Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Diabetes ; 62(3): 801-10, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23160530

ABSTRACT

Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders.


Subject(s)
Appetite Regulation , Diazepam Binding Inhibitor/metabolism , Feedback, Physiological , Glucose/metabolism , Hypothalamus/metabolism , Neuroglia/metabolism , Neuropeptides/metabolism , Peptide Fragments/metabolism , Animals , Appetite Depressants/administration & dosage , Appetite Depressants/pharmacology , Appetite Regulation/drug effects , Appetite Stimulants/administration & dosage , Appetite Stimulants/pharmacology , Appetitive Behavior/drug effects , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Diazepam Binding Inhibitor/agonists , Diazepam Binding Inhibitor/antagonists & inhibitors , Feedback, Physiological/drug effects , Gene Expression Regulation/drug effects , Glucose/administration & dosage , Hypothalamus/cytology , Hypothalamus/drug effects , Injections, Intraventricular , Male , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neuroglia/drug effects , Neuropeptides/antagonists & inhibitors , Peptide Fragments/antagonists & inhibitors , Protein Processing, Post-Translational , Rats , Rats, Wistar , Receptors, Melanocortin/antagonists & inhibitors , Receptors, Melanocortin/metabolism , Synaptic Transmission/drug effects , Tissue Culture Techniques
2.
J Antimicrob Chemother ; 67(3): 609-17, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22167242

ABSTRACT

BACKGROUND: Cryptosporidium parvum causes an opportunistic infection in AIDS patients, and no effective treatments are yet available. This parasite possesses a single fatty acyl-CoA binding protein (CpACBP1) that is localized to the unique parasitophorous vacuole membrane (PVM). The major goal of this study was to identify inhibitors from known drugs against CpACBP1 as potential new anti-Cryptosporidium agents. METHODS: A fluorescence assay was developed to detect CpACBP1 activity and to identify inhibitors by screening known drugs. Efficacies of top CpACBP1 inhibitors against Cryptosporidium growth in vitro were evaluated using a quantitative RT-PCR assay. RESULTS: Nitrobenzoxadiazole-labelled palmitoyl-CoA significantly increased the fluorescent emission upon binding to CpACBP1 (excitation/emission 460/538 nm), which was quantified to determine the CpACBP1 activity and binding kinetics. The fluorescence assay was used to screen a collection of 1040 compounds containing mostly known drugs, and identified the 28 most active compounds that could inhibit CpACBP1 activity with sub-micromolar IC(50) values. Among them, four compounds displayed efficacies against parasite growth in vitro with low micromolar IC(50) values. The effective compounds were broxyquinoline (IC(50) 64.9 µM), cloxyquin (IC(50) 25.1 µM), cloxacillin sodium (IC(50) 36.2 µM) and sodium dehydrocholate (IC(50) 53.2 µM). CONCLUSIONS: The fluorescence ACBP assay can be effectively used to screen known drugs or other compound libraries. Novel anti-Cryptosporidium activity was observed in four top CpACBP1 inhibitors, which may be further investigated for their potential to be repurposed to treat cryptosporidiosis and to serve as leads for drug development.


Subject(s)
Antiprotozoal Agents/isolation & purification , Cryptosporidium parvum/drug effects , Diazepam Binding Inhibitor/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Fluorescence , Humans , Protozoan Proteins/antagonists & inhibitors , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL