Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
J Neurosci ; 41(33): 7148-7159, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34210784

ABSTRACT

Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the outcome of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the subacute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.SIGNIFICANCE STATEMENT Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment, to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.


Subject(s)
Diazepam Binding Inhibitor/therapeutic use , GABA-A Receptor Agonists/therapeutic use , Neurons/drug effects , Neuropeptides/therapeutic use , Peptide Fragments/therapeutic use , Receptors, GABA-A/drug effects , Stroke/drug therapy , Adult , Animals , Astrocytes/metabolism , Cortical Spreading Depression/physiology , Diazepam Binding Inhibitor/deficiency , Diazepam Binding Inhibitor/physiology , Drug Implants , Evoked Potentials, Somatosensory , Female , GABA-A Receptor Agonists/pharmacology , Humans , Hydrogels , Infarction, Middle Cerebral Artery/drug therapy , Intracranial Thrombosis/drug therapy , Intracranial Thrombosis/etiology , Light , Mice , Mice, Inbred C57BL , N-Methylaspartate/toxicity , Neurons/physiology , Neuropeptides/deficiency , Neuropeptides/physiology , Patch-Clamp Techniques , Peptide Fragments/deficiency , Peptide Fragments/physiology , Rats , Rose Bengal/radiation effects , Rose Bengal/toxicity , Single-Blind Method , Stroke/etiology
2.
Subcell Biochem ; 86: 363-404, 2016.
Article in English | MEDLINE | ID: mdl-27023243

ABSTRACT

Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid ß-oxidation and phloem-mediated lipid transport is highlighted.


Subject(s)
Diazepam Binding Inhibitor/physiology , Plant Development/physiology , Arabidopsis/embryology , Arabidopsis/growth & development , Arabidopsis/physiology , Oryza/embryology , Oryza/growth & development , Oryza/physiology , Plant Leaves/metabolism , Plant Oils/metabolism , Pollen/metabolism , Seeds/growth & development , Seeds/metabolism
3.
Neuron ; 78(6): 951-2, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23791189

ABSTRACT

In this issue of Neuron, Christian et al. (2013) provide functional evidence for positive endozepines (positive allosteric modulators of GABAARs) within the thalamic reticular nucleus. These molecules are encoded by the Dbi gene and modulate thalamocortical oscillations.


Subject(s)
Diazepam Binding Inhibitor/physiology , Inhibitory Postsynaptic Potentials/genetics , Receptors, GABA-A/metabolism , Thalamus/physiology , Animals , Female , Male
4.
Neuron ; 78(6): 1063-74, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23727119

ABSTRACT

Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together, these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking ("endozepine") roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a therapy for epilepsy and other neurological disorders.


Subject(s)
Diazepam Binding Inhibitor/physiology , Inhibitory Postsynaptic Potentials/genetics , Receptors, GABA-A/metabolism , Thalamus/physiology , Allosteric Regulation/genetics , Amino Acid Substitution/genetics , Animals , Benzodiazepines/metabolism , Diazepam Binding Inhibitor/deficiency , Diazepam Binding Inhibitor/genetics , Female , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation/genetics , Neural Inhibition/genetics , Receptors, GABA-A/genetics , Receptors, GABA-A/physiology , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL