Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
N Biotechnol ; 28(2): 97-109, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-20933624

ABSTRACT

Acyl-CoA-binding protein (ACBP), a low molecular mass (m) (∼ 10 kDa) soluble protein ubiquitous in eukaryotes, plays an important housekeeping role in lipid metabolism by maintaining the intracellular acyl-CoA pool. ACBP is involved in lipid biosynthesis and transport, gene expression, and membrane biogenesis. In plants, low m ACBP and high m ACBPs participate in response mechanisms to biotic and abiotic factors, acyl-CoA transport in phloem, and biosynthesis of structural and storage lipids. In light of current research on the modification of seed oil, insight into mechanisms of substrate trafficking within lipid biosynthetic pathways is crucial for developing rational strategies for the production of specialty oils with the desired alterations in fatty acid composition. In this review, we summarize our knowledge of plant ACBPs with emphasis on the role of low m ACBP in seed oil biosynthesis, based on in vitro studies and analyses of transgenic plants. Future prospects and possible applications of low m ACBP in seed oil modification are discussed.


Subject(s)
Diazepam Binding Inhibitor/chemistry , Diazepam Binding Inhibitor/metabolism , Plant Oils/metabolism , Seeds/chemistry , Acyl Coenzyme A/metabolism , Animals , Diazepam Binding Inhibitor/classification , Humans , Molecular Weight , Phylogeny
2.
J Biol Chem ; 285(28): 21359-65, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20452969

ABSTRACT

Acyl-CoA-binding protein (ACBP) functions both intracellularly as part of fatty acid metabolism and extracellularly as diazepam binding inhibitor, the precursor of endozepine peptides. Two of these peptides, ODN and TTN, bind to the GABA(A) receptor and modulate its sensitivity to gamma-aminobutyric acid (GABA). We have found that depolarization of mouse primary astrocytes induces the rapid release and processing of ACBP to the active peptides. We previously showed that ODN can trigger the rapid sporulation of the social amoeba Dictyostelium. Using this bioassay, we now show that astrocytes release the endozepine peptides within 10 min of exposure to the steroids cortisol, pregnenolone, pregnenolone sulfate, or progesterone. ACBP lacks a signal sequence for secretion through the endoplasmic reticulum/Golgi pathway and its secretion is not affected by addition of brefeldin A, a well known inhibitor of the classical secretion pathway, suggesting that it follows an unconventional pathway for secretion. Moreover, induction of autophagy by addition of rapamycin also resulted in rapid release of ACBP indicating that this protein uses components of the autophagy pathway for secretion. Following secretion, ACBP is proteolytically cleaved to the active neuropeptides by protease activity on the surface of astrocytes. Neurosteroids, such as pregnenolone sulfate, were previously shown to modulate the excitatory/inhibitory balance in brain through increased release of glutamate and decreased release of GABA. These effects of steroids in neurons will be reinforced by the release of endozepines from astrocytes shown here, and suggest an orchestrated astrocyte-neuron cross-talk that can affect a broad spectrum of behavioral functions.


Subject(s)
Astrocytes/metabolism , Diazepam Binding Inhibitor/chemistry , Diazepam Binding Inhibitor/metabolism , Hydrocortisone/pharmacology , Pregnenolone/pharmacology , Animals , Animals, Newborn , Anti-Inflammatory Agents/pharmacology , Brain/metabolism , Dictyostelium/metabolism , Glutamic Acid/metabolism , Mice , Neuroglia/metabolism , Neurons/metabolism , Peptides/chemistry , Signal Transduction
3.
Plant Physiol Biochem ; 47(6): 479-84, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19121948

ABSTRACT

In Arabidopsis thaliana, a gene family of six members encodes acyl-CoA-binding proteins (ACBPs). These Arabidopsis ACBPs (designated ACBP1 to ACBP6) range in size from 10.4kDa to 73.1kDa and display varying affinities for acyl-CoA esters, suggesting that they have different roles in plant lipid metabolism. In contrast, only the 10-kDa ACBPs have been well-characterized from other eukaryote species. Our previous studies have revealed that ACBP1 and ACBP2 are membrane-associated proteins, while ACBP3 is extracellularly-targeted. More recently, we have reported that the remaining three members in this protein family (namely ACBP4, ACBP5 and ACBP6) are subcellularly localized to the cytosol in Arabidopsis. The subcellular localizations of ACBP4, ACBP5 and ACBP6 in the cytosol were demonstrated using a number of different approaches incorporating biochemical fractionation, confocal microscopy of transgenic Arabidopsis expressing autofluorescence-tagged fusions and immunoelectron microscopy using ACBP-specific antibodies. Our results indicate that all three ACBPs in the cytosol are potential candidates for acyl-CoA binding and trafficking in plant cells. In this review, the functional redundancy and differences among the three cytosolic ACBPs are discussed by comparison of their light-regulated expression and substrate affinities to acyl-CoA esters, and from biochemical analyses on their knockout mutants and/or overexpression in transgenic Arabidopsis. The transcriptionally light-induced ACBP4 and ACBP5, which encode the two largest forms of Arabidopsis ACBPs, bind oleoyl-CoA esters and likely transfer oleoyl-CoAs from the plastids (the site of de novo fatty acid biosynthesis) to the endoplasmic reticulum for the biosynthesis of non-plastidial membrane lipids in Arabidopsis.


Subject(s)
Acyl Coenzyme A/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytoplasm/metabolism , Diazepam Binding Inhibitor/metabolism , Genes, Plant , Acyl Coenzyme A/genetics , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Binding Sites , Biological Transport , DNA, Complementary/isolation & purification , Diazepam Binding Inhibitor/chemistry , Esters/metabolism , Gene Expression Regulation, Plant , Light Signal Transduction , Plant Oils/metabolism , Plant Structures , Protein Binding , RNA, Messenger/metabolism
4.
J Med Chem ; 50(13): 3070-6, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17550241

ABSTRACT

We have previously shown that the endozepine octadecaneuropeptide (ODN) stimulates the biosynthesis of neurosteroids from frog hypothalamic explants. In the present study, we have investigated the structure-activity relationships of a series of analogs of the C-terminal octapeptide of ODN (OP) on neurosteroid formation. We found that OP and its cyclic analog cyclo1-8OP stimulate in a concentration-dependent manner the synthesis of various steroids including 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone and dehydroepiandrosterone. Deletion or Ala-substitution of the Arg1 or Pro2 residues of OP did not affect the activity of the peptide. In contrast, deletion or replacement of any of the amino acids of the C-terminal hexapeptide fragment totally abolished the effect of OP on neurosteroid biosynthesis. The present study indicates that the C-terminal hexapeptide of ODN/OP is the minimal sequence retaining full biological activity on steroid-producing neurons.


Subject(s)
Diazepam Binding Inhibitor/chemistry , Hypothalamus/drug effects , Neuropeptides/chemical synthesis , Peptide Fragments/chemical synthesis , Steroids/biosynthesis , 17-alpha-Hydroxypregnenolone/metabolism , 17-alpha-Hydroxyprogesterone/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Amino Acid Sequence , Animals , Dehydroepiandrosterone/biosynthesis , Diazepam Binding Inhibitor/chemical synthesis , Diazepam Binding Inhibitor/pharmacology , Enzyme Activation , Hypothalamus/metabolism , In Vitro Techniques , Male , Neuropeptides/chemistry , Neuropeptides/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Progesterone/biosynthesis , Rana esculenta , Steroid 17-alpha-Hydroxylase/metabolism , Structure-Activity Relationship
5.
Neuropsychopharmacology ; 32(7): 1641-8, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17151595

ABSTRACT

Peptides of the endozepine family, including diazepam-binding inhibitor, the triakontatetraneuropeptide, and the octadecaneuropeptide (ODN), act through three types of receptors, that is, central-type benzodiazepine receptors (CBR), peripheral-type (mitochondrial) benzodiazepine receptors (PBR) and a metabotropic receptor positively coupled to phospholipase C via a pertussis toxin-sensitive G protein. We have previously reported that ODN exerts a potent anorexigenic effect in rat and we have found that the action of ODN is not affected by the mixed CBR/PBR agonist diazepam. In the present report, we have tested the possible involvement of the metabotropic receptor in the anorexigenic activity of ODN. Intracerebroventricular administration of the C-terminal octapeptide (OP) and its head-to-tail cyclic analog cyclo(1-8)OP (cOP) at a dose of 100 ng mimicked the inhibitory effect of ODN on food intake in food-deprived mice. The specific CBR antagonist flumazenil and the PBR antagonist PK11195 did not prevent the effect of ODN, OP, and cOP on food consumption. In contrast, the selective metabotropic endozepine receptor antagonist cyclo(1-8)[DLeu(5)]OP (100-1000 ng; cDLOP) suppressed the anorexigenic effect of ODN, OP, and cOP. At the highest concentration tested (1000 ng), cDLOP provoked by itself a significant increase in food intake. Taken together, the present results indicate that the anorexigenic effect of ODN and OP is mediated through activation of the metabotropic receptor recently characterized in astrocytes. The data also suggest that endogenous ODN, acting via this receptor, exerts an inhibitory tone on feeding behavior.


Subject(s)
Anorexia/metabolism , Appetite Regulation/physiology , Appetite/physiology , Diazepam Binding Inhibitor/metabolism , Hypothalamus/metabolism , Neuropeptides/metabolism , Peptide Fragments/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Anorexia/chemically induced , Anorexia/physiopathology , Appetite/drug effects , Appetite Regulation/drug effects , Diazepam Binding Inhibitor/agonists , Diazepam Binding Inhibitor/chemistry , Dose-Response Relationship, Drug , Flumazenil/pharmacology , Food Deprivation/physiology , GABA Modulators/pharmacology , GABA-A Receptor Antagonists , Isoquinolines/pharmacology , Male , Mice , Motor Activity/drug effects , Motor Activity/physiology , Neuropeptides/agonists , Neuropeptides/chemistry , Peptide Fragments/agonists , Peptide Fragments/chemistry , Peptides/chemistry , Peptides/pharmacology , Receptors, G-Protein-Coupled/drug effects , Receptors, GABA-A/metabolism , Receptors, Neuropeptide/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL