Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Plant Physiol ; 192(4): 2971-2988, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37061818

ABSTRACT

Polyprenylated xanthones are natural products with a multitude of biological and pharmacological activities. However, their biosynthetic pathway is not completely understood. In this study, metabolic profiling revealed the presence of 4-prenylated 1,3,5,6-tetrahydroxyxanthone derivatives in St. John's wort (Hypericum perforatum) root extracts. Transcriptomic data mining led to the detection of 5 variants of xanthone 4-prenyltransferase (HpPT4px) comprising 4 long variants (HpPT4px-v1 to HpPT4px-v4) and 1 short variant (HpPT4px-sh). The full-length sequences of all 5 variants were cloned and heterologously expressed in yeast (Saccharomyces cerevisiae). Microsomes containing HpPT4px-v2, HpPT4px-v4, and HpPT4px-sh catalyzed the addition of a prenyl group at the C-4 position of 1,3,5,6-tetrahydroxyxanthone; 1,3,5-trihydroxyxanthone; and 1,3,7-trihydroxyxanthone, whereas microsomes harboring HpPT4px-v1 and HpPT4px-v3 additionally accepted 1,3,6,7-tetrahydroxyxanthone. HpPT4px-v1 produced in Nicotiana benthamiana displayed the same activity as in yeast, while HpPT4px-sh was inactive. The kinetic parameters of HpPT4px-v1 and HpPT4px-sh chosen as representative variants indicated 1,3,5,6-tetrahydroxyxanthone as the preferred acceptor substrate, rationalizing that HpPT4px catalyzes the first prenylation step in the biosynthesis of polyprenylated xanthones in H. perforatum. Dimethylallyl pyrophosphate was the exclusive prenyl donor. Expression of the HpPT4px transcripts was highest in roots and leaves, raising the question of product translocation. C-terminal yellow fluorescent protein fusion of HpPT4px-v1 localized to the envelope of chloroplasts in N. benthamiana leaves, whereas short, truncated, and masked signal peptides led to the disruption of plastidial localization. These findings pave the way for a better understanding of the prenylation of xanthones in plants and the identification of additional xanthone-specific prenyltransferases.


Subject(s)
Dimethylallyltranstransferase , Hypericum , Xanthones , Hypericum/genetics , Hypericum/metabolism , Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Xanthones/metabolism , Xanthones/pharmacology , Plant Extracts/pharmacology
2.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144681

ABSTRACT

Artemisiae argyi Folium is a traditional herbal medicine used for moxibustion heat therapy in China. The volatile oils in A.argyi leaves are closely related to its medicinal value. Records suggest that the levels of these terpenoids components within the leaves vary as a function of harvest time, with June being the optimal time for A. argyi harvesting, owing to the high levels of active ingredients during this month. However, the molecular mechanisms governing terpenoid biosynthesis and the time-dependent changes in this activity remain unclear. In this study, GC-MS analysis revealed that volatile oil levels varied across four different harvest months (April, May, June, and July) in A. argyi leaves, and the primarily terpenoids components (including both monoterpenes and sesquiterpenes) reached peak levels in early June. Through single-molecule real-time (SMRT) sequencing, corrected by Illumina RNA-sequencing (RNA-Seq), 44 full-length transcripts potentially involved in terpenoid biosynthesis were identified in this study. Differentially expressed genes (DEGs) exhibiting time-dependent expression patterns were divided into 12 coexpression clusters. Integrated chemical and transcriptomic analyses revealed distinct time-specific transcriptomic patterns associated with terpenoid biosynthesis. Subsequent hierarchical clustering and correlation analyses ultimately identified six transcripts that were closely linked to the production of these two types of terpenoid within A. argyi leaves, revealing that the structural diversity of terpenoid is related to the generation of the diverse terpene skeletons by prenyltransferase (TPS) family of enzymes. These findings can guide further studies of the molecular mechanisms underlying the quality of A. argyi leaves, aiding in the selection of optimal timing for harvests of A. argyi.


Subject(s)
Artemisia , Dimethylallyltranstransferase , Oils, Volatile , Artemisia/chemistry , Dimethylallyltranstransferase/metabolism , Monoterpenes/metabolism , RNA , Terpenes/metabolism , Transcriptome
3.
Org Biomol Chem ; 20(28): 5535-5542, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35788620

ABSTRACT

Prenyltransferases (PTs) play important roles in the biosynthesis and structural diversification of natural products. In the present study, two new PTs were characterized from a medicinal plant Murraya exotica. MePT1 unprecedentedly catalyses the formation of two C-geranylated products 8/6-C-geranylumbelliferone together with a trace product 7-O-geranylumbelliferone from umbelliferone. MePT2 regio-specifically catalyses the formation of C-3 dimethylallylated products from quinolone alkaloids. This is the first report that a plant PT catalyses the simultaneous formation of C- and O-prenylated products, and a plant PT specifically utilizes quinolone alkaloids as prenyl acceptors. The results not only provide important insight into the functional diversity of plant PTs and the biosynthesis of the prenylated coumarins, quinolone and carbazole alkaloids in Murraya plants, but also pave the way for the overproduction of the prenylated coumarins and alkaloids using metabolic engineering approaches.


Subject(s)
Alkaloids , Dimethylallyltranstransferase , Murraya , Quinolones , Coumarins/chemistry , Dimethylallyltranstransferase/metabolism , Murraya/chemistry , Murraya/metabolism
4.
J Nat Med ; 76(4): 873-879, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35767141

ABSTRACT

CdpNPT from Aspergillus fumigatus is a fungal indole prenyltransferase (IPT) with remarkable substrate promiscuity to generate prenylated compounds. Our first investigation of the catalytic potential of CdpNPT against a ß-carboline, harmol (1), revealed that the enzyme also accepts 1 as the prenyl acceptor with dimethylallyl diphosphate (DMAPP) as the prenyl donor and selectively prenylates the C-6 position of 1 by the "regular-type" dimethylallylation to produce 6-(3-dimethylallyl)harmol (2). Furthermore, our X-ray crystal structure analysis of the C-His6-tagged CdpNPT (38-440) truncated mutant complexed with 1 and docking studies of DMAPP to the crystal structure of the CdpNPT (38-440) mutant suggested that CdpNPT could employ the two-step prenylation system to produce 2.


Subject(s)
Dimethylallyltranstransferase , Carbolines , Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Indoles , Neoprene , Prenylation , Substrate Specificity
5.
J Nat Med ; 75(3): 467-474, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33675456

ABSTRACT

The teleocidin B family members are terpene indole compounds isolated from Streptomyces bacteria, and they strongly activate protein kinase C (PKC). Their unique structures have attracted many researchers in the natural product chemistry and pharmacology fields, and numerous isolation and bioactivity studies have been conducted. The accumulated information has facilitated the identification of the enzymatic reactions in teleocidin biosynthesis, and new developments in structural biology have strongly aided efforts to clarify the finer points of these reactions. This review describes the recent biochemical and structural biological studies to reveal their reaction mechanisms, with a primary focus on the terpene cyclization triggered by the C-N bond formation by P450 oxygenase (TleB), the prenyltransferase (TleC), and the methyltransferase (TleD). This new knowledge will benefit future engineering studies to create unnatural PKC activators.


Subject(s)
Indoles/metabolism , Lyngbya Toxins/biosynthesis , Streptomyces/enzymology , Terpenes/metabolism , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Dimethylallyltranstransferase/metabolism , Methyltransferases/metabolism , Molecular Structure , Multigene Family
6.
J Nat Med ; 74(3): 501-512, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32180104

ABSTRACT

Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Bacteria/enzymology , Dimethylallyltranstransferase/metabolism , Fungi/enzymology , Protein Engineering , Bacteria/metabolism , Biological Products/metabolism , Fungi/metabolism , Prenylation/physiology
7.
Commun Biol ; 2: 384, 2019.
Article in English | MEDLINE | ID: mdl-31646187

ABSTRACT

Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl-p-coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified. This study describes the isolation from Artemisia capillaris of a phenylpropane-specific PT gene, AcPT1, belonging to UbiA superfamily. This gene encodes a membrane-bound enzyme, which accepts p-coumaric acid as its specific substrate and transfers two prenyl residues stepwise to yield artepillin C. These findings provide novel insights into the molecular evolution of this gene family, contributing to the chemical diversification of plant specialized metabolites. These results also enabled the design of a yeast platform for the synthetic biology of artepillin C.


Subject(s)
Artemisia/enzymology , Dimethylallyltranstransferase/isolation & purification , Phenylpropionates/metabolism , Plant Proteins/isolation & purification , Artemisia/genetics , Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Genes, Plant , Phenylpropionates/chemistry , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Prenylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Synthetic Biology/methods
8.
New Phytol ; 222(1): 318-334, 2019 04.
Article in English | MEDLINE | ID: mdl-30485455

ABSTRACT

Polyprenylated acylphloroglucinol derivatives, such as xanthones, are natural plant products with interesting pharmacological properties. They are difficult to synthesize chemically. Biotechnological production is desirable but it requires an understanding of the biosynthetic pathways. cDNAs encoding membrane-bound aromatic prenyltransferase (aPT) enzymes from Hypericum sampsonii seedlings (HsPT8px and HsPTpat) and Hypericum calycinum cell cultures (HcPT8px and HcPTpat) were cloned and expressed in Saccharomyces cerevisiae and Nicotiana benthamiana, respectively. Microsomes and chloroplasts were used for functional analysis. The enzymes catalyzed the prenylation of 1,3,6,7-tetrahydroxyxanthone (1367THX) and/or 1,3,6,7-tetrahydroxy-8-prenylxanthone (8PX) and discriminated nine additionally tested acylphloroglucinol derivatives. The transient expression of the two aPT genes preceded the accumulation of the products in elicitor-treated H. calycinum cell cultures. C-terminal yellow fluorescent protein fusions of the two enzymes were localized to the envelope of chloroplasts in N. benthamiana leaves. Based on the kinetic properties of HsPT8px and HsPTpat, the enzymes catalyze sequential rather than parallel addition of two prenyl groups to the carbon atom 8 of 1367THX, yielding gem-diprenylated patulone under loss of aromaticity of the gem-dialkylated ring. Coexpression in yeast significantly increased product formation. The patulone biosynthetic pathway involves multiple subcellular compartments. The aPTs studied here and related enzymes may be promising tools for plant/microbe metabolic pathway engineering.


Subject(s)
Dimethylallyltranstransferase/metabolism , Hypericum/enzymology , Xanthones/chemistry , Xanthones/metabolism , Biocatalysis , Chloroplasts/metabolism , Dimethylallyltranstransferase/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Hypericum/genetics , Kinetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stereoisomerism
9.
Plant Cell Physiol ; 59(11): 2214-2227, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30020500

ABSTRACT

Pharmaceutically active compounds from medical plants are attractive as a major source for new drug development. Prenylated stilbenoids with increased lipophilicity are valuable secondary metabolites which possess a wide range of biological activities. So far, many prenylated stilbenoids have been isolated from Morus alba but the enzyme responsible for the crucial prenyl modification remains unknown. In the present study, a stilbenoid-specific prenyltransferase (PT), termed Morus alba oxyresveratrol geranyltransferase (MaOGT), was identified and functionally characterized in vitro. MaOGT recognized oxyresveratrol and geranyl diphosphate (GPP) as natural substrates, and catalyzed oxyresveratrol prenylation. Our results indicated that MaOGT shared common features with other aromatic PTs, e.g. multiple transmembrane regions, conserved functional domains and targeting to plant plastids. This distinct PT represents the first stilbenoid-specific PT accepting GPP as a natural prenyl donor, and could help identify additional functionally varied PTs in moraceous plants. Furthermore, MaOGT might be applied for high-efficiency and large-scale prenylation of oxyresveratrol to produce bioactive compounds for potential therapeutic applications.


Subject(s)
Dimethylallyltranstransferase/metabolism , Diphosphates/metabolism , Diterpenes/metabolism , Morus/enzymology , Stilbenes/metabolism , Catalysis , Dimethylallyltranstransferase/genetics , Morus/genetics , Morus/metabolism , Organisms, Genetically Modified , Phylogeny , Plant Extracts/metabolism , Plant Leaves/enzymology , Plant Leaves/metabolism , Plants, Genetically Modified , Prenylation , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Sequence Alignment , Substrate Specificity , Nicotiana
10.
Crit Rev Biochem Mol Biol ; 53(3): 279-310, 2018 06.
Article in English | MEDLINE | ID: mdl-29718780

ABSTRACT

The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.


Subject(s)
Alzheimer Disease/metabolism , Dimethylallyltranstransferase/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Protein Prenylation , Terpenes/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Dimethylallyltranstransferase/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Humans
11.
ACS Chem Biol ; 13(3): 703-711, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29384350

ABSTRACT

Chloropupukeananin and chloropestolides are novel metabolites of the plant endophyte Pestalotiopsis fici, showing antimicrobial, antitumor, and anti-HIV activities. Their highly complex and unique skeletons were generated from the coisolated pestheic acid (1) and iso-A82775C (10) based on our previous studies. Here, we identified the biosynthetic gene cluster iac of 10 and characterized an iacE encoded prenyltransferase. Deletion of iacE abolished iso-A82775C production, accumulated the prenyl group-lacking siccayne (2), and generated four new chloropestolides (3-6). Compounds 5 and 6 showed antibacterial effects against Staphylococcus aureus and Bacillus subtilis, and 5 was also cytotoxic to human tumor cell lines HeLa, MCF-7, and SW480. These results provided the first genetic and biochemical insights into the biosynthesis of natural prenylepoxycyclohexanes and demonstrated the feasibility for generation of diversified congeners by manipulating the biosynthetic genes of 10.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Dimethylallyltranstransferase/metabolism , Plant Extracts/chemistry , Spiro Compounds , Xylariales/enzymology , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Cell Line, Tumor , Cyclohexanes , Dimethylallyltranstransferase/genetics , Humans , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/isolation & purification , Phenyl Ethers/chemistry , Phenyl Ethers/isolation & purification , Sesquiterpenes , Staphylococcus aureus/drug effects , Xylariales/chemistry , Xylariales/metabolism
12.
Plant Cell Physiol ; 59(1): 128-141, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29140457

ABSTRACT

Prenylated isoflavonoids have been found in several legume plants, and they possess various biological activities that play important roles in both plant defense and human health. However, it is still unknown whether prenylated isoflavonoids are present in the model legume plant Lotus japonicus. In the present study, we found that the prenylated isoflavonoid wighteone was produced in L. japonicus when leaf was supplemented with genistein. Furthermore, a novel prenyltransferase gene, LjG6DT, was identified, which shared high similarity with and was closely related to several known prenyltransferase genes involved in isoflavonoid biosynthesis. The recombinant LjG6DT protein expressed in yeast exhibited prenylation activity toward genistein as an exclusive substrate, which produced wighteone, a prenylated genistein at the C-6 position that occurs normally in legume plants. The LjG6DT-green fluorescent protein (GFP) fusion protein is targeted to plastids. The transcript level of LjG6DT is induced by glutathione, methyl jasmonate and salicylic acid, implying that LjG6DT is involved in stress response. Overexpression of LjG6DT in L. japonicus hairy roots led to increased accumulation of wighteone when genistein was supplied, indicating that LjG6DT is functional in vivo. Feeding assays with the upstream intermediate naringenin revealed that accumulation of wighteone in L. japonicus was dependent on genistein supplementation, and accumulation of wighteone is competed by genistein methylation. This study demonstrated that phytoalexin wighteone is inducibly produced in L. japonicus, and it provides new insight into the biosynthesis and accumulation of prenylated isoflavonoids in legume plants.


Subject(s)
Dimethylallyltranstransferase/genetics , Gene Expression Regulation, Plant/drug effects , Genistein/pharmacology , Isoflavones/biosynthesis , Lotus/genetics , Plant Proteins/genetics , Dimethylallyltranstransferase/metabolism , Flavonoids/biosynthesis , Glutathione/pharmacology , Lotus/metabolism , Phytoestrogens/pharmacology , Plant Growth Regulators/pharmacology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Plastids/genetics , Plastids/metabolism , Sesquiterpenes/metabolism , Phytoalexins
13.
PLoS One ; 11(2): e0149639, 2016.
Article in English | MEDLINE | ID: mdl-26890002

ABSTRACT

Vascular calcification is an important risk factor associated with mortality among patients with chronic kidney disease. Intracellular cholesterol metabolism is involved in the process of vascular cell calcification. In this study, we investigated the role of UbiA prenyltransferase domain containing 1 (UBIAD1) in intracellular cholesterol metabolism and vascular cell calcification, and identified its subcellular location. Primary human umbilical vein smooth muscle cells (HUVSMCs) were incubated with either growth medium (1.4 mmol/L Pi) or calcification medium (CM) (3.0 mmol/L Pi). Under treatment with CM, HUVSMCs were further incubated with exogenous cholesterol, or menaquinone-4, a product of UBIAD1. The plasmid and small interfering RNA were transfected in HUVSMCs to alter the expression of UBIAD1. Matrix calcium quantitation, alkaline phosphatase activity, intracellular cholesterol level and menaquinone-4 level were measured. The expression of several genes involved in cholesterol metabolism were analyzed. Using an anti-UBIAD1 antibody, an endoplasmic reticulum marker and a Golgi marker, the subcellular location of UBIAD1 in HUVSMCs was analyzed. CM increased matrix calcium, alkaline phosphatase activity and intracellular cholesterol level, and reduced UBIAD1 expression and menaquinone-4 level. Addition of cholesterol contributed to increased matrix calcification and alkaline phosphatase activity in a dose-dependent manner. Elevated expression of UBIAD1 or menaquinone-4 in HUVSMCs treated with CM significantly reduced intracellular cholesterol level, matrix calcification and alkaline phosphatase activity, but increased menaquinone-4 level. Elevated expression of UBIAD1 or menaquinone-4 reduced the gene expression of sterol regulatory element-binding protein-2, and increased gene expression of ATP binding cassette transporters A1, which are in charge of cholesterol synthesis and efflux. UBIAD1 co-localized with the endoplasmic reticulum marker and the Golgi marker in HUVSMCs. In conclusion, high intracellular cholesterol content contributes to phosphate-induced vascular cell differentiation and calcification. UBIAD1 or menaquinone-4 could decrease vascular cell differentiation and calcification, probably via its potent role of inversely modulating cellular cholesterol.


Subject(s)
Cholesterol/metabolism , Dimethylallyltranstransferase/metabolism , Intracellular Space/metabolism , Vascular Calcification/metabolism , Alkaline Phosphatase/metabolism , Cell Differentiation/drug effects , Cell Membrane Permeability/drug effects , Culture Media , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Gene Expression Regulation/drug effects , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Osteoblasts/drug effects , Osteoblasts/pathology , Phosphorus/pharmacology , Umbilical Veins/pathology , Vascular Calcification/genetics , Vascular Calcification/pathology , Vitamin K 2/analogs & derivatives , Vitamin K 2/pharmacology
14.
Redox Biol ; 6: 599-606, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26516985

ABSTRACT

The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis.


Subject(s)
Dimethylallyltranstransferase/metabolism , Regeneration , Ubiquinone/biosynthesis , Amino Acid Sequence , Animals , Antioxidants/pharmacology , Biosynthetic Pathways , Dimethylallyltranstransferase/genetics , Gene Knockdown Techniques , Homeostasis , Molecular Sequence Data , Planarians , RNA Interference , RNA, Small Interfering/genetics , alpha-Tocopherol/pharmacology
15.
Molecules ; 20(9): 15616-30, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26343621

ABSTRACT

In plants, prenylation of metabolites is widely distributed to generate compounds with efficient defense potential and distinct pharmacological activities profitable to human health. Prenylated compounds are formed by members of the prenyltransferase (PT) superfamily, which catalyze the addition of prenyl moieties to a variety of acceptor molecules. Cell cultures of Hypericum calycinum respond to elicitor treatment with the accumulation of the prenylated xanthone hyperxanthone E. A cDNA encoding a membrane-bound PT (HcPT) was isolated from a subtracted cDNA library and transcript preparations of H. calycinum. An increase in the HcPT transcript level preceded hyperxanthone E accumulation in cell cultures of H. calycinum treated with elicitor. The HcPT cDNA was functionally characterized by expression in baculovirus-infected insect cells. The recombinant enzyme catalyzed biosynthesis of 1,3,6,7-tetrahydroxy-8-prenylxanthone through regiospecific C-8 prenylation of 1,3,6,7-tetrahydroxyxanthone, indicating its involvement in hyperxanthone E formation. The enzymatic product shared significant structural features with the previously reported cholinesterase inhibitor γ-mangostin. Thus, our findings may offer a chance for semisynthesis of new active agents to be involved in the treatment of Alzheimer's disease.


Subject(s)
Cloning, Molecular/methods , Dimethylallyltranstransferase/genetics , Hypericum/enzymology , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Gene Library , Hypericum/genetics , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xanthones/metabolism
16.
Biochem Biophys Res Commun ; 460(2): 238-44, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25772619

ABSTRACT

Vitamin K is involved in bone formation and blood coagulation. Natural vitamin K compounds are composed of the plant form phylloquinone (vitamin K1) and a series of bacterial menaquionones (MK-n; vitamin K2). Menadione (vitamin K3) is an artificial vitamin K compound. MK-4 contains 4-isoprenyl as a side group in the 2-methyl-1,4-naphthoquinone common structure and has various bioactivities. UbiA prenyltransferase domain containing 1 (UBIAD1 or TERE1) is the menaquinone-4 biosynthetic enzyme. UBIAD1 transcript expression significantly decreases in patients with prostate carcinoma and overexpressing UBIAD1 inhibits proliferation of a tumour cell line. UBIAD1 mRNA expression is ubiquitous in mouse tissues, and higher UBIAD1 mRNA expression levels are detected in the brain, heart, kidneys and pancreas. Several functions of UBIAD1 have been reported; however, regulation of the human UBIAD1 gene has not been elucidated. Here we report cloning and characterisation of the human UBIAD1 promoter. A 5' rapid amplification of cDNA ends analysis revealed that the main transcriptional start site was 306 nucleotides upstream of the translation initiation codon. Deletion and mutation analyses revealed the functional importance of the YY1 consensus motif. Electrophoretic gel mobility shift and chromatin immunoprecipitation assays demonstrated that YY1 binds the UBIAD1 promoter in vitro and in vivo. In addition, YY1 small interfering RNA decreased endogenous UBIAD1 mRNA expression and UBIAD1 conversion activity. These results suggest that YY1 up-regulates UBIAD1 expression and UBIAD1 conversion activity through the UBIAD1 promoter.


Subject(s)
Dimethylallyltranstransferase/metabolism , Gene Expression Regulation/physiology , YY1 Transcription Factor/physiology , Base Sequence , Blotting, Western , Chromatin Immunoprecipitation , DNA, Complementary , Dimethylallyltranstransferase/genetics , Electrophoretic Mobility Shift Assay , HEK293 Cells , Humans , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Transcription, Genetic
17.
Plant J ; 77(4): 627-38, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24354545

ABSTRACT

Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants.


Subject(s)
Dimethylallyltranstransferase/metabolism , Furocoumarins/metabolism , Gene Expression Regulation, Enzymologic , Petroselinum/enzymology , Ruta/enzymology , Base Sequence , Coumarins/chemistry , Coumarins/metabolism , Dimethylallyltranstransferase/genetics , Furocoumarins/chemistry , Gene Expression Regulation, Plant , Genes, Reporter , Molecular Sequence Data , Onions/cytology , Onions/genetics , Onions/metabolism , Organ Specificity , Petroselinum/genetics , Petroselinum/radiation effects , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins , Ruta/genetics , Ruta/radiation effects , Sequence Analysis, DNA , Substrate Specificity , Nicotiana/enzymology , Nicotiana/genetics , Nicotiana/radiation effects , Ultraviolet Rays , Umbelliferones/chemistry , Umbelliferones/metabolism
18.
Phytochemistry ; 70(15-16): 1739-45, 2009.
Article in English | MEDLINE | ID: mdl-19819506

ABSTRACT

Prenylation plays a major role in the diversification of aromatic natural products, such as phenylpropanoids, flavonoids, and coumarins. This biosynthetic reaction represents the crucial coupling process of the shikimate or polyketide pathway providing an aromatic moiety and the isoprenoid pathway derived from the mevalonate or methyl erythritol phosphate (MEP) pathway, which provides the prenyl (isoprenoid) chain. In particular, prenylation contributes strongly to the diversification of flavonoids, due to differences in the prenylation position on the aromatic rings, various lengths of prenyl chain, and further modifications of the prenyl moiety, e.g., cyclization and hydroxylation, resulting in the occurrence of ca. 1000 prenylated flavonoids in plants. Many prenylated flavonoids have been identified as active components in medicinal plants with biological activities, such as anti-cancer, anti-androgen, anti-leishmania, and anti-nitric oxide production. Due to their beneficial effects on human health, prenylated flavonoids are of particular interest as lead compounds for producing drugs and functional foods. However, the gene coding for prenyltransferases that catalyze the key step of flavonoid prenylation have remained unidentified for more than three decades, because of the membrane-bound nature of these enzymes. Recently, we have succeeded in identifying the first prenyltransferase gene SfN8DT-1 from Sophora flavescens, which is responsible for the prenylation of the flavonoid naringenin at the 8-position, and is specific for flavanones and dimethylallyl diphosphate (DMAPP) as substrates. Phylogenetic analysis showed that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. A prenyltransferase GmG4DT from soybean, which is involved in the formation of glyceollin, was also identified recently. This enzyme was specific for pterocarpan as its aromatic substrate, and (-)-glycinol was the native substrate yielding the direct precursor of glyceollin I. These enzymes are localized to plastids and the prenyl chain is derived from the MEP pathway. Further relevant genes involved in the prenylation of other types of polyphenol are expected to be cloned by utilizing the sequence information provided by the above studies.


Subject(s)
Biological Products/biosynthesis , Dimethylallyltranstransferase/metabolism , Plants/metabolism , Prenylation , Biological Products/chemistry , Molecular Structure
19.
Biosci Biotechnol Biochem ; 73(3): 759-61, 2009 Mar 23.
Article in English | MEDLINE | ID: mdl-19270405

ABSTRACT

Prenylated flavonoids are natural products that exhibit diverse biological effects and often represent the active components of various medicinal plants. This study demonstrated the production of prenylated naringenin by biotransformation using transgenic yeast expressing naringenin 8-dimethylallyltransferase, a membrane-bound enzyme, without feeding of prenyl donors. This method provides the possibility of generating prenylated flavonoids that occur rarely in nature.


Subject(s)
Cell Membrane/metabolism , Dimethylallyltranstransferase/metabolism , Flavonoids/metabolism , Prenylation , Sophora/cytology , Sophora/enzymology , Yeasts/genetics , Dimethylallyltranstransferase/biosynthesis , Dimethylallyltranstransferase/genetics
20.
FEBS J ; 275(14): 3653-68, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18540885

ABSTRACT

Ubiquinone is an essential factor for the electron transfer system and is also a known lipid antioxidant. The length of the ubiquinone isoprenoid side-chain differs amongst living organisms, with six isoprene units in the budding yeast Saccharomyces cerevisiae, eight units in Escherichia coli and 10 units in the fission yeast Schizosaccharomyces pombe and in humans. The length of the ubiquinone isoprenoid is determined by the product generated by polyprenyl diphosphate synthases (poly-PDSs), which are classified into homodimer (i.e. octa-PDS IspB in E. coli) and heterotetramer [i.e. deca-PDSs Dps1 and D-less polyprenyl diphosphate synthase (Dlp1) in Sc. pombe and in humans] types. In this study, we characterized the hexa-PDS (Coq1) of S. cerevisiae to identify whether this enzyme was a homodimer (as in bacteria) or a heteromer (as in fission yeast). When COQ1 was expressed in an E. coli ispB disruptant, only hexa-PDS activity and ubiquinone-6 were detected, indicating that the expression of Coq1 alone results in bacterial enzyme-like functionality. However, when expressed in fission yeast Deltadps1 and Deltadlp1 strains, COQ1 restored growth on minimal medium in the Deltadlp1 but not Deltadps1 strain. Intriguingly, ubiquinone-9 and ubiquinone-10, but not ubiquinone-6, were identified and deca-PDS activity was detected in the COQ1-expressing Deltadlp1 strain. No enzymatic activity or ubiquinone was detected in the COQ1-expressing Deltadps1 strain. These results indicate that Coq1 partners with Dps1, but not with Dlp1, to be functional in fission yeast. Binding of Coq1 and Dps1 was demonstrated by coimmunoprecipitation, and the formation of a tetramer consisting of Coq1 and Dps1 was detected in Sc. pombe. Thus, Coq1 is functional when expressed alone in E. coli and in budding yeast, but is only functional as a partner with Dps1 in fission yeast. This unusual observation indicates that different folding processes or protein modifications in budding yeast/E. coli versus those in fission yeast might affect the formation of an active enzyme. These results provide important insights into the process of how PDSs have evolved from homo- to hetero-types.


Subject(s)
Dimethylallyltranstransferase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Amino Acid Sequence , DNA, Complementary/isolation & purification , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genetic Complementation Test , Molecular Sequence Data , Mutation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Sequence Homology, Amino Acid , Ubiquinone/biosynthesis , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL