Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Clin Nutr ; 43(5): 1162-1170, 2024 May.
Article in English | MEDLINE | ID: mdl-38603973

ABSTRACT

BACKGROUND & AIM: Clinical trials supplementing the long-chain polyunsaturated fatty acids (LCPUFAs) docosahexaenoic acid (DHA) and arachidonic acid (AA) to preterm infants have shown positive effects on inflammation-related morbidities, but the molecular mechanisms underlying these effects are not fully elucidated. This study aimed to determine associations between DHA, AA, and inflammation-related proteins during the neonatal period in extremely preterm infants. METHODS: A retrospective exploratory study of infants (n = 183) born below 28 weeks gestation from the Mega Donna Mega trial, a randomized multicenter trial designed to study the effect of DHA and AA on retinopathy of prematurity. Serial serum samples were collected after birth until postnatal day 100 (median 7 samples per infant) and analyzed for phospholipid fatty acids and proteins using targeted proteomics covering 538 proteins. Associations over time between LCPUFAs and proteins were explored using mixed effect modeling with splines, including an interaction term for time, and adjusted for gestational age, sex, and center. RESULTS: On postnatal day one, 55 proteins correlated with DHA levels and 10 proteins with AA levels. Five proteins were related to both fatty acids, all with a positive correlation. Over the first 100 days after birth, we identified 57 proteins to be associated with DHA and/or AA. Of these proteins, 41 (72%) related to inflammation. Thirty-eight proteins were associated with both fatty acids and the overall direction of association did not differ between DHA and AA, indicating that both LCPUFAs similarly contribute to up- and down-regulation of the preterm neonate inflammatory proteome. Primary examples of this were the inflammation-modulating cytokines IL-6 and CCL7, both being negatively related to levels of DHA and AA in the postnatal period. CONCLUSIONS: This study supports postnatal non-antagonistic and potentially synergistic effects of DHA and AA on the inflammation proteome in preterm infants, indicating that supplementation with both fatty acids may contribute to limiting the disease burden in this vulnerable population. CLINICAL REGISTRATION NUMBER: ClinicalTrials.gov (NCT03201588).


Subject(s)
Arachidonic Acid , Docosahexaenoic Acids , Infant, Extremely Premature , Inflammation , Proteome , Humans , Docosahexaenoic Acids/blood , Arachidonic Acid/blood , Infant, Extremely Premature/blood , Infant, Newborn , Female , Retrospective Studies , Male , Inflammation/blood , Proteome/analysis
2.
Int J Sport Nutr Exerc Metab ; 34(4): 218-222, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38648883

ABSTRACT

Optimal omega-3 status, influenced by increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is vital for physiological health. This study investigated the impact of ad libitum fish oil supplementation on the omega-3 status of female athletes in a professional rugby league team during a competitive season. Twenty-four (n = 24) athletes participated, and their omega-3 status was assessed using the Omega-3 Index (O3I) and arachidonic acid (AA) to EPA ratio through finger-prick blood samples taken at the start and end of the season. They were given access to a fish oil supplement (PILLAR Performance, Australia) with a recommended daily dose of four capsules per day (2,160 mg EPA and 1,440 mg docosahexaenoic acid). At the beginning of the season, the group mean O3I was 4.77% (95% confidence interval [CI: 4.50, 5.04]) and the AA to EPA ratio was 14.89 (95% CI [13.22, 16.55]). None of the athletes had an O3I exceeding 8%. By the season's end, the O3I was a significantly increased to 7.28% (95% CI [6.64, 7.93], p < .0001) and AA to EPA ratio significantly decreased to a mean of 6.67 (95% CI [5.02, 8.31], p < .0001), driven primarily by the significant increase in EPA of +1.14% (95% CI [0.77, 1.51], p < .0001). However, these changes were varied between the athletes and most likely due to compliance. This study has demonstrated that using the objective O3I feedback scale is possible with elite female rugby athletes, but individual strategies will be required to achieve daily intake targets of EPA + DHA.


Subject(s)
Athletes , Dietary Supplements , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Fish Oils , Football , Humans , Female , Fish Oils/administration & dosage , Australia , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/administration & dosage , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/administration & dosage , Young Adult , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/administration & dosage , Adult , Sports Nutritional Physiological Phenomena , Arachidonic Acid/blood , Arachidonic Acid/administration & dosage , Nutritional Status
3.
Nutrition ; 123: 112413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38518540

ABSTRACT

OBJECTIVES: We assessed the joint effects of omega (n)-3 fatty acid supplementation and dietary fish intake on systemic lipid mediators of inflammation among adults. METHODS: Within VITAL, a double-blind randomized controlled trial, adults were randomized to ω-3 fatty acids (460 mg EPA + 380 mg DHA/d) or placebo. We selected participants who reported low (<1 serving/mo) baseline dietary fish intake and matched them by age, sex, race, and trial arm to participants with self-reported highest fish intake (≥3.9 servings/wk). Baseline and 1-y plasma samples were tested for 9 ω-3 fatty acid-derived lipid mediators. Multivariable linear models assessed lipid mediator changes and joint effects of ω-3 fatty acid supplementation and dietary fish intake. RESULTS: Forty-eight participants with low baseline fish intake were matched to 48 with high fish intake. Mean age was 64.6 (±7.26), 50% were female, and 85% non-Hispanic white. One-year lipid mediator changes in expected directions were observed in those receiving ω-3 fatty acids versus placebo: reductions in proinflammatory mediators, PGD2, 5-HETE, and 12-HETE; increases in proresolving mediators, EPA and DHA. Larger 1-y lipid biomarker changes were seen in those with low baseline fish intake randomized to active ω-3 fatty acids for DHA, EPA, PGD2, Resolvin D1, and Resolvin D4 were observed, although no significant multiplicative interactions were detected. DISCUSSION: Beneficial changes in circulating proresolving and proinflammatory mediators were found with 1-y of ω-3 fatty acid supplementation versus placebo for all participants, with a trend toward larger effects among those with low baseline fish intake, although interactions were not significant.


Subject(s)
Dietary Supplements , Docosahexaenoic Acids , Fatty Acids, Omega-3 , Fishes , Inflammation , Seafood , Humans , Female , Male , Middle Aged , Double-Blind Method , Inflammation/blood , Animals , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Aged , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/administration & dosage , Diet/methods
4.
J Nutr ; 154(5): 1561-1570, 2024 05.
Article in English | MEDLINE | ID: mdl-38513888

ABSTRACT

BACKGROUND: The brain is concentrated with omega (ω)-3 (n-3) fatty acids (FAs), and these FAs must come from the plasma pool. The 2 main ω-3 FAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), must be in the form of nonesterified fatty acid (NEFA) or esterified within phospholipids (PLs) to reach the brain. We hypothesized that the plasma concentrations of these ω-3 FAs can be modulated by sex, body mass index (BMI, kg/m2), age, and the presence of the apolipoprotein (APO) E-ε4 allele in response to the supplementation. OBJECTIVES: This secondary analysis aimed to determine the concentration of EPA and DHA within plasma PL and in the NEFA form after an ω-3 FA or a placebo supplementation and to investigate whether the factors change the response to the supplement. METHODS: A randomized, double-blind, placebo-controlled trial was conducted. Participants were randomly assigned to either an ω-3 FA supplement (DHA 0.8 g and EPA 1.7 g daily) or to a placebo for 6 mo. FAs from fasting plasma samples were extracted and subsequently separated into PLs with esterified FAs and NEFAs using solid-phase extraction. DHA and EPA concentrations in plasma PLs and as NEFAs were quantified using gas chromatography. RESULTS: EPA and DHA concentrations in the NEFA pool significantly increased by 31%-71% and 42%-82%, respectively, after 1 and 6 mo of ω-3 FA supplementation. No factors influenced plasma DHA and EPA responses in the NEFA pool. In the plasma PL pool, DHA increased by 83%-109% and EPA by 387%-463% after 1 and 6 mo of ω-3 FA supplementation. APOE4 carriers, females, and individuals with a BMI of ≤25 had higher EPA concentrations than noncarriers, males, and those with a BMI of >25, respectively. CONCLUSIONS: The concentration of EPA in plasma PLs are modulated by APOE4, sex, and BMI. These factors should be considered when designing clinical trials involving ω-3 FA supplementation. This trial was registered at clinicaltrials.gov as NCT01625195.


Subject(s)
Apolipoprotein E4 , Body Mass Index , Dietary Supplements , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Phospholipids , Humans , Female , Male , Phospholipids/blood , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/administration & dosage , Double-Blind Method , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/administration & dosage , Apolipoprotein E4/genetics , Apolipoprotein E4/blood , Middle Aged , Adult , Sex Factors , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/administration & dosage , Aged
SELECTION OF CITATIONS
SEARCH DETAIL