Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646770

ABSTRACT

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Subject(s)
Diatoms , Dinoflagellida , Environmental Monitoring , Harmful Algal Bloom , Seawater , China , Dinoflagellida/growth & development , Seawater/analysis , Seawater/chemistry , Diatoms/growth & development , Oceans and Seas , Phosphorus/analysis , Nitrogen/analysis , Seasons
2.
Mar Environ Res ; 196: 106421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437778

ABSTRACT

Phosphorus and temperature play an important role in the succession of diatom-dinoflagellate blooms. However, there is little long-term research on interspecific competition based on phosphorus source and temperature. Here, interspecific competition among Skeletonema costatum, Prorocentrum donghaiense and Karenia mikimotoi was studied using trialgal laboratory co-cultures under different phosphorus and temperature conditions. These results suggest that S. costatum and P. donghaiense alternated as competing dominant species during the experimental period, which coincides with the different phosphorus conditions. However, K. mikimotoi growth was significantly inhibited throughout the experiment. We suggest that this may be due to different algal requirements for phosphorus, optimal growth temperatures, and possible allelopathic effects. This study provides a comprehensive mechanism of interspecific competition between diatom-dinoflagellate in response to phosphorus and temperature and elucidates the seasonal succession of diatom-dinoflagellate from late spring to early summer in the Changjiang River Estuary and the adjacent East China Sea.


Subject(s)
Diatoms , Dinoflagellida , Temperature , Phosphorus , Diatoms/physiology , China , Ecology , Harmful Algal Bloom
3.
Environ Sci Pollut Res Int ; 31(12): 18579-18592, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351353

ABSTRACT

Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.


Subject(s)
Dinoflagellida , Ginkgo biloba , Cytochromes b , Photosystem I Protein Complex , Harmful Algal Bloom , Photosynthesis , Gene Expression Profiling , Plant Extracts/pharmacology , Quinones/pharmacology
4.
Water Res ; 251: 121150, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38246079

ABSTRACT

Dissolved organic nitrogen (DON) is a pivotal component of total dissolved nitrogen pools, serving as a crucial nitrogen source for phytoplankton. This study investigated the impact of nitrogen-to-phosphorus (N/P) ratios and different DON components (hydrophilic vs hydrophobic DON) on diatom-dinoflagellate succession through field culture experiments. Results showed that dinoflagellates have a competitive advantage under high N/P ratios and phosphorus limitation, regardless of DON or DIN treatments. Hydrophilic DON exhibits greater bioavailability than hydrophobic DON (40.6% vs. 21.7 %), resulting in increased algal biomass and diatoms dominance in the community. Additionally, DON was categorized into labile and refractory components (LDON and RDON) based on bioavailability. LDON primarily consists of protein-like components that can be readily consumed by algae, whereas RDON is primarily composed of humic-like components that are less accessible to algae. Diatoms and dinoflagellates exhibited differential responses to LDON and RDON, with diatoms thriving in high LDON environments, while dinoflagellates gained a competitive advantage when RDON was the predominant nitrogen source. Furthermore, a significant negative correlation was observed between bioavailable nitrogen concentration (BAN: DIN + LDON) and the ratio of dinoflagellates to diatoms (p<0.05). In conclusion, our study highlights the role of LDON in promoting diatom dominance, whereas environments dominated by RDON foster dinoflagellate success. These findings enhance our comprehension of diatom-dinoflagellate succession dynamics.


Subject(s)
Diatoms , Dinoflagellida , Dissolved Organic Matter , Nitrogen/analysis , Phosphorus
5.
Mar Environ Res ; 195: 106378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266549

ABSTRACT

The increasing prevalence of phosphorus limitation in coastal waters has drawn attention to the bioavailability of cellular surface-adsorbed phosphorus (SP) as a reservoir of phosphorus in phytoplankton. This study examined the storage, utilization, and regulation of SP in the coastal waters of the East China Sea, as well as three cultivated algal bloom species (Skeletonema marinoi, Prorocentrum shikokuense, and Karenia mikimotoi) prevalent in the area. SP accounted for 14.3%-45.5% of particulate phosphorus in the field and laboratory species. After the depletion of external phosphate, the studied species can rapidly transport SP within 3-24 h. The storage of SP is regulated by both external phosphate conditions and the internal growth stage of cells, but it is not influenced by the various cellular surface structures of the studied species. This study highlights the significance of SP as a crucial phosphorus reservoir and the potential use of the SP level as an indicator of phosphorus deficiency in phytoplankton.


Subject(s)
Dinoflagellida , Microalgae , Phosphates , Phytoplankton/physiology , Phosphorus , China , Harmful Algal Bloom
6.
Chemosphere ; 349: 140844, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042419

ABSTRACT

Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.


Subject(s)
Dinoflagellida , Phosphorus , Phosphorus/metabolism , Membrane Lipids/metabolism , Dinoflagellida/metabolism , Harmful Algal Bloom , Phospholipids/metabolism , Autophagy
7.
Nat Commun ; 14(1): 6949, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914686

ABSTRACT

Symbiotic associations with Symbiodiniaceae have evolved independently across a diverse range of cnidarian taxa including reef-building corals, sea anemones, and jellyfish, yet the molecular mechanisms underlying their regulation and repeated evolution are still elusive. Here, we show that despite their independent evolution, cnidarian hosts use the same carbon-nitrogen negative feedback loop to control symbiont proliferation. Symbiont-derived photosynthates are used to assimilate nitrogenous waste via glutamine synthetase-glutamate synthase-mediated amino acid biosynthesis in a carbon-dependent manner, which regulates the availability of nitrogen to the symbionts. Using nutrient supplementation experiments, we show that the provision of additional carbohydrates significantly reduces symbiont density while ammonium promotes symbiont proliferation. High-resolution metabolic analysis confirmed that all hosts co-incorporated glucose-derived 13C and ammonium-derived 15N via glutamine synthetase-glutamate synthase-mediated amino acid biosynthesis. Our results reveal a general carbon-nitrogen negative feedback loop underlying these symbioses and provide a parsimonious explanation for their repeated evolution.


Subject(s)
Ammonium Compounds , Anthozoa , Dinoflagellida , Sea Anemones , Animals , Feedback , Carbon/metabolism , Nitrogen/metabolism , Glutamate Synthase/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Sea Anemones/metabolism , Anthozoa/physiology , Symbiosis/physiology , Dinoflagellida/metabolism , Amino Acids/metabolism , Ammonium Compounds/metabolism
8.
Harmful Algae ; 129: 102532, 2023 11.
Article in English | MEDLINE | ID: mdl-37951614

ABSTRACT

Polyphosphate (polyP) has long been recognized as a crucial intracellular reservoir for phosphorus in microorganisms. However, the dynamics of polyP and its regulatory mechanism in eukaryotic phytoplankton in response to variations in external phosphorus conditions remain poorly understood. A comprehensive investigation was conducted to examine the intracellular polyP-associated metabolic response of the dinoflagellate Karenia mikimotoi, a harmful algal bloom species, through integrated physiological, biochemical, and transcriptional analyses under varying external phosphorus conditions. Comparable growth curves and Fv/Fm between phosphorus-replete conditions and phosphorus-depleted conditions suggested that K. mikimotoi has a strong capability to mobilize the intracellular phosphorus pool for growth under phosphorus deficiency. Intracellular phosphate (IPi) and polyP contributed approximately 6-23 % and 1-3 %, respectively, to the overall particulate phosphorus (PP) content under different phosphorus conditions. The significant decrease in PP and increase in polyP:PP suggested that cellular phosphorus components other than polyP are preferred for utilization under phosphorus deficiency. Genes involved in polyP synthesis and hydrolysis were upregulated to maintain phosphorus homeostasis in K. mikimotoi. These findings provide novel insights into the specific cellular strategies for phosphorus storage and the transcriptional response in intracellular polyP metabolism in K. mikimotoi. Additionally, these results also indicate that polyP may not play a crucial role in cellular phosphorus storage in phytoplankton, at least in dinoflagellates.


Subject(s)
Dinoflagellida , Dinoflagellida/genetics , Phosphorus , Polyphosphates , Harmful Algal Bloom , Phytoplankton , Gene Expression
9.
Appl Environ Microbiol ; 89(11): e0086723, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37850723

ABSTRACT

IMPORTANCE: Dinoflagellates are the most common phytoplankton group and account for more than 75% of harmful algal blooms in coastal waters. In recent decades, dinoflagellates seem to prevail in phosphate-depleted waters. However, the underlying acclimation mechanisms and competitive strategies of dinoflagellates in response to phosphorus deficiency are poorly understood, especially in terms of intracellular phosphorus modulation and recycling. Here, we focused on the response of intracellular phosphorus metabolism to phosphorus deficiency in the model dinoflagellate Karenia mikimotoi. Our work reveals the strong capability of K. mikimotoi to efficiently regulate intracellular phosphorus resources, particularly through membrane phospholipid remodeling and miRNA regulation of energy metabolism. Our research improved the understanding of intracellular phosphorus metabolism in marine phytoplankton and underscored the advantageous strategies of dinoflagellates in the efficient modulation of internal phosphorus resources to maintain active physiological activity and growth under unsuitable phosphorus conditions, which help them outcompete other species in coastal phosphate-depleted environments.


Subject(s)
Dinoflagellida , Phosphorus , Harmful Algal Bloom , Phytoplankton , Phosphates
10.
J Phycol ; 59(6): 1347-1352, 2023 12.
Article in English | MEDLINE | ID: mdl-37844083

ABSTRACT

Increases of atmospheric CO2 cause ocean acidification (OA) and global warming, the latter of which can stratify the water column and impede nutrient supply from deep water. Phosphorus (P) is an essential nutrient for phytoplankton to grow. While dissolved inorganic phosphorus (DIP) is the preferred form of P, phytoplankton have evolved alkaline phosphatase (AP) to utilize dissolved organic phosphorus (DOP) when DIP is deficient. Although the function of AP is known to require pH > 7, how OA affects AP activity and hence the capacity of phytoplankton to utilize DOP is poorly understood. Here, we examined the effects of pH conditions (5.5-11) on AP activity from six species of dinoflagellates, an important group of marine phytoplankton. We observed a general pattern that AP activity declined sharply at pH 5.5, peaked between pH 7 and 8, and dropped at pH > 8. However, our data revealed remarkable interspecific variations in optimal pH and niche breadth of pH. Among the species examined, Fugacium kawagutii and Prorocentrum cordatum had an optimal pH at 8, and Alexandrium pacificum, Amphidinium carterae, Effrenium voratum, and Karenia mikimotoi showed an optimal pH of 7. However, whereas A. pacificum and K. mikimotoi had the broadest pH niche for AP (7-10) and F. kawagutii the second (8-10), Am. carterae, E. voratum, and P. cordatum exhibited a narrow pH range. The response of Am. carterae AP to pH changes was verified using purified AP heterologously expressed in Escherichia coli. These results in concert suggest OA will likely differentially impact the capacity of different phytoplankton species to utilize DOP in the projected more acidified and nutrient-limited future ocean.


Subject(s)
Dinoflagellida , Alkaline Phosphatase , Dinoflagellida/physiology , Hydrogen-Ion Concentration , Ocean Acidification , Phosphorus , Phytoplankton/physiology , Seawater/chemistry , Water
11.
Environ Pollut ; 338: 122702, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37821042

ABSTRACT

A variety of studies have investigated the toxic effects of microplastics (MPs) on microalgae, but few of them considered their influence on dinoflagellate toxins production, which could cause significant ecological safety concerns in coastal areas. This research investigated the impacts of 5 µg L-1 and 5 mg L-1 polystyrene (PS) MPs on the changes of paralytic shellfish toxins (PSTs) production and their relationship with cellular oxidative stress of Alexandrium tamarense, a common harmful algal blooms causative dinoflagellate. The results showed elevation of reactive oxygen species (ROS) levels, activation of antioxidant system and overproduction of PSTs were positively correlated under PS MPs exposure (especially under 5 mg L-1 PS MPs), and the PSTs changes were eliminated by the ROS inhibitor. Further transcriptomic analysis revealed that ROS could enhance biosynthesis of glutamate, providing raw materials for PSTs precursor arginine, accompanied with enhanced acetyl-CoA and ATP production, finally leading to the overproduction of PSTs. Moreover, the oxidative intracellular environments might block the reduction process from STX to C1&C2, leading to the increase of STX and decrease of C1&C2 proportions. This work brings the first evidence that ROS could mediate PSTs production and compositions of Alexandrium under MPs exposure, with important scientific and ecological significance.


Subject(s)
Dinoflagellida , Plastics , Plastics/pharmacology , Reactive Oxygen Species , Microplastics/toxicity , Marine Toxins/toxicity , Shellfish
12.
Harmful Algae ; 128: 102492, 2023 10.
Article in English | MEDLINE | ID: mdl-37714578

ABSTRACT

Harmful algal blooms (HABs) of the toxic marine dinoflagellate Karenia brevis, commonly called red tides, are an ongoing threat to human health and marine ecosystems in Florida. Clay flocculation is a standard control strategy for marine HABs in China and Korea and is currently being assessed for use in the United States. We evaluated the effects of a PAC-modified clay called Modified Clay II on mortality, eyestalk reflexes, and righting reflexes of 48 adult blue crabs (Callinectes sapidus). Crabs were exposed to clay alone (0.5 g L - 1), untreated K. brevis (1 × 106 cells L - 1), or a combination of K. brevis and clay for eight days. Clay treatment reduced cell concentrations in the water column by 95% after 24 h. We detected no significant differences in mortality, righting reflexes, or eyestalk reflexes between treatments. Our results indicate that the clay alone is not harmful to adult crabs at typical treatment concentrations within the measured time frame, and that treatment of K. brevis with this clay appears to have a negligible impact on crab mortality and the reflex variables we measured. These results suggest that Modified Clay II may be a viable option to treat K. brevis blooms without impacting adult blue crab populations. Additional controlled experiments and field tests are needed to further evaluate the impact of clay on natural benthic communities.


Subject(s)
Brachyura , Dinoflagellida , Humans , Animals , Clay , Ecosystem , Harmful Algal Bloom
13.
Glob Chang Biol ; 29(23): 6558-6571, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37740668

ABSTRACT

Coral reefs thrive in the oligotrophic ocean and rely on symbiotic algae to acquire nutrients. Global warming is projected to intensify surface ocean nutrient deficiency and anthropogenic discharge of wastes with high nitrogen (N): phosphorus (P) ratios can exacerbate P nutrient limitation. However, our understanding on how symbiotic algae cope with P deficiency is limited. Here, we investigated the responses of a coral symbiotic species of Symbiodiniaceae, Cladocopium goreaui, to P-limitation by examining its physiological performance and transcriptomic profile. Under P stress, C. goreaui exhibited decreases in algal growth, photosynthetic efficiency, and cellular P content but enhancement in carbon fixation, N assimilation, N:P ratio, and energy metabolism, with downregulated expression of carbohydrate exporter genes. Besides, C. goreaui showed flexible mechanisms of utilizing different dissolved organic phosphorus to relieve P deficiency. When provided glycerol phosphate, C. goreaui hydrolyzed it extracellularly to produce phosphate for uptake. When grown on phytate, in contrast, C. goreaui upregulated the endocytosis pathway while no dissolved inorganic phosphorus was released into the medium, suggesting that phytate was transported into the cell, potentially via the endocytosis pathway. This study sheds light on the survival strategies of C. goreaui and potential weakening of its role as an organic carbon supplier in P-limited environments, underscoring the importance of more systematic investigation on future projections of such effects.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/physiology , Phosphorus/metabolism , Symbiosis , Phytic Acid/metabolism , Coral Reefs , Oceans and Seas , Phosphates/metabolism , Dinoflagellida/physiology
14.
Sci Rep ; 13(1): 14191, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648777

ABSTRACT

Nitrogen (N) and phosphorus (P) are essential elements whose availability promotes successful growth of phytoplankton and governs aquatic primary productivity. In this study, we investigated the effect of N and/or P deficiency on the sexual reproduction of Prorocentrum cordatum, the dinoflagellate with the haplontic life cycle which causes harmful algal blooms worldwide. In P. cordatum cultures, N and the combined N and P deficiency led to the arrest of the cell cycle in the G0/G1 phases and attenuation of cell culture growth. We observed, that P, but not N deficiency triggered the transition in the life cycle of P. cordatum from vegetative to the sexual stage. This resulted in a sharp increase in percentage of cells with relative nuclear DNA content 2C (zygotes) and the appearance of cells with relative nuclear DNA content 4C (dividing zygotes). Subsequent supplementation with phosphate stimulated meiosis and led to a noticeable increase in the 4C cell number (dividing zygotes). Additionally, we performed transcriptomic data analysis and identified putative phosphate transporters and enzymes involved in the phosphate uptake and regulation of its metabolism by P. cordatum. These include high- and low-affinity inorganic phosphate transporters, atypical alkaline phosphatase, purple acid phosphatases and SPX domain-containing proteins.


Subject(s)
Dinoflagellida , Phosphorus , Reproduction , Phosphates , Meiosis
15.
J Hazard Mater ; 453: 131432, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37080037

ABSTRACT

In this study, arsenate (As(V)) uptake, bioaccumulation, subcellular distribution and biotransformation were assessed in the marine diatom Skeletonema costatum and dinoflagellate Amphidinium carterae cultured in dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP). The results of 3-days As(V) exposure showed that As(V) was more toxic in DOP cultures than in DIP counterparts. The higher As accumulation contributed to more severe As(V) toxicity. The 4-h As(V) uptake kinetics followed Michaelis-Menten kinetics. The maximum uptake rates were higher in DOP cultures than those in DIP counterparts. After P addition, the half-saturation constants remained constant in S. costatum (2.42-3.07 µM) but decreased in A. carterae (from 10.9 to 3.8 µM) compared with that in the respective P-depleted counterparts. During long-term As(V) exposure, A. carterae accumulated more As than S. costatum. Simultaneously, As(V) was reduced and transformed into organic As species in DIP-cultured S. costatum, which was severely inhibited in their DOP counterparts. Only As(V) reduction occurred in A. carterae. Overall, this study demonstrated species-specific effects of DOP on As(V) toxicity, and thus provide a new insight into the relationship between As contamination and eutrophication on the basis of marine microalgae.


Subject(s)
Diatoms , Dinoflagellida , Phosphorus/metabolism , Arsenates/toxicity , Arsenates/metabolism
16.
Sci Total Environ ; 868: 161579, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36640882

ABSTRACT

The Galician Rías (northwestern Spain) are periodically affected by harmful algal blooms (HABs), mostly dinoflagellates, which pose a challenge to aquaculture activities due to the accumulation of biotoxins in shellfish. Typically, reddish blooms in the Rías are associated with non-toxic species like Noctiluca scintillans, with a few exceptions such as Alexandrium minutum, a producer of paralytic shellfish toxins (PST). Here, a useful approach is presented for monitoring reddish blooms through satellite imagery based on three case studies, two of them belonged to monospecific blooms of red Noctiluca scintillans, and the third to a bloom of Alexandrium spp. dominated by A. tamarense. In every case, a propulsive index was evaluated using Sentinel-2A/B satellites, which provide high spatial and spectral resolutions, combined with adequate atmospheric and sunglint correction by using the ACOLITE and C2RCC processors. This approach offers a simple and feasible method to accurately and timely map blooms of red N. scintillans and Alexandrium spp. in the study area, useful to detect the distribution of reddish blooms with synoptic observations for monitoring and aquaculture management purposes. Conversely, Sentinel-3A/B satellites with a relatively coarser spatial resolution, lacking adequate visualization and mapping of the extent of small blooms, did not accurately detect bloom footprints in the coastal bay region, although this sensor displays a set of suitable multispectral bands.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Marine Toxins/toxicity , Spain , Aquaculture
17.
Environ Res ; 216(Pt 3): 114711, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36334824

ABSTRACT

Anthropogenic discharge activities have increased nutrient pollution in coastal areas, leading to algal blooms and microbial community changes. Particularly, microbial communities could easily be affected with variation in nutrient pollution, and thus offered a promising strategy to predict early red tides warning via microbial community-levels variation and their keystone taxa hysteretic responses to nutrient pollution. Herein high-throughput sequencing technology from 52 samples were used to explore the variation of microbial communities and find the significant tipping points with aggravating nutrient conditions in Xiaoping Island coastal area. Results indicated that bacterial and microeukaryote communities were generally spatial and seasonal heterogeneity and were influenced by the different nutrient conditions. Procrustes test results showed that the comprehensive index of organics polluting (OPI), total nitrogen (TN), inorganic nitrogen (DIN), and total phosphorus (TP) were significantly correlated with the composition of bacteria and microeukaryotes. A SEGMENTED analysis revealed that the threshold of TN, DIN, and NH4-N for bacterial community were 0.23 ± 0.091 mg/L, 0.21 ± 0.084 mg/L, 0.09 ± 0.057 mg/L, respectively. Tipping points for TN, DIN, and NH4-N agreed with the concentration during Ceratium tripos and Skeletonema costatum blooms. Co-occurrence network results found that Planktomarina, Acinetobacter, and Verrucomicrobiaceae were keystone and OPI-discriminatory taxa. The abundant changes of Planktomarina at station A1 were significantly correlated with the development of C. tripos blooms (r = 0.55, p < 0.05), and also significantly correlated with TN, DIN, and NO3-N (r≥|0.55|, p < 0.05). The abundant changes of Acinetobacter and Verrucomicrobiaceae at station C1 were significantly correlated with the development of C. tripos blooms (r ≥ 0.77, p < 0.05), and also significantly correlated with PO4-P (r ≥ 0.64, p < 0.05). The dynamic abundance of keystone taxa showed that the trend of rapid changes could be monitored 1.5 months before the occurrence of red tide. Therefore, this study provides an assessment method for early warning of red tide occurrence and factors that trigger red tide.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Phosphorus/analysis , Nitrogen/analysis , Bacteria/genetics , China
18.
Sci Total Environ ; 858(Pt 2): 159944, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36351498

ABSTRACT

Phosphorus (P) is an essential but limiting nutrient for coral growth due to low concentrations of dissolved inorganic concentrations (DIP) in reef waters. P limitation is often exacerbated when concentrations of dissolved inorganic nitrogen (DIN) increase in the reef. To increase their access to phosphorus, corals can use organic P dissolved in seawater (DOP). They possess phosphatase enzymes that transform DOP into DIP, which can then be taken up by coral symbionts. Although the concentration of DOP in reef waters is much higher than DIP, the dependence of corals on this P source is still poorly understood, especially with different concentrations of DIN in seawater. As efforts to predict the future of corals increase, improved knowledge of the P requirements of corals living under different DIN concentrations may be key to predicting coral health. In this study, we investigated P content and phosphatase activities (PAs) in Stylophora pistillata maintained under nutrient starvation, long-term nitrogen enrichment (nitrate or ammonium at 2 µM) and short-term (few hours) nitrogen pulses. Results show that under nutrient depletion and ammonium-enriched conditions, a significant increase in PAs was observed compared to control conditions, with no change in the N:P ratio of the coral tissue. On the contrary, under nitrate enrichment, there was no increase in PAs compared to control conditions, but an increase in the N:P ratio of the coral tissue. These results suggest that under nitrate enrichment, corals were unable to increase their ability to rely on DOP and replenish their cellular P content. An increase in cellular N:P ratio is detrimental to coral health as it increases the susceptibility of coral bleaching under thermal stress. These results provide an overall view of the P requirements of corals exposed to different nutrient conditions and improve our understanding of the effects of nitrogen enrichment on corals.


Subject(s)
Ammonium Compounds , Anthozoa , Dinoflagellida , Animals , Symbiosis , Nitrates , Dissolved Organic Matter , Nitrogen , Phosphorus , Organic Chemicals , Nutrients , Nitrogen Oxides , Phosphoric Monoester Hydrolases , Coral Reefs
19.
Mar Environ Res ; 183: 105841, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36512865

ABSTRACT

Prorocentrum donghaiense blooms occur annually in the East China Sea coastal waters, degrading ecosystem functions and impeding economic development. Dissolved organic nitrogen and phosphorus (DON and DOP) are the main components in the marine nutrient pools and are closely related to harmful algal blooms. From April to June 2019, a survey was conducted along the East China Sea coast (Sansha and Lianjiang counties) to investigate the relationship between dissolved organic nutrients and P. donghaiense bloom. Our findings showed that dinoflagellates dominated the phytoplankton community, and dissolved organic nutrients were the major factors influencing community structure during the P. donghaiense bloom. Redundancy analysis indicated that P. donghaiense abundance was primarily affected by DON in the Sansha area while it was primarily affected by DON and DOP in the Lianjiang area. Correlation analysis also confirmed a strong positive correlation between dissolved organic nutrients and P. donghaiense abundance both in the Sansha and Lianjiang coastal areas (p < 0.001). Furthermore, a culture experiment was carried out during the bloom to further investigate the effect of dissolved organic nutrients on the phytoplankton community structure. After 10 days of culture, dinoflagellates' relative abundance decreased from 97.1% to 28.2% in the inorganic treatment, whereas dinoflagellates continued to dominate the phytoplankton community in the organic treatment (76.9%). As a result, we propose that dissolved organic nutrients are responsible for the P. donghaiense bloom outbreak and promote the phytoplankton community shift from diatoms to dinoflagellates.


Subject(s)
Dinoflagellida , Ecosystem , Harmful Algal Bloom , Phytoplankton , China , Phosphorus , Nutrients , Nitrogen
20.
Harmful Algae ; 119: 102323, 2022 11.
Article in English | MEDLINE | ID: mdl-36344193

ABSTRACT

Alexandrium pacificum is a toxic dinoflagellate that can cause harmful algal blooms (HABs). The molecular mechanisms of HABs are still poorly understood, especially at the epigenetics level. Organism growth and metabolic processes are affected by histone modifications, an important mode of epigenetic regulation. In this study, various types of modifications, including methylation, acetylation, ubiquitination, and phosphorylation in A. pacificum cells were identified by using pan-antibodies, mass spectrometry, and an H3 modification multiplex assay kit. The modification abundance of H3K4me2 and H3K27me3 of A. pacificum varied under different growth conditions detected by Western blots. A class of SET domain genes (SDGs) encoding histone lysine methyltransferase was analyzed. A total of 179 SDG members were identified in A. pacificum, of which 53 sequences encoding complete proteins were classified into three categories by phylogenetic analysis, conserved domains and motifs analysis. Expression analysis and real-time polymerase chain reaction validation showed that the expressions of some SDGs were significantly influenced by light, nitrogen, phosphorus and manganese supplements. The results revealed that histone lysine methylation played an important role in responding to HABs inducing conditions. This study provided useful information for the further exploration of the role and regulatory mechanism of SDGs in the rapid growth of A. pacificum.


Subject(s)
Dinoflagellida , Histone Code , Histone-Lysine N-Methyltransferase , Epigenesis, Genetic , Phylogeny , Dinoflagellida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL