , Plant Extracts/therapeutic use , Pulmonary Disease, Chronic Obstructive/complications , Superoxide Dismutase , Tumor Necrosis Factor-alpha/therapeutic use
6.
Food Funct ; 13(18): 9372-9382, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35959845

ABSTRACT

The increased prevalence of nonalcoholic fatty liver disease (NAFLD) is a critical public health concern. Deoxyribonucleic acid (DNA) from chum salmon (Oncorhynchus keta) milt (salmon milt DNA; SM DNA), a by-product obtained during industrial processing of the pharmaceutical raw material protamine, ameliorates hepatosteatosis in animals. This randomised, double-blind, parallel-group comparative study evaluated the effects of SM DNA on hepatic function in healthy Japanese participants with slightly decreased liver function and high alanine aminotransferase level and body mass index. Fifty participants were included in the study. The participants were divided into the placebo (n = 24) and SM DNA (n = 26) groups and administered equal doses of placebo (dextrin) and SM DNA (530 mg day-1), respectively. No significant alleviating effects of SM DNA were observed on the primary (hepatic functions and liver-to-spleen ratio), and secondary (NAFLD fibrosis score, serum protein levels, blood glucose, blood lipids, inflammatory markers, adipokines, cytokines, fatigue scoring, and skin conditions) endpoints. Subsequently, a sex-based subgroup analysis revealed a significant improvement in the primary and secondary outcomes in males ingesting SM DNA compared with those in males who were administered placebo. However, no such effect was observed in females. Overall, this clinical study demonstrated the anti-obesity potential of SM DNA and suggested that SM DNA can benefit hepatic function in males.


Subject(s)
DNA , Dietary Supplements , Non-alcoholic Fatty Liver Disease , Adipokines , Alanine Transaminase , Animals , Blood Glucose , Cytokines , DNA/administration & dosage , Dextrins , Double-Blind Method , Female , Humans , Male , Non-alcoholic Fatty Liver Disease/drug therapy , Oncorhynchus keta , Protamines/therapeutic use
7.
Nutrients ; 14(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631299

ABSTRACT

Preparations of resistant dextrins have become an interesting topic of research due to their properties, which bear resemblance those of prebiotics, e.g., the improvement of metabolic parameters, increased efficiency of the immune system and induction of vitamin production. The aim of this study was to investigate the effects of the resistant dextrin produced from potato starch on the growth dynamics of typical gastrointestinal microbiota and the activity of fecal enzymes in order to assess a possible exhibition of prebiotic properties. In the study, in vitro cultivation of co-cultures of Lactobacillus, Bifidobacterium, E. coli, Enterococcus, Clostridium and Bacteroides spp. was conducted on media enriched with the resistant dextrin. The CFU/mL for each strain was measured in time periods of 24, 48, 72, 96 and 168 h. Furthermore, the activities of α-glucosidase, α-galactosidase, ß-glucosidase, ß-galactosidase and ß-glucuronidase were determined using spectrophotometric methods at a wavelength of 400 nm. The results show that the resistant dextrin can be utilized as a source of carbon for the growth of intestinal bacteria. Moreover, the results revealed that, after 168 h of cultivation, it enhances the viability of probiotic strains of Lactobacillus and Bifidobacterium spp. and decreases the growth of other intestinal strains (Clostridium, Escherichia coli, Enterococcus and Bacteroides), which is demonstrated by a high Prebiotic Index (p < 0.05). Furthermore, there was no significant change in the pH of the cultures; however, the pace of the pH decrease during the cultivation was slower in the case of culture with resistant dextrin. Furthermore, it was revealed that usage of the resistant dextrin as a medium additive noticeably lowered the activities of ß-glucosidase and ß-glucuronidase compared to the control (p < 0.05), whereas the activities of the other fecal enzymes were affected to a lesser degree. The resistant dextrins derived from potato starch are a suitable prebiotic candidate as they promote the growth of beneficial strains of gut bacteria and improve health markers, such as the activity of fecal enzymes. Nevertheless, additional in vivo research is necessary to further assess the suspected health-promoting properties.


Subject(s)
Cellulases , Solanum tuberosum , Bacteria , Bifidobacterium/metabolism , Cellulases/metabolism , Cellulases/pharmacology , Clostridium , Coculture Techniques , Dextrins/chemistry , Dextrins/pharmacology , Enterococcus , Escherichia coli , Glucuronidase/metabolism , Lactobacillus , Prebiotics , Solanum tuberosum/chemistry , Starch/metabolism
8.
Int J Mol Sci ; 23(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35456919

ABSTRACT

Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.


Subject(s)
Cyclodextrins , Dextrins , Biological Availability , Dietary Supplements , Drug Delivery Systems , Water
9.
Mol Nutr Food Res ; 66(11): e2101091, 2022 06.
Article in English | MEDLINE | ID: mdl-35312171

ABSTRACT

SCOPE: An imbalance of the gut microbiota ("dysbiosis") is associated with numerous chronic diseases, and its modulation is a promising novel therapeutic approach. Dietary supplementation with soluble fiber is one of several proposed modulation strategies. This study aims at confirming the impact of the resistant dextrin NUTRIOSE (RD), a soluble fiber with demonstrated beneficial health effects, on the gut microbiota of healthy individuals. METHODS AND RESULTS: Fifty healthy women are enrolled and supplemented daily with either RD (n = 24) or a control product (n = 26) during 6 weeks. Characterization of the fecal metagenome with shotgun sequencing reveals that RD intake dramatically increases the abundance of the commensal bacterium Parabacteroides distasonis. Furthermore, presence in metagenomes of accessory genes from P. distasonis, coding for susCD (a starch-binding membrane protein complex) is associated with a greater increase of the species. This suggests that response to RD might be strain-dependent. CONCLUSION: Supplementation with RD can be used to specifically increase P. distasonis in gut microbiota of healthy women. The magnitude of the response may be associated with fiber-metabolizing capabilities of strains carried by subjects. Further research will seek to confirm that P. distasonis directly modulates the clinical effects observed in other studies.


Subject(s)
Dextrins , Dietary Supplements , Bacteroidetes , Dextrins/pharmacology , Diet , Feces/microbiology , Female , Humans
10.
Molecules ; 26(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34577093

ABSTRACT

Dietary fiber can be obtained by dextrinization, which occurs while heating starch in the presence of acids. During dextrinization, depolymerization, transglycosylation, and repolymerization occur, leading to structural changes responsible for increasing resistance to starch enzymatic digestion. The conventional dextrinization time can be decreased by using microwave-assisted heating. The main objective of this study was to obtain dietary fiber from acidified potato starch using continuous and discontinuous microwave-assisted heating and to investigate the structure and physicochemical properties of the resulting dextrins. Dextrins were characterized by water solubility, dextrose equivalent, and color parameters (L* a* b*). Total dietary fiber content was measured according to the AOAC 2009.01 method. Structural and morphological changes were determined by means of SEM, XRD, DSC, and GC-MS analyses. Microwave-assisted dextrinization of potato starch led to light yellow to brownish products with increased solubility in water and diminished crystallinity and gelatinization enthalpy. Dextrinization products contained glycosidic linkages and branched residues not present in native starch, indicative of its conversion into dietary fiber. Thus, microwave-assisted heating can induce structural changes in potato starch, originating products with a high level of dietary fiber content.


Subject(s)
Dietary Fiber/analysis , Hot Temperature , Microwaves , Starch/chemistry , Acids/chemistry , Carbohydrate Conformation , Color , Dextrins/analysis , Dextrins/chemistry , Glucose/analysis , Glucose/chemistry , Microscopy, Electron, Scanning , Physical Phenomena , Solanum tuberosum/chemistry , Solubility , X-Ray Diffraction
11.
Food Funct ; 12(18): 8594-8604, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34338703

ABSTRACT

This trial evaluated the effects of co-supplementing Camelina sativa oil (CSO) and a prebiotic as modulators of the gut microbiota on cardiometabolic risk factors and mental health in NAFLD patients. In all, 44 subjects with NAFLD were allocated to either an intervention (20 g d-1 CSO + resistant dextrin) or a placebo (20 g d-1 CSO + maltodextrin) group and received a calorie-restricted diet (-500 kcal d-1) for 12 weeks. Fasting plasma levels of gucose, insulin, hs-CRP, endotoxin, antioxidant enzyme activity, total antioxidant capacity (TAC), malondialdehyde (MDA), 8-iso-prostaglandin F2α, and uric acid were measured at the baseline and post-intervention. The depression, anxiety and stress scale (DASS) and the general health questionnaire (GHQ) were used to assess mental health. Co-supplementing CSO and resistant dextrin significantly decreased the level of insulin concentration (-0.84 µU ml-1, p = 0.011), HOMA-IR (-0.27, p = 0.021), hs-CRP (-1.25 pg ml-1, p = 0.023), endotoxin (-3.70 EU mL-1, p = 0.001), cortisol (-2.43, p = 0.033), GHQ (-5.03, p = 0.035), DASS (-9.01, p = 0.024), and MDA (-0.54 nmol mL-1, p = 0.021) and increased the levels of TAC (0.16 mmol L-1, p = 0.032) and superoxide dismutase (106.32 U g-1 Hb, p = 0.45) in the intervention group compared with the placebo group. No significant changes were observed in the levels of other biomarkers. Co-supplementing CSO and resistant dextrin in combination with a low-calorie diet may improve metabolic risk factors and mental health in NAFLD patients.


Subject(s)
Brassicaceae , Cardiometabolic Risk Factors , Dietary Supplements , Mental Health , Non-alcoholic Fatty Liver Disease/physiopathology , Non-alcoholic Fatty Liver Disease/psychology , Plant Oils , Adult , Antioxidants , Caloric Restriction , Dextrins , Female , Gastrointestinal Microbiome , Humans , Male , Middle Aged , Oxidative Stress , Prebiotics , Resistant Starch , Young Adult
12.
Int J Biol Macromol ; 184: 898-908, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34157333

ABSTRACT

Herein, we entrapped Thymus vulgaris essential oil (EO) within the physically cross-linked sponge-like architecture of cryogels by ice template-assisted freeze-drying. Their 3D cryogenically-structured network was built through hydrogen bonding formed by blending two naturally-derived polysaccharides, chitosan and dextrin. The embedment of EOs within the cryogel matrix generates porous films with an increased elasticity that allows their fast shape recovery after full compression. Thus, the swollen EOs-loaded cryogel films exhibited an elastic modulus of 3.00 MPa, which is more than 40 times higher than that of polysaccharide films without EOs (an elastic modulus of only 0.07 MPa). In addition, the encapsulation of bioactive compounds endows the bio-based films with both antioxidant and antifungal properties, showing a radical scavenging activity of 65% and a zone inhibition diameter of 40 mm for Candida parapsilosis fungi. Our results recommend the entrapment of EOs into bio-based cryogel carriers as a straightforward approach to provide 'green' polysaccharide-based films having both improved physicochemical properties and remarkable antifungal activity.


Subject(s)
Antifungal Agents/pharmacology , Antioxidants/pharmacology , Chitosan/chemistry , Dextrins/chemistry , Oils, Volatile/pharmacology , Thymus Plant/chemistry , Antifungal Agents/chemistry , Antioxidants/chemistry , Bandages , Candida parapsilosis/drug effects , Cryogels , Elasticity , Green Chemistry Technology , Hydrogen Bonding , Microscopy, Electron, Scanning , Oils, Volatile/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Porosity , X-Ray Diffraction
13.
Eur J Nutr ; 60(8): 4635-4643, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34170392

ABSTRACT

PURPOSE: Resistant dextrin (RD) supplementation has been shown to alter satiety, glycaemia, and body weight, in overweight Chinese men; however, there are limited data on its effects in other demographic groups. Here, we investigated the effects of RD on satiety in healthy adults living in the United Kingdom. METHODS: 20 normal weight and 16 overweight adults completed this randomised controlled cross-over study. Either RD (14 g/day NUTRIOSE® FB06) or maltodextrin control was consumed in mid-morning and mid-afternoon preload beverages over a 28-day treatment period with crossover after a 28-day washout. During 10-h study visits (on days 1, 14, and 28 of each treatment period), satietogenic, glycaemic and anorectic hormonal responses to provided meals were assessed. RESULTS: Chronic supplementation with RD was associated with higher fasted satiety scores at day 14 (P = 0.006) and day 28 (P = 0.040), compared to control. RD also increased satiety after the mid-morning intervention drink, but it was associated with a reduction in post-meal satiety following both the lunch and evening meals (P < 0.01). The glycaemic response to the mid-morning intervention drink (0-30 min) was attenuated following RD supplementation (P < 0.01). Whilst not a primary endpoint we also observed lower systolic blood pressure at day 14 (P = 0.035) and 28 (P = 0.030), compared to day 1, following RD supplementation in the normal weight group. Energy intake and anthropometrics were unaffected. CONCLUSIONS: RD supplementation modified satiety and glycaemic responses in this cohort, further studies are required to determine longer-term effects on body weight control and metabolic markers. CLINICALTRIALS. GOV REGISTRATION: NCT02041975 (22/01/2014).


Subject(s)
Dextrins , Satiety Response , Adult , Blood Glucose , Cross-Over Studies , Dietary Supplements , Energy Intake , Humans , Male , Satiation
14.
Int J Biol Macromol ; 179: 429-447, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33652048

ABSTRACT

Iron oxide nanoparticles (Fe3O4 NPs) attracted significant scientific interest, considering their immense diversity of usage and biocompatibility. Perceiving the growing importance of sustainable chemistry, many efforts have been made to prepare these NPs using naturally occurring materials mostly plant extracts and microbes. Magnetic NPs (MNPs) are commonly used as composites and are considered in two matters: synthesis and modification of their functional groups. Biopolymeric nanocomposites are a group of hybrid materials composed of natural polymers and inorganic nanomaterials. Biopolymers such as alginate, cellulose, starch, gelatin, chitosan, etc. have been considered extensively and provided composites with better electrical and mechanical thermal properties. Fe3O4 NPs incorporated in a polymer and biopolymer matrix is a good instance of the functional nanostructure, which has been able to enhance the properties of both ingredients. These hybrids can have impressive applications in various scopes such as magneto-optical storage, electromagnetic interference shielding, catalyst, water remediation, biomedical sensing, and so on. In this study, we have tried to briefly introduce Fe3O4 NPs, investigate the green and sustainable methods that have been suggested for its synthesis and review recent utilization of their biopolymeric nanocomposite (NC) including starch, chitosan, dextrin, etc. as catalysts and photocatalysts.


Subject(s)
Cellulose/chemistry , Chitosan/chemistry , Dextrins/chemistry , Green Chemistry Technology/methods , Magnetic Iron Oxide Nanoparticles/chemistry , Nanocomposites/chemistry , Starch/chemistry
15.
J Sci Food Agric ; 101(10): 4125-4133, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33368353

ABSTRACT

BACKGROUND: Fruit mousses are products with a relatively low amount of dietary fiber in a single portion, but with additional portions of soluble fiber they may be good alternative to fiber-rich snacks as take-away food. In the present study, the properties of new soluble dextrin fiber (SDexF) from potato starch were assessed to establish whether it could be used to enrich fruit mousses. The properties of SDexF that can affect processing and storage stability of enriched mousses were studied and compared with those of native potato starch and semiproducts (resulting from various drying temperatures). The effect of the addition of SDexF on the pasting properties of mousse was also analyzed. RESULTS: The application of food-grade hydrochloric and citric acids as catalysts in the dextrinization of food-grade potato starch allowed to SDexF to be obtained. Despite the differences in characteristics of the semiproducts, the final SDexF preparations were very similar in the meaning of solubility, dextrose equivalent (DE), retrogradation, and pasting properties. SDexF preparations were characterized by a significantly lower retrogradation tendency, peak viscosity, final viscosity, and gelatinization enthalpy in comparison with both native starch and semiproducts. Soluble dextrin fiber was successfully added to banana-apple mousse. The addition of SDexF to mousse did not cause any undesirable changes to the viscosity of the product, and surprisingly even resulted in mousse with lower viscosity. Turbidity and RVA studies revealed that SDexF was stable and retrogradation processes can be negligible during storage. CONCLUSION: The SDexF obtained from potato starch can be a novel functional substance to increase the dietary fiber content of fruit or fruit and vegetable mousses. © 2020 Society of Chemical Industry.


Subject(s)
Dextrins/chemistry , Food Additives/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Solanum tuberosum/chemistry , Dietary Fiber/analysis , Food Handling , Solubility , Temperature , Thermodynamics , Viscosity
16.
J Agric Food Chem ; 69(1): 474-482, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33372794

ABSTRACT

In this work, spiral dextrin/resveratrol (SD/Res) crystal, a new colon-specific drug-delivery system, was established by a novel method of encapsulation and cocrystallization to improve the antidigestion ability compared with the SD/Res inclusion complex (SD/Res IC) prepared by encapsulation and coprecipitation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that the SD/Res crystal formed a more regular and perfect crystallite than SD/Res IC. Moreover, the encapsulation ability and thermostability of the SD/Res crystal were enhanced as the chain length of SD was increased. In vitro digestion indicated that SD/Res IC merely achieved small intestine-targeted release of resveratrol, while the SD/Res crystal could act as a colon-specific delivery system to protect resveratrol from degradation by gastric acid and pancreatic enzymes. The SD-1/Res crystal presented much higher thermal stability and stronger gastrointestinal stability than other SD/Res crystals and SD/Res ICs, which facilitated its application as a novel colon-target delivery system for resveratrol.


Subject(s)
Colon/drug effects , Dextrins/chemistry , Drug Delivery Systems/methods , Plant Extracts/chemistry , Resveratrol/chemistry , Resveratrol/pharmacology , Drug Compounding , Drug Liberation , Humans , Particle Size , X-Ray Diffraction , Zea mays/chemistry
17.
Int J Med Sci ; 17(17): 2611-2621, 2020.
Article in English | MEDLINE | ID: mdl-33162789

ABSTRACT

Resistant dextrin (RD), a short chain glucose polymer, has been shown to improve type 2 diabetes mellitus (T2DM) in clinical studies. However, the improvement of adipose tissue inflammation and specific mechanisms of RD supplementation in obesity have not been fully investigated. Therefore, we examined whether RD attenuates obesity and adipose tissue inflammation in high-fat diet (HFD)-fed mice. Male C57BL/6 mice were fed a chow diet, a HFD or a HFD with RD supplementation for 12 weeks. Body weight (BW), fasting blood glucose (FBG), epididymal fat accumulation, serum total triglyceride (TG), free fatty acid (FFA) and inflammatory cytokine levels (TNF-α, IL-1ß, IL-6, IL-10) were measured. Inflammation markers and macrophage infiltration in epididymal adipose tissue were observed. After 12 weeks of intervention, the body weight gain of mice in RD supplementation group was less than that in HFD group. FBG, epididymal fat accumulation, serum TG and FFA levels were reduced in RD supplementation group compared with HFD group. Moreover, serum and mRNA levels of IL-6 were significantly reduced in the RD supplementation group. In addition, RD supplementation reduced macrophage infiltration, regulated polarization of macrophage and inhibited NF-κB signaling in epididymal adipose tissue. In conclusion, RD reduces obesity and attenuates adipose tissue inflammation in HFD-fed mice, and the inhibition of NF-κB signaling may be a presumed mechanism for its effects.


Subject(s)
Adipose Tissue/immunology , Dextrins/administration & dosage , Dietary Supplements , Obesity/diet therapy , Adipose Tissue/pathology , Animals , Body Weight , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Inflammation/diet therapy , Inflammation/immunology , Inflammation/pathology , Male , Mice , NF-kappa B/metabolism , Obesity/immunology , Obesity/pathology , Signal Transduction/immunology
18.
Nutrients ; 12(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679670

ABSTRACT

There is growing interest in studying dietary fiber to stimulate microbiome changes that might prevent or alleviate inflammatory bowel disease (IBD). However, dietary fiber effects have shown varying degrees of efficacy, for reasons that are unclear. This study examined whether the effects of isomaltodextrin on gut microbiota and IBD were dependent on dose or host sex, using an Interleukin (IL)-10 deficient murine colitis model. After 12 weeks, colonic IL-12p70 was depressed in male mice receiving high-dose isomaltodextrin supplementation compared to the control group (p = 0.04). Male mice receiving high-dose isomaltodextrin exhibited changes in microbial alpha-diversity, including enhanced richness and evenness (p = 0.01) and limited reduction in the relative abundance of Coprococcus (q = 0.08), compared to the control group. These microbial compositional changes were negatively associated with IL-12p70 levels in the male group (rs ≤ -0.51, q ≤ 0.08). In contrast, female mice receiving isomaltodextrin displayed a reduction in alpha-diversity and Coprococcus abundance and a high level of IL-12p70, as did the control group. Together, these results indicate that isomaltodextrin altered the gut microbial composition linking specific immune-regulatory cytokine responses, while the interactions among fiber, microbiota and immune response were dose dependent and largely sex specific. The results further indicate that interactions between environmental and host factors can affect microbiome manipulation in the host.


Subject(s)
Colitis/microbiology , Dextrins/administration & dosage , Dietary Fiber/administration & dosage , Dietary Supplements , Gastrointestinal Microbiome , Interleukin-10/deficiency , Intestines/microbiology , Maltose/analogs & derivatives , Nutritional Physiological Phenomena/immunology , Sex Characteristics , Animals , Colitis/therapy , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Interleukin-10/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Intestines/immunology , Male , Maltose/administration & dosage , Mice, Transgenic
19.
Appl Microbiol Biotechnol ; 104(9): 4141-4154, 2020 May.
Article in English | MEDLINE | ID: mdl-32125479

ABSTRACT

Pyrodextrin (PD) is prepared from starch by heat treatment and is resistant to amylase. We hypothesized that PD might have prebiotic potential affecting the microbiota composition, because it contains a non-digestible portion that may behave as dietary fiber. This study investigated the effects of PD supplementation on growth performance, gut morphology, short-chain fatty acids (SCFAs), and the bacterial community in weaned piglets receiving dietary supplementation of 0.5% PD. The piglets in the PD (treated) groups showed greater antioxidant capacity and feed efficiency (P < 0.05), as well as improved intestinal morphology in comparison with the piglets in the weaned (control) group. Gut microbiota profiles were assessed through 16S rRNA sequencing on the ileum contents and feces of early weaned piglets. Several genus-level enrichments and depletions were observed in response to PD treatment. Of note, PD supplementation decreased the relative abundance of pathogenic organisms, including Defluviicoccus and Gardnerella, while markedly increasing that of commensal bacteria (genera Psychrobacter and Prevotella), which have important roles in nutrient absorption and immune response regulation. The most notable effect in the PD treatment groups was increased production of SCFAs in the feces of PD-treated weaned piglets. Correlation analysis revealed that the improvement in SCFAs was positively correlated with the increase in SCFA-producing bacteria. Overall, this study provides a more comprehensive understanding of the effects of PD supplementation on the fecal microbial community and the modulation of SCFA production in early weaned piglets, thus indicating that PD can be used to alleviate weaning stress in piglets.


Subject(s)
Animal Feed/analysis , Dextrins/administration & dosage , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/microbiology , Age Factors , Animals , Bacteria/drug effects , Bacteria/pathogenicity , Fatty Acids, Volatile/metabolism , Feces/microbiology , Intestinal Mucosa/physiology , RNA, Ribosomal, 16S/genetics , Swine , Weaning
20.
Mol Pharm ; 16(7): 3199-3207, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31125239

ABSTRACT

Polymer masked-unmasked protein therapy (PUMPT) uses conjugation of a biodegradable polymer, such as dextrin, hyaluronic acid, or poly(l-glutamic acid), to mask a protein or peptide's activity; subsequent locally triggered degradation of the polymer at the target site regenerates bioactivity in a controllable fashion. Although the concept of PUMPT is well established, the relationship between protein unmasking and reinstatement of bioactivity is unclear. Here, we used dextrin-colistin conjugates to study the relationship between the molecular structure (degree of unmasking) and biological activity. Size exclusion chromatography was employed to collect fractions of differentially degraded conjugates and ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) employed to characterize the corresponding structures. Antimicrobial activity was studied using a minimum inhibitory concentration (MIC) assay and confocal laser scanning microscopy of LIVE/DEAD-stained biofilms with COMSTAT analysis. In vitro toxicity of the degraded conjugate was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. UPLC-MS revealed that the fully "unmasked" dextrin-colistin conjugate composed of colistin bound to at least one linker, whereas larger species were composed of colistin with varying lengths of glucose units attached. Increasing the degree of dextrin modification by succinoylation typically led to a greater number of linkers bound to colistin. Greater antimicrobial and antibiofilm activity were observed for the fully "unmasked" conjugate compared to the partially degraded species (MIC = 0.25 and 2-8 µg/mL, respectively), whereas dextrin conjugation reduced colistin's in vitro toxicity toward kidney cells, even after complete unmasking. This study highlights the importance of defining the structure-antimicrobial activity relationship for novel antibiotic derivatives and demonstrates the suitability of LC-MS to aid the design of biodegradable polymer-antibiotic conjugates.


Subject(s)
Amylases/metabolism , Colistin/chemistry , Colistin/metabolism , Dextrins/chemistry , Dextrins/metabolism , Drug Compounding/methods , Drug Delivery Systems/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biofilms/drug effects , Cell Line , Cell Survival/drug effects , Chromatography, Gel , Escherichia coli/drug effects , Humans , Kidney Tubules, Proximal/cytology , Mass Spectrometry , Microbial Sensitivity Tests , Microscopy, Confocal , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL