Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 686
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Fish Shellfish Immunol ; 149: 109555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615703

ABSTRACT

Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.


Subject(s)
Amino Acids, Essential , Animal Feed , Dietary Supplements , Gastrointestinal Microbiome , Intestines , Animals , Animal Feed/analysis , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Amino Acids, Essential/administration & dosage , Perciformes/growth & development , Perciformes/immunology , Diet, Protein-Restricted/veterinary , Diet/veterinary , Random Allocation , Fishes/growth & development , Aquaculture , Channa punctatus
2.
J Sci Food Agric ; 104(7): 4189-4200, 2024 May.
Article in English | MEDLINE | ID: mdl-38349054

ABSTRACT

BACKGROUND: We investigated the impact of using canola meal (CM) or corn distillers dried grain soluble (cDDGS) in place of soybean meal (SBM) in low-crude-protein diets supplemented with amino acids (AA) on AA digestibility, gut morphometrics, and AA transporter genes in broiler chicken. On day 0, 540 Cobb 500 male broilers were allocated to six diets in 36-floor pens. The positive control (PC) was a corn-SBM diet with adequate crude protein (CP). The CP level of negative control (NC) was decreased by 45 and 40 g kg-1 relative to PC for grower and finisher phases, respectively. The subsequent two diets had the same CP levels as NC but with cDDGS added at 50 or 125 g kg-1. The last two diets had the same CP as NC but with CM added at 50 or 100 g kg-1. RESULTS: Dietary CP reduction in corn-SBM diets increased (P < 0.05) the digestibility of Lys (88.5%), Met (90.7%), Thr (77.4%), Cys (80.7%), and Gly (84.7%). Increasing levels of cDDGS linearly decreased (P < 0.05) the digestibility of Asp, Cys, Glu, and Ser, whereas increasing CM level linearly decreased (P < 0.05) the digestibility of Cys, Pro, and Ser. The CP reduction in corn-SBM diets produced downward expression of peptide transporter1 and decreased (P < 0.05) absolute pancreas and ileum weight and length of jejunum and ileum. CONCLUSIONS: Partial replacement of SBM with alternative protein feedstuffs (cDDGS or CM) in low-CP diets had minimal effects on AA digestibility and mRNA levels of peptides and AA transporters. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Amino Acids , Brassica napus , Animals , Male , Amino Acids/metabolism , Chickens/metabolism , Zea mays/genetics , Zea mays/metabolism , Flour , Digestion , Animal Feed/analysis , Diet/veterinary , Diet, Protein-Restricted , Ileum/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Peptides/metabolism , Glycine max , Gene Expression , Animal Nutritional Physiological Phenomena
3.
Eur Rev Med Pharmacol Sci ; 28(2): 709-720, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38305613

ABSTRACT

OBJECTIVE: The purpose of this meta-analysis is to evaluate the efficacy of a keto-supplemented low-protein diet (sLPD) in enhancing nutritional status among individuals undergoing peritoneal dialysis (PD) compared to a low-protein diet (LPD). MATERIALS AND METHODS: Studies from PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang Data were searched and reviewed up to January 2023. Randomized controlled trials (RCTs) were enrolled and analyzed using STATA MP 17. In this review, serum albumin (Alb), body mass index (BMI), and serum prealbumin (PA) were included for efficacy evaluation and serum calcium (CA) for safety evaluation. Potential heterogeneity was detected using subgroup analyses. RESULTS: 7 RCTs were included. Compared with LPD, sLPD can improve the Alb [Weighted Mean Difference (WMD)=4.16; 95% CI: 2.50, 5.83; p<0.0001), BMI [WMD=1.35; 95% CI: 0.59, 2.11; p<0.0001] and PA [WMD=0.07; 95% CI: 0.04, 0.10; p<0.0001] level of patients undergoing PD. Subgroup analyses showed that, although Alb had no difference with LPD within 12 months of PD duration, sLPD treatment could improve the levels of Alb and PA regardless of PD duration or course of treatment. sLPD can improve the BMI of patients with a PD duration of more than 24 months, regardless of the duration of treatment. CONCLUSIONS: A sLPD is an effective intervention for improving the nutritional status of PD patients. It is suggested that patients undergoing PD should initiate sLPD at the beginning of PD to ensure sufficient nutritional intake.


Subject(s)
Nutritional Status , Peritoneal Dialysis , Humans , Diet, Protein-Restricted , Renal Dialysis , Randomized Controlled Trials as Topic , Peritoneal Dialysis/adverse effects
4.
Poult Sci ; 103(2): 103268, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035473

ABSTRACT

It is well known that male and female broilers differ in their growth performance and that many physiological factors contribute to this difference. The aim of this experiment is to investigate if there are differences between male and female broilers in cecal microbiota and nutrient transporter gene expression and if these differences play a role in the growth performance of broilers. The possible effect of protein level and its interaction with sex on microbiota and expression of the nutrient transporters were also investigated. Samples were collected from male and female birds fed either standard crude protein (SCP) or reduced crude protein diets (RCP) at the age of d 35. The experiment was designed as a 2 × 2 factorial arrangement of treatments consisting of 448 Cobb 500 broilers assigned to 32-floor pens with 4 treatments, 8 replicates, and 14 birds per pen for performance measurements. The factors were sex (male or female) and dietary crude protein (CP) level (standard or reduced). Body weight gain (BWG), feed intake and feed conversion ratio were recorded for each pen. Sex had a significant effect on BWG and FCR (P < 0.001) where males had a significantly higher BWG and better FCR compared to females. There was a significant interaction between sex and protein level on feed intake (FI) (P < 0.05), where male birds had a higher FI compared to female birds only when the birds were fed SCP but not RCP diets. There was a significant interaction between CP level and sex on the expression of CAT2 (P = 0.02) and PEPT2 (P = 0.026) where the genes were significantly upregulated in females but only when the RCP diet was fed. The RCP diet upregulated the expression of BoAT (P = 0.03) as a main effect. Female birds had significantly higher expression of the PepT-2 gene compared to the males. The alpha diversity of the cecal microbiota showed differences among the treatments. The Shannon diversity index was statistically higher (P = 0.036) for males fed the SCP diet and the Chao1 index for evenness was statistically higher (P = 0.027) in females fed the SCP diet. There was also a difference in the relative abundance of the 15 most common genera found in the cecal content of the broilers in this experiment and lastly, the differential composition of microbiota between the different treatments was also significantly different. This study suggests that chickens are able to compensate for a reduction in AA substrates when fed a low CP diet through the upregulation of certain AA transporters, females may adapt to low CP diets better by such upregulation compared to males, and lastly, sex has an effect on the cecal microbial population and these differences contribute towards the performance differences between male and female broilers.


Subject(s)
Chickens , Microbiota , Animals , Male , Female , Chickens/physiology , Diet/veterinary , Dietary Proteins , Weight Gain , Nutrients , Diet, Protein-Restricted/veterinary , Gene Expression , Animal Feed/analysis , Dietary Supplements/analysis , Animal Nutritional Physiological Phenomena
5.
Sci Total Environ ; 912: 169148, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38092206

ABSTRACT

A shortage of feed protein resources restricts poultry productivity. Key strategies to alleviate this problem include improvements to the structure of the gut microbiota by the appropriate intake of high-quality protein, improvements to the comprehensive protein utilization rate, and reducing the consumption of protein raw materials. In addition, damage to the environment caused by nitrogen emissions needs to be reduced. The aim of the study was to evaluate the effects of dietary protein levels on laying performance, host metabolism, ovarian health, nitrogen emissions, and the gut microbial structure and function of laying hens. In total, 360 hens at the age of 38 weeks were randomly allotted four treatments. Each of the groups consisted of nine replicates, with 10 birds per replicate, used for 12 weeks of study. Dietary protein levels of the four groups were 13.85 %, 14.41 %, 15.63 %, and 16.30 %. Results revealed that, compared with the 13.85 % crude protein (CP) group, the 15.63 % CP group experienced significantly enhanced final body weight, average daily gain, egg production, and egg mass. Compared with the 16.30 % CP group, the other groups' serum concentrations of immunoglobulin G (IgG) and immunoglobulin M (IgM) were significantly reduced. Compared with the 16.30 % CP group, the 13.85 % and 15.63 % groups had increased CP utilization rates but reduced nitrogen emission rate, and daily per egg and per kilogram egg nitrogen emissions rose with increased dietary protein levels. Compared to the 13.85 % and 14.41 % CP groups, the 16.30 % CP group exhibited a significant increase in the expression of genes related to amino acids and carbohydrate metabolic pathways. According to the linear discriminant analysis effect size diagram, the predominant bacteria in the 15.63 % CP group (e.g., Subdoligranulum, and Ruminococcaceae_UCG-013) were significantly related to CP utilization. The results of this study emphasize that production performance is significantly reduced when protein levels are too low, whereas too high protein levels lead to gut microbiota imbalance and a reduction in the utilization efficiency of nutrients. Therefore, on the premise of ensuring the health of hens, the structure of the gut microbiota can be improved by appropriately reducing protein levels, which helps to balance the relationships among host health, productivity, resources, and the environment.


Subject(s)
Chickens , Diet, Protein-Restricted , Animals , Female , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Chickens/metabolism , Diet/veterinary , Dietary Proteins/metabolism , Dietary Supplements/analysis , Nitrogen/metabolism
6.
J Dairy Sci ; 107(4): 2087-2098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37923213

ABSTRACT

Low crude protein (CP) diets might be fed to dairy cows without affecting productivity if the balance of absorbed AA were improved, which would decrease the environmental effect of dairy farms. The aim of this study was to investigate the effects of supplementing ruminally protected Lys (RPL) and Met (RPM) at 2 levels of dietary CP on nutrient intake, milk production, milk composition, milk N efficiency (MNE), and plasma concentrations of AA in lactating Holstein cows and to evaluate these effects against the predictions of the new NASEM (2021) model. Fifteen multiparous cows were used in a replicated 3 × 3 Latin square design with 21-d periods. The 3 treatments were (1) a high-protein (HP) basal diet containing 16.4% CP (metabolizable protein [MP] balance of -130 g/d; 95% of target values), (2) a medium-protein diet containing 15% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; MPLM; MP balance of -314 g/d; 87% of target values), and (3) a low-protein diet containing 13.6% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; LPLM; MP balance of -479 g/d; 80% of target values). Dry matter intake was less for cows fed MPLM and LPLM diets compared with those fed the HP diet. Compared with the HP diet, the intake of CP, neutral detergent fiber, acid detergent fiber, and organic matter, but not starch, was lower for cows fed MPLM and LPLM diets. Milk production and composition were not affected by MPLM or LPLM diets relative to the HP diet. Milk urea N concentrations were reduced for the MPLM and LPLM diets compared with the HP diet, indicating that providing a low-protein diet supplemented with rumen-protected AA led to greater N efficiency. There was no significant effect of treatment on plasma AA concentrations except for proline, which significantly increased for the MPLM treatment compared with the other 2 treatments. Overall, the results supported the concept that milk performance might be maintained when feeding lactating dairy cows with low CP diets if the absorbed AA balance is maintained through RPL and RPM feeding. Further investigations are needed to evaluate responses over a longer time period with consideration of all AA rather than on the more aggregated MP and the ratio between Lys and Met.


Subject(s)
Lysine , Methionine , Female , Cattle , Animals , Diet, Protein-Restricted/veterinary , Lactation/physiology , Rumen/metabolism , Nitrogen/metabolism , Detergents/metabolism , Milk Proteins/metabolism , Diet/veterinary , Dietary Supplements , Milk/chemistry , Racemethionine/metabolism , Racemethionine/pharmacology , Dietary Proteins/metabolism
7.
Poult Sci ; 103(2): 103312, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100944

ABSTRACT

Endotoxins released from poultry feces have been associated with impaired human health. Because endotoxins are released from gram-negative intestinal bacteria, it was hypothesized that dietary strategies may influence endotoxin excretion via modulation of gut microbiota. We therefore tested dietary strategies that could potentially reduce cloacal endotoxin levels in broiler chickens. One-day-old male Ross 308 (N = 1,344) broilers were housed in 48 pens (N = 8 pens/treatment, 28 chickens per pen) and fed 1 of 6 diets for 35 days (d) in a 3-phase feeding program: a basic diet (CON) that served as the reference diet, or basic diet supplemented with butyrate (BUT), inulin (INU), medium-chain fatty acids (MCFA) or Original XPC™LS (XPC), or a high-fiber-low-protein (HF-LP) diet. A significant (P < 0.05) increase in cloacal endotoxin concentration at d 35 was observed in BUT as compared to CON. Analysis of cloacal microbiota showed a trend (P < 0.07) for a higher gram-negative/gram-positive ratio and for a higher relative abundance of gram-negative bacteria at d 35 (P ≤ 0.08) in BUT and HF-LP as compared to CON. A significant (P < 0.05) increase in average daily gain (ADG) and improved feed conversion ratio (P < 0.05) were observed in MCFA during the grower phase (d 14-28), and a significant (P < 0.05) increase in average daily feed intake (ADFI) was observed in MCFA during d 0 to 28. Broilers fed HF-LP had a significantly (P < 0.05) higher FCR and lower ADG throughout the rearing period. No treatment effects were found on footpad dermatitis, but BUT had worst hock burn scores at d 35 (P < 0.01) and MCFA had worst cleanliness scores at d 21 but not at d 35 (treatment*age P < 0.05), while INU had better cleanliness as compared to CON at d 35 (P < 0.05). In conclusion, especially BUT and HF-LP were able to modulate resident microbiota and BUT also increased cloacal endotoxin levels, which was opposite to our hypothesis. The present study indicates that cloacal endotoxin release can be affected by the diet but further study is needed to find dietary treatments that can reduce cloacal endotoxin release.


Subject(s)
Chickens , Microbiota , Humans , Animals , Male , Chickens/microbiology , Endotoxins , Diet/veterinary , Dietary Supplements/analysis , Diet, Protein-Restricted/veterinary , Fatty Acids , Inulin , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
8.
Mol Genet Metab ; 141(1): 108120, 2024 01.
Article in English | MEDLINE | ID: mdl-38159545

ABSTRACT

Phenylketonuria (PKU) is a genetic disorder that follows an autosomal recessive inheritance pattern. Dietary treatment is the cornerstone of therapy and is based on natural protein restriction, Phe-free L-amino acid supplements (protein substitutes) and low protein foods. The aim of this project was to collect information about the clinical management of patients with PKU, focusing on understudied or unresolved issues such as blood phenylalanine (Phe) fluctuations and clinical symptoms, particularly gastro intestinal (GI) discomfort and sleep problems. The survey consisted of 10 open-ended and 12 multiple-choice questions that collected information about size of the PKU population in each center, the center's clinical practices and the outcomes observed by the center concerning adherence, clinical and biochemical abnormalities and clinical symptoms (GI and sleep). The questionnaire was sent to 72 experts from metabolic centers in 11 European countries. Thirty-three centers answered. The results of this survey provide information about the clinical practice in different age groups, concentrating on dietary tolerance, treatment adherence, and metabolic control. All the centers prescribed a Phe-restricted diet, with Phe-free/low Phe protein substitutes and low protein foods. Daily doses given of protein substitutes varied from 1 to 5, with adherence to the prescribed amounts decreasing with increasing age. Respondents identified that improvement in the flavor, taste, volume and smell of protein substitutes may improve adherence. Finally, the survey showed that clinical symptoms, such as GI discomfort and sleep problems occur in patients with PKU but are not systematically evaluated. Twenty-four-hour Phe fluctuations were not routinely assessed. The results highlight a strong heterogeneity of approach to management despite international PKU guidelines. More clinical attention should be given to gastrointestinal and sleep problems in PKU.


Subject(s)
Phenylketonurias , Sleep Wake Disorders , Humans , Phenylketonurias/diagnosis , Surveys and Questionnaires , Diet, Protein-Restricted , Europe , Phenylalanine
9.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139420

ABSTRACT

This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.


Subject(s)
Fatty Acids, Omega-3 , Microbiota , Animals , Swine , Butyric Acid , Diet, Protein-Restricted , Fatty Acids, Omega-3/pharmacology , Toll-Like Receptor 4/genetics , Fatty Acids , Antioxidants/metabolism , RNA, Messenger , Immunity
10.
BMC Nephrol ; 24(1): 372, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097963

ABSTRACT

BACKGROUND: Although combining a low-protein diet (LPD) with oral nutritional supplements increases treatment adherence and nutritional status in patients with chronic kidney disease (CKD), the effect of this combination approach in older adults remains unclear. This study examined the impact of a 6% low-protein formula (6% LPF) with diet counseling in older adults with stage 3-5 CKD. METHODS: In this three-month randomized controlled study, 66 patients (eGFR < 60 mL/min/1.73 m2, non-dialysis, over 65 years of age) were randomly assigned to an intervention group (LPD plus a 6% LPF) or control group (LPD alone). The 6% LPF comprised 400 kcal, 6 g of protein, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and various micronutrients. All data were collected at baseline and after three months, including physical performance based on hand grip strength (HGS) and gait speed, nutritional status using Mini Nutritional Assessment-Short Form (MNA-SF) scores, body composition through bioelectrical impedance analysis, and dietary intake from 24-h dietary records. RESULTS: This study incorporated 47 participants (median age, 73; median eGFR, 36 ml/min/1.73 m2; intervention group: 24; control group: 23). The intervention group exhibited significant differences in HGS and gait speed, and micronutrient analysis revealed significantly higher monounsaturated fatty acids (MUFA), EPA, DHA, calcium, iron, zinc, copper, thiamine, riboflavin, niacin, B6, B12, and folic acid intake than the control group. MNA-SF scores, macronutrient intake, and body composition did not differ significantly between the two groups. CONCLUSIONS: Compared to LPD counseling alone, an LPD prescription with 6% LPF in older adults with CKD stages 3-5 helped relieve physical deterioration and increased micronutrient intake after three months. TRIAL REGISTRATION: ClinicalTrials.gov NCT05318014 (retrospectively registered on 08/04/2022).


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Aged , Diet, Protein-Restricted , Hand Strength , Nutritional Status , Renal Insufficiency, Chronic/therapy , Counseling , Dietary Supplements
11.
Arch Anim Nutr ; 77(5): 385-402, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38009466

ABSTRACT

Despite the increasing importance of goat production in response to high demand for their products and their relative robustness to environmental stressors, and in contrast to other ruminant species, little data is available on how tannin extract feeding affects their feed intake, nutrient digestion and nitrogen (N) metabolism. Therefore, a trial in Oman investigated the respective variables by using a commercial tannin feed additive. In a 4 (treatments) x 3 (periods) x 2 (animals) Youden square, two weaned Batinah bucks each were fed a high or low protein diet of Rhodes grass hay and crushed barley grain, with or without the addition of a chestnut and quebracho tannin extract at 2 g/kg metabolic weight. Feed offered, feed refused and faeces and urine excreted were quantified to determine diet digestibility, total N excretion, N retention and rumen microbial protein synthesis (MPS). Due to their young age and low live weight, feed intake of goats was relatively low. Crude protein level and tannin addition had no statistically significant effect on dry matter (DM) and N intake, DM digestibility, N excretion in faeces and urine, as well as MPS. In consequence, no benefit of tannin feeding could be confirmed for the goats' N retention, irrespective of diet composition. These results indicate, on one hand, an effective neutralisation of the tested tannin extract along the gastrointestinal tract of goats, but on the other hand, that stimulation of MPS or N retention by tannins cannot be evidenced when diet components are present that simultaneously release energy and protein, as is the case with barley.


Subject(s)
Diet , Tannins , Animals , Diet/veterinary , Diet, Protein-Restricted/veterinary , Goats/physiology , Digestion , Animal Feed/analysis , Plant Extracts , Nitrogen/metabolism , Rumen/metabolism
12.
Sci Rep ; 13(1): 19268, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935708

ABSTRACT

Low protein (LP) diets may increase the occurrence of damaging behaviours, like tail biting, in pigs. We investigated the effect of supplementing a LP diet with indispensable amino acids (IAA) or environmental enrichment on tail biting. Undocked pigs (n = 48 groups of 12) received either a normal protein diet (NP), a LP, LP with supplemented IAA (LP+), or LP diet with extra environmental enrichment (LP-E+) during the starter, grower, and finisher phase. Performance, activity, behaviour, and body damage were recorded. LP and LP-E+ had a lower feed intake, growth, and gain-to-feed ratio, and were more active than NP and LP+ pigs. LP-E+ pigs interacted most often with enrichment materials, followed by LP, LP+, and NP pigs. LP pigs showed more tail biting than all other groups during the starter phase and the finisher phase (tendency) compared to NP and LP+ pigs. Thus, LP-E+ only reduced tail biting in the starter phase, whereas LP+ tended to do so throughout. Tail damage was more severe in LP pigs than in NP and LP+, with LP-E+ in between. In conclusion, IAA supplementation was more effective than extra environmental enrichment in countering the negative effects of a low protein diet on tail biting in pigs.


Subject(s)
Diet, Protein-Restricted , Tail , Swine , Animals , Diet, Protein-Restricted/adverse effects , Dietary Supplements , Amino Acids , Eating , Animal Feed/analysis
13.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37843846

ABSTRACT

This study aimed to investigate the effects of diets with and without antibiotics supplementation and diets with 18.5% and 13.0% crude protein (CP) on growth performance, carcass characteristics, disease incidence, fecal microbiota, immune response, and antioxidant capacity of growing pigs. One hundred and eighty pigs (59-day-old; 18.5 ±â€…2.5 kg) were distributed in a randomized complete block design in a 2 × 2 factorial arrangement, nine replicates, and five pigs per pen. The factors were CP (18.5% or 13.0%) and antibiotics (none or 100 mg/kg tiamulin + 506 mg/kg oxytetracycline). Medicated diets were fed from days 59 to 73. After that, all pigs were fed their respective CP diets from 73 to 87 days. Data were analyzed using the Mixed procedure in SAS version 9.4. From days 59 to 73, pigs fed antibiotics diets had higher (P < 0.05) average daily feed intake (ADFI), average daily weight gain (ADG), gain to feed ratio (G:F), compared to the diets without antibiotics. From days 73 to 87 (postmedicated period), any previous supplementation of antibiotics did not affect pig growth performance. Overall (days 59 to 87), pigs-fed antibiotics diets had higher (P < 0.05) G:F compared to pigs-fed diets without antibiotics. In all periods evaluated, pigs fed 18.5% CP diets had higher (P < 0.05) ADG and G:F compared to pigs fed 13.0% CP. Pigs fed the 13.0% CP diets had lower (P < 0.05) fecal score and diarrhea incidence than those fed 18.5% CP. Pigs fed 18.5% CP diets had improved (P < 0.05) loin area compared to pigs-fed diets with 13.0% CP. At 66 days of age, pigs-fed antibiotics diets had lower (P < 0.05) alpha diversity estimated with Shannon and Simpson compared to the pig-fed diets without antibiotics. At family level, pigs fed 18.5% CP diets had higher (P < 0.05) relative abundance of Streptococcaceae, and lower (P < 0.05) relative abundance of Clostridiaceae at days 66 and 87 compared with pigs fed 13.0% CP. Pigs-fed antibiotics diets had lower (P < 0.05) immunoglobulin G and protein carbonyl concentrations at day 66 compared to the pigs-fed diets without antibiotics. The reduction of dietary CP from 18.5% to 13.0% reduced the growth performance and loin muscle area of growing pigs, although it was effective to reduce diarrhea incidence. Antibiotics improved growth performance, lowered diarrhea incidence, improved components of the humoral immune response, and reduced microbiota diversity. However, in the postmedicated period, we found no residual effect on the general health of the animals, and considering the overall period, only G:F was improved by the use of antibiotics.


Dietary antibiotics have been used in pig farming practices to avoid health problems and improve animal growth performance. However, their use in production animals is considered a global health challenge, due to its association with selection of resistance in zoonotic bacteria. Another negative impact of pig farming that has gained attention is related to environmental pollution due to the excretion of nitrogenous compounds. Reducing dietary crude protein content has become a goal in the pig feed industry due to the limited availability and high cost of dietary protein sources, as well as the aim of enhancing gut health in pigs. Thus, the aim of this study was to investigate the effects of diets with and without antibiotics supplementation and diets with 18.5% and 13.0% crude protein for pigs. The reduction of dietary crude protein in this study reduced growth performance, although it was effective to reduce diarrhea incidence. Antibiotics improved growth performance, positively affected the overall health of animals, and reduced microbiota diversity. However, during the postmedicated period, we found no residual effect on the general health of the animals, and considering the overall period, only gain to feed ratio was improved by the use of antibiotics.


Subject(s)
Anti-Bacterial Agents , Diet , Swine , Animals , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Diet, Protein-Restricted/veterinary , Feces , Weight Gain , Diarrhea/prevention & control , Diarrhea/veterinary , Immunity , Animal Feed/analysis , Dietary Supplements
14.
Food Funct ; 14(21): 9734-9742, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37818605

ABSTRACT

Insufficient protein intake and cognitive decline are common in older adults; however, there have been few studies on low protein risk screening and complex nutrient interventions for elderly individuals in rural communities. This study aimed to evaluate the effect of dietary multinutrient soy flour (MNSF) on body composition and cognitive function in elderly individuals who are at risk of protein deficiency in a randomized, double-blind, placebo-controlled clinical trial. Nutritional interventions were given to those found to have low protein levels using bioelectrical impedance analysis (BIA). Among 733 older adults screened, 62 participants were included and randomly assigned into two groups, one taking soy flour and the other taking MNSF for 12 weeks. A previous cross-sectional survey found that 35.1% of the elderly people with an average age of 71.61 ± 5.94 years had an inadequate body protein mass proportion. After the intervention, the MNSF group demonstrated a significant improvement in protein mass, muscle mass, mineral levels, skeletal muscle mass, and fat-free mass compared with baseline (all P < 0.05), as well as a better upward trend compared with the soy flour group (P = 0.08; P = 0.07; P = 0.05; P = 0.08; P = 0.07). Regarding the mini-mental state examination (MMSE) scores, the MNSF group showed a significant decrease after 12 weeks (P < 0.05), which were significantly different compared with the soy flour group (P < 0.05). In the future, the application of MNSF as a food-based supplement to improve nutrition and delay cognitive decline in older adults at the risk of protein deficiency may be considered.


Subject(s)
Flour , Protein Deficiency , Humans , Aged , Cross-Sectional Studies , Body Composition , Dietary Supplements , Cognition , Soybean Proteins/pharmacology , Diet, Protein-Restricted , Double-Blind Method
15.
PLoS One ; 18(10): e0292431, 2023.
Article in English | MEDLINE | ID: mdl-37792787

ABSTRACT

Nutritional programming is the idea that early nutrient contributions can influence organismal structure or function and is documented in a variety of vertebrates, yet studies in fish are largely lacking. Tilapia are an important foodfish, with global production having increased rapidly since the 1990s. They exhibit high disease-resistance and grow well on formulated feeds which makes them an ideal aquaculture species, however incorporating high quality proteins into feeds can be costly. As feed constitutes 50-70% of total production costs in aquaculture, reducing protein content could curb these costs and increase revenue. Thus, we examined the effects of feeding Nile tilapia (O. niloticus) fry a restricted protein diet for the first 7-21 days on growth, gut microbial flora, and the intestinal transcriptome. Fish were fed either a 25% restricted or 48% control crude protein starter (ST) diet for up to 21 days and then switched to a 25% or 38% control crude protein growout (GO) diet. Fish fed a 25% ST diet for 14 days followed by a 38% GO diet had significantly higher lengths and weights and better feed efficiency than fish fed the control 48% ST and 38% GO diet after 56 days of culture. Growth of fry on the 25% ST, 7-day/38% GO and the 25% ST,7-day/25% GO diets did not differ from the those fed the control protein diets, while fish fed the 25% ST diet for 21 days had significantly lower growth and survival rates. We observed no significant differences in either alpha or beta diversity of the gut microbial flora between diets, however species richness (Shannon Index) was higher in fry fed the 25% protein ST diet regardless of the GO diet. Similarly, fish fed the 25% ST diet for 14 days followed by the 38% GO diet had minimal changes to the intestinal transcriptome relative to fish fed the control 48% ST and 38% GO diet. However, those fed 25% ST and GO diets for the entire 56 days exhibited substantial differences in the gut transcriptome from other groups showing gene expression profiles characteristic of detrimental changes to gut physiology, protein metabolism and immune function. Results suggest protein restriction for up to 14 days early in development leads to enhanced growth and feed efficiency with minimal effects on gut microbes or intestinal function. Protein restriction beyond this period appears detrimental to fish growth and health as underscored by expression of disease related genes and higher mortality rates.


Subject(s)
Cichlids , Gastrointestinal Microbiome , Animals , Transcriptome , Diet, Protein-Restricted , Diet/veterinary , Dietary Proteins/pharmacology , Animal Feed/analysis , Dietary Supplements
16.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37527457

ABSTRACT

The objective of this experiment was to investigate the effects of dietary crude protein (CP) content and crystalline amino acids (CAA) supplementation patterns in low CP (LCP) diets on intestinal bacteria and their metabolites in weaned pigs raised under clean (CSC) or unclean sanitary conditions (USC). One hundred forty-four piglets (6.35 ±â€…0.63 kg) were assigned to one of six treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions in a randomized complete block design to give eight replicates with three pigs per pen over a 21-d period. Diets consisted of a high CP (HCP; 21%) and two LCP (18%) diets supplemented with 9 CAA (Lys, Met, Thr, Trp, Val, Ile, Leu, His, and Phe) or only six CAA (Lys, Met, Thr, Trp, Val, and Ile) to meet the requirements. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens from the beginning of the study and was not washed throughout the experiment. Jejunum and colon digesta were sampled on day 21. Both jejunum and colon digesta were analyzed for ammonia nitrogen, short-chain fatty acids, and biogenic amines but only colon digesta was analyzed for microbiome composition (16s rRNA sequencing on MiSeq). Data were analyzed using R software for 16S rRNA and the MIXED procedure of SAS for microbial metabolites. Sanitation, CP content, and CAA supplementation patterns did not affect the diversity of colonic bacterial composition in weaned pigs. Pigs raised under USC had greater (P < 0.05) jejunal ammonia nitrogen concentration than those raised under CSC. Pigs fed LCP diets had reduced (P < 0.05) jejunal ammonia nitrogen concentration compared to those fed the HCP diet. Interactions between sanitation and dietary CP content were observed (P < 0.05) for: (1) jejunal acetate and (2) colonic spermidine and spermine, whereby (1) acetate concentrations decreased from NCP to LCP in pigs raised under the CSC but those concentrations increased under the USC, and (2) spermidine and spermine concentrations increased in LCP diets compared to HCP diet under USC, unlike CSC which did not show any difference between HCP and LCP. In conclusion, reducing dietary CP lowered ammonia nitrogen content regardless of sanitation and increased microbial metabolites in weaned pigs raised under USC. However, LCP diets with different CAA supplementation patterns did not affect bacterial diversity in weaned pigs, regardless of the hygienic conditions where the animals were housed.


Lowering dietary crude protein concentration by 3% to 4% units has been used as one of the strategies to promote growth and improve the gut health of weaned pigs. Undigested and endogenous protein could be available for microbial fermentation, and protein fermentation is considered detrimental to the gut health of the host animal. The unclean sanitary condition model mimics commercial raising conditions and stimulates a low-grade inflammatory and immune response. Ammonia nitrogen is one of the harmful metabolites derived by protein fermentation and pigs fed low-protein diets had decreased ammonia nitrogen than those fed high-protein diets. Also, pigs raised under unclean sanitation had greater ammonia nitrogen than those raised under clean sanitation. However, sanitation, protein content, and crystalline amino acids supplementation patterns did not affect the diversity of colonic bacterial composition in weaned pigs. The results obtained from the present study showed that a low protein diet could be used to improve gut health in weaned pigs.


Subject(s)
Ammonia , Diet, Protein-Restricted , Swine , Animals , Female , Diet, Protein-Restricted/veterinary , RNA, Ribosomal, 16S , Spermidine , Spermine , Diet/veterinary , Dietary Supplements , Dietary Proteins/metabolism , Amino Acids/metabolism , Bacteria/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
17.
Nutrients ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630693

ABSTRACT

In chronic kidney disease (CKD), metabolic derangements resulting from the interplay between decreasing renal excretory capacity and impaired gut function contribute to accelerating disease progression and enhancing the risk of complications. To protect residual kidney function and improve quality of life in conservatively managed predialysis CKD patients, current guidelines recommend protein-restricted diets supplemented with essential amino acids (EAAs) and their ketoanalogues (KAs). In clinical studies, such an approach improved nitrogen balance and other secondary metabolic disturbances, translating to clinical benefits, mainly the delayed initiation of dialysis. There is also increasing evidence that a protein-restricted diet supplemented with KAs slows down disease progression. In the present review article, recent insights into the role of KA/EAA-supplemented protein-restricted diets in delaying CKD progression are summarized, and possible mechanistic underpinnings, such as protein carbamylation and gut dysbiosis, are elucidated. Emerging evidence suggests that lowering urea levels may reduce protein carbamylation, which might contribute to decreased morbidity and mortality. Protein restriction, alone or in combination with KA/EAA supplementation, modulates gut dysbiosis and decreases the generation of gut-derived uremic toxins associated, e.g., with cardiovascular disease, inflammation, protein energy wasting, and disease progression. Future studies are warranted to assess the effects on the gut microbiome, the generation of uremic toxins, as well as markers of carbamylation.


Subject(s)
Microbiota , Protein Carbamylation , Humans , Diet, Protein-Restricted , Dysbiosis , Quality of Life , Uremic Toxins , Renal Dialysis , Dietary Supplements , Disease Progression
18.
Poult Sci ; 102(10): 102979, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562128

ABSTRACT

Dietary fibres with increased particle size may develop foregut more efficiently in meat poultry fed diets moderately low in crude protein. The study investigated the performance of broilers fed low-density crude protein diets with the inclusion of oat hulls increasing in particle size. Ross 308 male broiler chicks (n = 336) were divided into 48 pens, 12 pens per treatment (7 chicks per pen). Pens were allocated to 4 dietary treatments in mash form; positive control (PC), a standard crude protein diet, negative control (NC), around 5% lower in protein with 5% celite as an inert material, OH400: 5% lower protein diet with 5% oat hulls of geometric mean diameter (GMD) 400 µm, OH850: 5% lower protein diet with 5% oat hulls of GMD 850µm. Birds were fed ad libitum from d 1 to 35 in 3 phases; starter: d 0 to 10, grower: d 10 to 24 and finisher: d 24 to 35. Growth performance was calculated at the end of the trial. Two birds per pen were sampled on d 24 and 35 to collect data on proventriculus and gizzard weights and pooled ileal digesta. Apparent ileal digestibility of amino acids on d 24, and metabolizable energy on d 24 and 35 were recorded for each pen. Litter was sampled from each pen on d 34 to analyze litter N and moisture content. Footpad dermatitis scores of all birds per pen were recorded on d 35. Overall, no difference (P > 0.05) in body weight gain and feed intake was found between the treatments. However, NC and OH400 showed poorer FCR than PC, whereas FCR on PC and OH850 was similar (P > 0.05). Gizzard absolute weight and relative to body weight, and gizzard to proventriculus ratio were higher (P < 0.05) on OH850 compared to PC and NC on d 24 and 35. Gizzard digesta particle size was reduced (P < 0.05) on OH850 compared to all other diets on d 24 and 35. Amino acids digestibility coefficients for aspartic acid and valine increased (P < 0.05) in birds fed OH850 compared to PC, whereas coefficients for several other amino acids were improved compared to NC and OH400. The apparent ileal digestibility of metabolizable energy was similar (P > 0.05) between PC and OH850. Litter moisture and nitrogen, and footpad dermatitis scores were reduced (P < 0.05) on OH850 compared to PC. In conclusion, the inclusion of coarse oat hulls of GMD 850 µm in low-density crude protein diets can be beneficial for the broilers in developing the foregut, utilizing the nutrients efficiently and reducing litter nitrogen and moisture, and footpad scores.


Subject(s)
Dermatitis , Dietary Supplements , Animals , Male , Amines , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Avena , Body Weight , Chickens , Dermatitis/veterinary , Diet/veterinary , Diet, Protein-Restricted/veterinary , Digestion , Nitrogen , Particle Size
19.
Nutr Hosp ; 40(4): 819-828, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37409723

ABSTRACT

Introduction: Objective: this study aimed to evaluate whether low-salt low-protein diet (LPD) supplemented with 10 g of inulin could lower serum toxin levels in patients with chronic kidney disease (CKD), thereby providing evidence for adjusting dietary prescriptions of inhospital patients and outpatient nutrition consultants. Methods: we randomized 54 patients with CKD into two groups. Dietary protein intake compliance was evaluated using a 3-day dietary diary and 24-h urine nitrogen levels. The primary outcomes were indoxyl sulfate (IS) and p-cresyl sulfate (PCS), and secondary outcomes included inflammation marker levels, nutritional status, and renal function. We assessed 89 patients for eligibility, and a total of 45 patients completed the study, including 23 and 22 in the inulin-added and control groups, respectively. Results: PCS values decreased in both groups after intervention: inulin-added group, ∆PCS -1.33 (-4.88, -0.63) µg/mL vs. LPD group, -4.7 (-3.78, 3.69) µg/mL (p = 0.058). PCS values reduced from 7.52 to 4.02 µg/mL (p < 0.001) in the inulin-added group (p < 0.001). Moreover, IS decreased from 3.42 (2.53, 6.01) µg/mL to 2.83 (1.67, 4.74) µg/mL after adding inulin; ∆IS was -0.64 (-1.48, 0.00) µg/mL, and a significant difference was observed compared with the control group (p = 0.004). The inflammation index decreased after intervention. Conclusion: dietary fiber supplementation may reduce serum IS and PCS levels and modulate their inflammatory status in predialysis CKD patients.


Introducción: Objetivo: este ensayo aleatorizado doble ciego comparó el efecto de una dieta baja en proteínas (LPD) con o sin suplementos orales de 10 g de inulina en los niveles de PBUT en pacientes con ERC en prediálisis durante 12 semanas. Métodos: clasificamos aleatoriamente a 54 pacientes con ERC en dos grupos. El cumplimiento de la ingesta dietética de proteínas se evaluó utilizando un diario dietético de 3 días y nitrógeno en orina de 24 horas. Los resultados primarios fueron IS y PCS y los resultados secundarios incluyeron niveles de marcadores de inflamación, estado nutricional y función renal. Evaluamos la elegibilidad de 89 pacientes y 45 completaron la intervención, incluidos 23 y 22 en los grupos de inulina añadida y de control, respectivamente. Resultados: el sodio urinario promedio de 24 horas fue de 86 mmol/día y la ingesta promedio de proteínas fue de ~0,7 g/kg/día. Los valores de PCS exhibieron una tendencia decreciente en ambos grupos después de la intervención: grupo con inulina añadida, ∆PCS -1.33 (-4.88, -0.63) µg/mL vs. grupo LPD, -4.7 (-3.78, 3.69) µg/mL) (p =0,058). Los valores de PCS se redujeron de 7,52 a 4,02 µg/mL (p < 0,001) con inulina (p < 0,001). Además, IS disminuyó de 3,42 (2,53, 6,01) µg/mL a 2,83 (1,67, 4,74) µg/mL después de agregar inulina; El ∆IS fue -0,64 (-1,48; 0,00) µg/mL y se observó una diferencia significativa en comparación con el grupo control (p =0,004). Conclusión: la suplementación con fibra dietética puede reducir las toxinas de unión a proteínas séricas en pacientes con ERC en prediálisis y modular su estado inflamatorio.


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Inulin/therapeutic use , Diet, Protein-Restricted , Dietary Proteins , Indican , Dietary Supplements , Inflammation
20.
Sci Rep ; 13(1): 10803, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402861

ABSTRACT

The high cost of feed and nitrogen pollution caused by high-protein diets have become major challenges restricting sustainable development in China's animal husbandry sector. Properly reducing protein levels and improving protein utilization in feed are effective approaches to solving this problem. To determine the optimal dose of methionine hydroxyl analogue chelated zinc (MHA-Zn) in broiler diets with a 1.5% reduction in crude protein (CP), a total of 216 1-day-old broilers were randomly assigned into 4 groups (each group consisted of 3 replications with 18 broilers per replicate), and growth and development indexes were assessed after 42 days. The broilers in control group were fed a basic diet, whereas those in the three test groups were fed diets with a 1.5% reduction in CP. The results showed no significant difference in the edible parts of broilers between low-protein (LP) diet group (90 mg/kg MHA-Zn) and normal diet group (p > 0.05), and adding 90 mg/kg MHA-Zn to LP diet significantly improved ileum morphology and apparent total tract digestibility (ATTD) of nutrient (p < 0.01; p < 0.05). A 16S rRNA sequencing analysis indicated that supplementing the LP diet with 90 mg/kg MHA-Zn was adequate for production performance of broilers and promoted beneficial bacteria in the cecum (Lactobacillus, Butyricoccus, Oscillospira, etc.) (p < 0.01). In summary, adding an optimal dose of organic zinc (90 mg/kg MHA-Zn) in low protein diets led to enhanced production performance of broilers and optimized cecum microbiota. Additionally, the reduction of crude protein consumption in broiler production proved to be a cost-effective measure, while also mitigated nitrogen pollutant emissions in the environment.


Subject(s)
Diet, Protein-Restricted , Gastrointestinal Microbiome , Animals , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Chickens , Diet/veterinary , Dietary Supplements/analysis , Digestion , Meat/analysis , Nitrogen , Nutrients/analysis , RNA, Ribosomal, 16S , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL