Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Curr Drug Discov Technol ; 17(4): 484-497, 2020.
Article in English | MEDLINE | ID: mdl-31969106

ABSTRACT

Arboviruses are a diverse group of viruses that are among the major causes of emerging infectious diseases. Arboviruses from the genera flavivirus and alphavirus are the most important human arboviruses from a public health perspective. During recent decades, these viruses have been responsible for millions of infections and deaths around the world. Over the past few years, several investigations have been carried out to identify antiviral agents to treat these arbovirus infections. The use of synthetic antiviral compounds is often unsatisfactory since they may raise the risk of viral mutation; they are costly and possess either side effects or toxicity. One attractive strategy is the use of plants as promising sources of novel antiviral compounds that present significant inhibitory effects on these viruses. In this review, we describe advances in the exploitation of compounds and extracts from natural sources that target the vital proteins and enzymes involved in arbovirus replication.


Subject(s)
Alphavirus Infections/drug therapy , Antiviral Agents/pharmacology , Flavivirus Infections/drug therapy , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Alphavirus/drug effects , Alphavirus/genetics , Alphavirus/pathogenicity , Alphavirus Infections/transmission , Alphavirus Infections/virology , Animals , Antiviral Agents/therapeutic use , Disease Reservoirs/virology , Disease Vectors , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Flavivirus/drug effects , Flavivirus/genetics , Flavivirus/pathogenicity , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans , Mutation , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Virus Replication/drug effects
3.
PLoS Pathog ; 15(7): e1007869, 2019 07.
Article in English | MEDLINE | ID: mdl-31291371

ABSTRACT

Clonal expansion of HIV infected cells plays an important role in the formation and persistence of the reservoir that allows the virus to persist, in DNA form, despite effective antiretroviral therapy. We used integration site analysis to ask if there is a similar clonal expansion of SIV infected cells in macaques. We show that the distribution of HIV and SIV integration sites in vitro is similar and that both viruses preferentially integrate in many of the same genes. We obtained approximately 8000 integration sites from blood samples taken from SIV-infected macaques prior to the initiation of ART, and from blood, spleen, and lymph node samples taken at necropsy. Seven clones were identified in the pre-ART samples; one persisted for a year on ART. An additional 100 clones were found only in on-ART samples; a number of these clones were found in more than one tissue. The timing and extent of clonal expansion of SIV-infected cells in macaques and HIV-infected cells in humans is quite similar. This suggests that SIV-infected macaques represent a useful model of the clonal expansion of HIV infected cells in humans that can be used to evaluate strategies intended to control or eradicate the viral reservoir.


Subject(s)
HIV Infections/drug therapy , HIV Infections/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/virology , Animals , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/virology , Disease Reservoirs/virology , HIV Infections/pathology , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , In Vitro Techniques , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/pathogenicity , Viral Load/drug effects , Virus Integration/genetics , Virus Integration/physiology , Virus Replication/drug effects
4.
Viruses ; 11(4)2019 04 17.
Article in English | MEDLINE | ID: mdl-30999665

ABSTRACT

The stunting disease, incited by chrysanthemum stunt viroid (CSVd), has become a serious problem in chrysanthemum production areas worldwide. Here we identified 46 weed species from chrysanthemum fields in two producing regions of the State of São Paulo, Brazil. The mechanical inoculation of these weeds with a Brazilian CSVd isolate revealed that this viroid was able to infect 17 of these species, in addition to chrysanthemum, tomato and potato. Plants of Oxalis latifolia and chrysanthemum naturally infected with CSVd were found in chrysanthemum fields in Colombia, which is the first CSVd report in that country. Therefore, weeds have the potential to act as reservoirs of CSVd in the field. These results are the first reports of experimental CSVd infection in the following species: Amaranthus viridis, Cardamine bonariensis, Chamaesyce hirta, Conyza bonariensis, Digitaria sanguinalis, Gomphrena globosa, Helianthus annuus, Lupinus polyphyllus, Mirabilis jalapa, Oxalis latifolia, Portulaca oleracea and Catharanthus roseus. The phylogenetic analyses of the CSVd variants identified herein showed three groups with Brazilian CSVd variants distributed in them all, which suggests that Brazilian CSVd isolates may have different origins through successive introductions of infected germplasm of chrysanthemum in Brazil.


Subject(s)
Chrysanthemum/virology , Disease Reservoirs/virology , Plant Diseases/virology , Plant Weeds/virology , Viroids/physiology , Animals , Brazil , Colombia , Disease Reservoirs/classification , Genetic Variation , Host Specificity , Solanum lycopersicum/virology , Phylogeny , Plant Weeds/classification , RNA, Viral/genetics , Solanum tuberosum/virology , Viroids/classification , Viroids/genetics , Viroids/isolation & purification
5.
Zoonoses Public Health ; 66(1): 108-116, 2019 02.
Article in English | MEDLINE | ID: mdl-30430752

ABSTRACT

Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans, affecting various aspects of human development on a global scale. The significance of bats as a source of emerging infectious diseases is being progressively appreciated. This study was undertaken post-Ebola virus disease in West Africa and assessed the public health implications of human-bat interactions by exploring the reasons for contact between humans and bats, as well as reported actions taken upon experiencing bat bites or scratches. The paper highlights the nuances of human-bat interactions, stressing zoonotic disease risk awareness as well as the sources of information. The study used questionnaires to solicit information from 788 respondents in five communities with significant bat populations. We show that bat consumption was one of the main reasons for human-bat interactions. More men across the various communities ate bat meat. Only a small number of respondents (4.4%) reported being bitten by a bat, and 6.1% had been scratched by a bat. More than 21% had come into direct contact with bat blood. An even lower number went to the hospital after been bitten or scratched by bats. There was little knowledge on post-exposure management. The most common places human-bat interactions occurred were at home and on farms. Seventy-three per cent of the respondents believed that bats carried diseases, with Ebola virus disease being the most mentioned. Respondents indicated that the way they interacted with bats had not changed, even though they believed bats carried diseases and 46% stated that they had not changed the way they interacted with bats over the last two years. Apart from providing information on avoiding bites and scratches, a more holistic framework is needed to reduce human-bat interactions. The paper recommends a comprehensive and coordinated approach to optimizing an effective response to a potential bat-borne zoonotic disease spillover.


Subject(s)
Bites and Stings/prevention & control , Chiroptera , Communicable Diseases, Emerging/epidemiology , Zoonoses/transmission , Animals , Communicable Diseases, Emerging/prevention & control , Disease Reservoirs/virology , Ghana/epidemiology , Health Behavior , Humans , Public Health
6.
PLoS Negl Trop Dis ; 12(11): e0006829, 2018 11.
Article in English | MEDLINE | ID: mdl-30399142

ABSTRACT

Lassa fever is a viral haemorrhagic fever caused by an arenavirus. The disease is endemic in West African countries, including Guinea. The rodents Mastomys natalensis and Mastomys erythroleucus have been identified as Lassa virus reservoirs in Guinea. In the absence of a vaccine, rodent control and human behavioural changes are the only options to prevent Lassa fever in highly endemic areas. We performed a 4 year intervention based on chemical rodent control, utilizing anticoagulant rodenticides in 3 villages and evaluating the rodent abundance before and after treatment. Three additional villages were investigated as controls. Analyses to assess the effectiveness of the intervention, bait consumption and rodent dynamics were performed. Anthropological investigations accompanied the intervention to integrate local understandings of human-rodent cohabitation and rodent control intervention. Patterns of bait consumption showed a peak at days 5-7 and no consumption at days 28-30. There was no difference between Bromadiolone and Difenacoum bait consumption. The main rodent species found in the houses was M. natalensis. The abundance of M. natalensis, as measured by the trapping success, varied between 3.6 and 16.7% before treatment and decreased significantly to 1-2% after treatment. Individuals in treated villages welcomed the intervention and trapping because mice are generally regarded as a nuisance. Immediate benefits from controlling rodents included protection of food and belongings. Before the intervention, local awareness of Lassa fever was non-existent. Despite their appreciation for the intervention, local individuals noted its limits and the need for complementary actions. Our results demonstrate that chemical treatment provides an effective tool to control local rodent populations and can serve as part of an effective, holistic approach combining rodent trapping, use of local rodenticides, environmental hygiene, house repairs and rodent-proof storage. These actions should be developed in collaboration with local stakeholders and communities.


Subject(s)
Lassa Fever/transmission , Murinae/physiology , Rodent Control/methods , Rodenticides/pharmacology , Animals , Disease Reservoirs/virology , Guinea , Lassa Fever/epidemiology , Lassa Fever/prevention & control , Lassa Fever/virology , Lassa virus/physiology , Mice , Murinae/classification , Murinae/virology , Rodent Control/instrumentation , Rural Health
SELECTION OF CITATIONS
SEARCH DETAIL