Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Cells Dev ; 177: 203908, 2024 03.
Article in English | MEDLINE | ID: mdl-38403117

ABSTRACT

The Notch signaling pathway, an evolutionarily highly conserved pathway, participates in various essential physiological processes in organisms. Activation of Notch signaling in the canonical manner requires the combination of ligand and receptor. There are two ligands of Notch in Drosophila: Delta (Dl) and Serrate (Ser). A mutation mf157 is identified for causing nicks of fly wings in genetic analysis from a mutant library (unpublished) that was established previously. Immunofluorescent staining illustrates that mf157 represses the expression of Cut and Wingless (Wg), the targets of Notch signaling. MARCM cloning analysis reveals that mf157 functions at the same level or the upstream of ligands of Notch in signaling sending cells. Sequencing demonstrates that mf157 is a novel allele of the Ser gene. Subsequently, mf553 and mf167 are also identified as new alleles of Ser from our library. Furthermore, the complementary assays and the examination of transcripts confirm the sequencing results. Besides, the repressed phenotypes of Notch signaling were reverted by transposon excision experiments of mf157. In conclusion, we identify three fresh alleles of Ser. Our works supply additional genetic resources for further study of functions of Ser and Notch signaling regulation.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Serrate-Jagged Proteins/genetics , Serrate-Jagged Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Alleles , Membrane Proteins/genetics , Membrane Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism
2.
PLoS Genet ; 19(7): e1010849, 2023 07.
Article in English | MEDLINE | ID: mdl-37463168

ABSTRACT

Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.


Subject(s)
Cell Polarity , Dishevelled Proteins , Drosophila Proteins , Membrane Proteins , Animals , Mice , Cell Polarity/genetics , Dishevelled Proteins/genetics , Dishevelled Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Frizzled Receptors/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphorylation
3.
Open Biol ; 13(4): 220350, 2023 04.
Article in English | MEDLINE | ID: mdl-37121260

ABSTRACT

Obscurins are large filamentous proteins with crucial roles in the assembly, stability and regulation of muscle. Characteristic of these proteins is a tandem of two C-terminal kinase domains, PK1 and PK2, that are separated by a long intrinsically disordered sequence. The significance of this conserved domain arrangement is unknown. Our study of PK1 from Drosophila obscurin shows that this is a pseudokinase with features typical of the CAM-kinase family, but which carries a minimalistic regulatory tail that no longer binds calmodulin or has mechanosensory properties typical of other sarcomeric kinases. PK1 binds ATP with high affinity, but in the absence of magnesium and lacks detectable phosphotransfer activity. It also has a highly diverged active site, strictly conserved across arthropods, that might have evolved to accommodate an unconventional binder. We find that PK1 interacts with PK2, suggesting a functional relation to the latter. These findings lead us to speculate that PK1/PK2 form a pseudokinase/kinase dual system, where PK1 might act as an allosteric regulator of PK2 and where mechanosensing properties, akin to those described for regulatory tails in titin-like kinases, might now reside on the unstructured interkinase segment. We propose that the PK1-interkinase-PK2 region constitutes an integrated functional unit in obscurin proteins.


Subject(s)
Drosophila , Muscle Proteins , Animals , Drosophila/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Muscle Proteins/metabolism , Protein Structure, Tertiary , Sarcomeres/chemistry , Sarcomeres/metabolism
4.
Plant Foods Hum Nutr ; 78(1): 68-75, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36322321

ABSTRACT

Lycium barbarum (LB) is a famous traditional Chinese medicinal plant as well as food supplement possessing various pharmacological functions such as anti-aging and antioxidant effects. The Parkinson's disease (PD)-related kinase Pink1 plays vital role in maintaining the neuron cell homeostasis, having been recognized as a potential target for the development of anti-PD drugs. In this work, the neuroprotective effects of methanol extract of LB fruit (LBFE) were investigated using a Drosophila PD model (PINK1B9) and a human neuroblastoma SH-SY5Y cell line. We found that when LBFE was supplied to the PINK1B9 flies at 6, 12, and 18 days of age, it raised the ATP and dopamine levels at all ages, extended life span, improved motor behavior, and rescued olfactory deficits of the PINK1B9 flies. In addition, histopathological examinations indicated that muscle atrophy in thoraces of the mutant flies was significantly repaired. Finally, LBFE was able to rescue the SH-SY5Y cells against MPP+-induced neurotoxicity. This work reports for the first time the anti-PD potential of L. barbarum fruit extract in PINK1 mutant fruit flies, presenting a new viewpoint for studing the mechanism of action of LBFE.


Subject(s)
Drosophila Proteins , Lycium , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Parkinson Disease/genetics , Neuroprotective Agents/pharmacology , Lycium/metabolism , Models, Genetic , Plant Extracts/pharmacology , Protein Kinases/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/pharmacology
5.
Elife ; 112022 10 04.
Article in English | MEDLINE | ID: mdl-36193674

ABSTRACT

RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino's specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.


The genes within our DNA encode the essentials of our body plan and how each task in the body is achieved. However, our genome also contains many repetitive regions of DNA that do not encode functional genes. Some of these regions are genetic parasites known as transposons that try to multiply and spread around the DNA of their host. To prevent transposon DNA from interfering with the way the body operates, humans and other animals have evolved elaborate defense mechanisms to identify transposons and prevent them from multiplying. In one such mechanism, known as the piRNA pathway, the host makes small molecules known as piRNAs that have sequences complementary to those of transposons, and act as guides to silence the transposons. The instructions to make these piRNAs are stored in the form of transposon fragments in dedicated regions of host DNA called piRNA clusters. These clusters thereby act as genetic memory, allowing the host to recognize and silence specific transposons in other locations within the host's genome. In fruit flies, a protein called Rhino binds to piRNA clusters that are densely packed to allow piRNAs to be made. However, it remained unclear how Rhino is able to identify and bind to piRNA clusters, but not to other similarly densely packed regions of DNA. Baumgartner et al. used a combination of genetic, genomic, and imaging approaches to study how Rhino finds its way in the fruit fly genome. They found that another protein called Kipferl interacts with Rhino and is required for Rhino to bind to nearly all piRNA clusters. Since Kipferl can by itself bind to the sequences that Rhino needs to find, the results suggest that Kipferl acts to recruit and initiate Rhino binding within densely packed piRNA clusters. Further experiments found that, in flies lacking Kipferl, Rhino binds to regions of DNA called Satellite repeats, hinting that these selfish sequences may compete for Rhino for their own benefit. The finding that Kipferl and Rhino work together to define the memory system of the piRNA pathway strongly advances our understanding of how a sequence-specific defense system based on small RNAs can be established.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Guanosine/metabolism , RNA Precursors/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Zinc Fingers
6.
Environ Toxicol Pharmacol ; 93: 103892, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35654372

ABSTRACT

Rotenone (ROT) is a widely used natural pesticide, and its effect on growth and developmental toxicity remain unclear. In the present study, the effects of ROT exposure on the reproductive structure and function of the female Drosophila melanogaster and third instar larvae were investigated. ROT exposure on female Drosophila melanogaster resulted in developmental inhibition and ovarian abnormality, which were evident from the disruptive growth of border cells as well as morphological changes in the orientation of nurse cells during the 9th-10th stage of developing egg chamber of in the Drosophila ovary. Other abnormalities, such as, altered developmental gene expression (Osk, Grk, Nos, Bic-d), inhibition in the kinesin motor protein level (KIF-5B), increased caspases activities (Caspase 3, 8, & 9) and apoptosis were also observed. Subsequently, ROT treated larvae exhibited behavioral deficits and delay in developmental time. The above findings demonstrate that the exposure of ROT causes developmental toxicity in Drosophila melanogaster.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Antioxidants/pharmacology , Caspases/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Larva/metabolism , Plant Extracts/pharmacology , Rotenone/pharmacology , Rotenone/toxicity
7.
J Biomol Struct Dyn ; 40(4): 1659-1670, 2022 03.
Article in English | MEDLINE | ID: mdl-33050786

ABSTRACT

Dysbiosis is a major cause of disease in an individual, generally initiated in the gastrointestinal tract. The gut, also known as the second brain, constitutes a major role in immune signaling. To study the immunity cascade, the Drosophila model was considered targeting the Imd pathway receptor (2F2L) located in the midgut. This receptor further initiates the immune signaling mechanism influenced by bacteria. To inhibit the Imd pathway, the crystal structure of Imd with PDB: 2F2L was considered for the screening of suitable ligand/inhibitor. In light of our previous studies, repurposing of anti-diabetic ligands from the banana plant namely lupeol (LUP), stigmasterol (STI), ß-sitosterol (BST) and umbelliferone (UMB) were screened. This study identifies the potential inhibitor along with the tracheal toxin (TCT), a major peptidoglycan constituent of microbes. The molecular docking and molecular dynamics simulation of complexes 2F2L-MLD, 2F2L- CAP, 2F2L-LUP, 2F2L-BST, 2F2L-STI and 2F2L-UMB elucidates the intermolecular interaction into the inhibitory property of ligands. The results of this study infer LUP and UMB as better ligands with high stability and functionality among the screened candidates. This study provides insights into the dysbiosis and its amelioration by plant-derived molecules. The identified drugs (LUP & UMB) will probably act as an inhibitor against microbial dysbiosis and other related pathogenesis (diabetes and diabetic neuropathy). Further, this study will widen avenues in fly biology research and which could be used as a therapeutic model in the rapid, reliable and reproducible screening of phytobiologics in complementary and alternative medicine for various lifestyle associated complications.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/microbiology , Drug Repositioning , Immunity, Innate , Molecular Docking Simulation , Molecular Dynamics Simulation
8.
Sci Rep ; 11(1): 20543, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654874

ABSTRACT

Although electric fields (EF) exert beneficial effects on animal wound healing, differentiation, cancers and rheumatoid arthritis, the molecular mechanisms of these effects have remained unclear about a half century. Therefore, we aimed to elucidate the molecular mechanisms underlying EF effects in Drosophila melanogaster as a genetic animal model. Here we show that the sleep quality of wild type (WT) flies was improved by exposure to a 50-Hz (35 kV/m) constant electric field during the day time, but not during the night time. The effect was undetectable in cryptochrome mutant (cryb) flies. Exposure to a 50-Hz electric field under low nutrient conditions elongated the lifespan of male and female WT flies by ~ 18%, but not of several cry mutants and cry RNAi strains. Metabolome analysis indicated that the adenosine triphosphate (ATP) content was higher in intact WT than cry gene mutant strains exposed to an electric field. A putative magnetoreceptor protein and UV-A/blue light photoreceptor, CRYPTOCHROME (CRY) is involved in electric field (EF) receptors in animals. The present findings constitute hitherto unknown genetic evidence of a CRY-based system that is electric field sensitive in animals.


Subject(s)
Cryptochromes/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/radiation effects , Electric Stimulation Therapy , Eye Proteins/metabolism , Longevity/radiation effects , Sleep/radiation effects , Adenosine Triphosphate/metabolism , Animals , Drosophila melanogaster/metabolism , Female , Male , Metabolome/radiation effects , Starvation
9.
Elife ; 102021 09 09.
Article in English | MEDLINE | ID: mdl-34499028

ABSTRACT

The ubiquitous Ca2+ sensor calmodulin (CaM) binds and regulates many proteins, including ion channels, CaM kinases, and calcineurin, according to Ca2+-CaM levels. What regulates neuronal CaM levels, is, however, unclear. CaM-binding transcription activators (CAMTAs) are ancient proteins expressed broadly in nervous systems and whose loss confers pleiotropic behavioral defects in flies, mice, and humans. Using Caenorhabditis elegans and Drosophila, we show that CAMTAs control neuronal CaM levels. The behavioral and neuronal Ca2+ signaling defects in mutants lacking camt-1, the sole C. elegans CAMTA, can be rescued by supplementing neuronal CaM. CAMT-1 binds multiple sites in the CaM promoter and deleting these sites phenocopies camt-1. Our data suggest CAMTAs mediate a conserved and general mechanism that controls neuronal CaM levels, thereby regulating Ca2+ signaling, physiology, and behavior.


Subject(s)
Calmodulin-Binding Proteins/metabolism , Calmodulin/metabolism , Drosophila Proteins/metabolism , Neurons/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Caenorhabditis elegans/metabolism , Calcineurin/metabolism , Calcium/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Gene Editing , Gene Expression Regulation , Humans , Male , Mice , Protein Binding , Signal Transduction , Trans-Activators/genetics , Transcriptome
10.
Elife ; 102021 09 14.
Article in English | MEDLINE | ID: mdl-34517941

ABSTRACT

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Subject(s)
Drosophila Proteins/metabolism , Motor Activity/genetics , Motor Activity/physiology , Polyamines/metabolism , RNA-Binding Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Line , Down-Regulation/physiology , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Muscle, Skeletal/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Protein Biosynthesis , Putrescine/pharmacology , RNA Interference , RNA-Binding Proteins/genetics , Spermidine/pharmacology
11.
J Insect Physiol ; 134: 104294, 2021 10.
Article in English | MEDLINE | ID: mdl-34389412

ABSTRACT

In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.


Subject(s)
Drosophila melanogaster , Ecdysone , Triterpenes/pharmacology , Animals , Bombyx/drug effects , Bombyx/metabolism , Drosophila Proteins/drug effects , Drosophila Proteins/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Ecdysone/antagonists & inhibitors , Ecdysone/biosynthesis , Gene Expression Regulation, Developmental , Juvenile Hormones/pharmacology , Larva/drug effects , Larva/growth & development , Larva/metabolism , Metamorphosis, Biological/drug effects , Molting/drug effects , Organ Culture Techniques , Plant Extracts/pharmacology , Pupa/drug effects , Pupa/growth & development , Pupa/metabolism
12.
Pharm Biol ; 59(1): 998-1007, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34362287

ABSTRACT

CONTEXT: Depression is a severe mental illness caused by a deficiency of dopamine and serotonin. Cannabis sativa L. (Cannabaceae) has long been used to treat pain, nausea, and depression. OBJECTIVE: This study investigates the anti-depressant effects of C. sativa (hemp) seed ethanol extract (HE) in chlorpromazine (CPZ)-induced Drosophila melanogaster depression model. MATERIALS AND METHODS: The normal group was untreated, and the control group was treated with CPZ (0.1% of media) for 7 days. The experimental groups were treated with a single HE treatment (0.5, 1.0, and 1.5% of media) and a mixture of 0.1% CPZ and HE for 7 days. The locomotor activity, behavioural patterns, depression-related gene expression, and neurotransmitters level of flies were investigated. RESULTS: The behavioural patterns of individual flies were significantly reduced with 0.1% CPZ treatment. In contrast, combination treatment of 1.5% HE and 0.1% CPZ significantly increased subjective daytime activity (p < 0.001) and behavioural factors (p < 0.001). These results correlate with increased transcript levels of dopamine (p < 0.001) and serotonin (p < 0.05) receptors and concentration of dopamine (p < 0.05), levodopa (p < 0.001), 5-HTP (p < 0.05), and serotonin (p < 0.001) compared to those in the control group. DISCUSSION AND CONCLUSIONS: Collectively, HE administration alleviates depression-like symptoms by modulating the circadian rhythm-related behaviours, transcript levels of neurotransmitter receptors, and neurotransmitter levels in the CPZ-induced Drosophila model. However, additional research is needed to investigate the role of HE administration in behavioural patterns, reduction of the neurotransmitter, and signalling pathways of depression in a vertebrate model system.


Subject(s)
Cannabis/chemistry , Depression/drug therapy , Plant Extracts/pharmacology , Animals , Behavior, Animal/drug effects , Chlorpromazine/pharmacology , Depression/chemically induced , Drosophila Proteins/metabolism , Drosophila melanogaster , Models, Animal , Motor Activity/drug effects , Neurotransmitter Agents/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Dopamine/metabolism , Seeds
13.
Food Funct ; 12(17): 7816-7824, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34232246

ABSTRACT

Gastrodin is the main bioactive ingredient of a famous Chinese herb Rhizoma Gastrodiae. Many studies have reported that gastrodin has antioxidative and neuroprotective effects, although its effect on longevity and the mechanism of neuroprotection have not been well studied. Here, we use Drosophila melanogaster as a model to investigate the longevity and neuroprotective effects of gastrodin. Gastrodin significantly extended the lifespan, increased the climbing ability, enhanced the resistance to oxidative stress, increased the enzyme activities of superoxide dismutase (SOD) and catalase (CAT), and promoted the expression of anti-oxidative genes in old flies. The food intake, reproduction and starvation resistance were not affected in flies treated with gastrodin. Moreover, gastrodin delayed the onset of Parkinson-like phenotypes in Pink1B9 mutant flies, including the prolongation of the lifespan, rescue of the climbing ability, rescue of the progressive loss of a cluster of dopaminergic neurons in the protocerebral posterial lateral 1 region, and increase of the dopamine content in the brain. Gastrodin did not ameliorate the tau-induced neurobehavioral deficits in the fly AD model of taupathy. Together, these results indicate that gastrodin could prolong the lifespan by regulating the antioxidant ability, and protect against neurodegeneration in the Pink1B9 model of PD. This suggests that gastrodin can be considered as an ideal therapeutic candidate for drug development towards anti-aging.


Subject(s)
Benzyl Alcohols/administration & dosage , Drosophila melanogaster/drug effects , Drugs, Chinese Herbal/administration & dosage , Gastrodia/chemistry , Glucosides/administration & dosage , Neuroprotective Agents/administration & dosage , Parkinson Disease/drug therapy , Animals , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Female , Humans , Longevity/drug effects , Male , Neuroprotection/drug effects , Oxidative Stress/drug effects , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
14.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209883

ABSTRACT

Studies using animal models have shed light into the molecular and cellular basis for the neuropathology observed in patients with Alzheimer's disease (AD). In particular, the role of the amyloid precursor protein (APP) plays a crucial role in the formation of senile plaques and aging-dependent degeneration. Here, we focus our review on recent findings using the Drosophila AD model to expand our understanding of APP molecular function and interactions, including insights gained from the fly homolog APP-like (APPL). Finally, as there is still no cure for AD, we review some approaches that have shown promising results in ameliorating AD-associated phenotypes, with special attention on the use of nutraceuticals and their molecular effects, as well as interactions with the gut microbiome. Overall, the phenomena described here are of fundamental significance for understanding network development and degeneration. Given the highly conserved nature of fundamental signaling pathways, the insight gained from animal models such as Drosophila melanogaster will likely advance the understanding of the mammalian brain, and thus be relevant to human health.


Subject(s)
Alzheimer Disease/diet therapy , Drosophila Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Probiotics/administration & dosage , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , Animals , Dietary Supplements , Disease Models, Animal , Drosophila melanogaster , Gastrointestinal Microbiome/drug effects , Humans , Probiotics/pharmacology , Signal Transduction/drug effects
15.
Cell Death Dis ; 12(7): 651, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172715

ABSTRACT

Alzheimer's disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer's disease associated with the accumulation of a toxic form of amyloid-ß (Aß) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here we analysed the metabolomic changes in flies overexpressing Aß and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aß toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer's disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer's disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B are associated with a decrease in the risk and severity of Alzheimer's disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes such as PARPs are potential therapies for Alzheimer's disease.


Subject(s)
Alzheimer Disease/genetics , Drosophila Proteins/genetics , Mitochondria/genetics , Mutation , NAD/metabolism , Neurons/enzymology , Poly (ADP-Ribose) Polymerase-1/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Humans , Metabolome , Metabolomics , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/ultrastructure , Motor Activity , Nerve Degeneration , Neurons/drug effects , Neurons/pathology , Niacinamide/pharmacology , Poly (ADP-Ribose) Polymerase-1/metabolism , Polymorphism, Single Nucleotide
16.
J Ethnopharmacol ; 276: 114208, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34010697

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Premna microphylla turcz is traditionally used as a folk remedy. Its roots, stems and leaves can be invoked as medicines, which have the functions of detoxification, swelling and hemostasis. It belongs to the Premna in the Verbenaceae and is mainly distributed in the mountains of southeastern China. However, there are few reports of in-depth studies on the anti-inflammatory effects of polysaccharide, which was the main component in Premna microphylla turcz. MATERIALS AND METHODS: The flies were fed with standard corn flour-yeast medium to cause inflammation by sodium lauryl sulfate (SDS). The treatment group contained Premna microphylla turcz polysaccharide (pPMTLs) extract. The survival rate was obtained by feeding a vial containing five layers of filter paper, which was infiltrated with the 5% sucrose solution contaminated with SDS or SDS polysaccharide. The microvilli and nucleus of the midgut epithelial cells of different treatments were observed by transmission electron microscope, and the expression of inflammation-related genes was detected by real-time quantitative PCR (qRT-PCR). Finally, 16S rDNA analysis was conducted on the differences in the composition of the intestinal microbes of Drosophila. RESULTS: In the current study, we showed that pPMTLs significantly prolonged the life span of SDS-inflamed flies from 5 days to 6 days. And pPMTLs reduced the rupture of microvilli in the midgut and restored the nuclear structure. In addition, pPMTLs significantly improved expression level of immune-related genes in Inflammation Drosophila especially the defensin (4.32 ± 0.75 vs 9.97 ± 0.52 SDS-polysaccharide group: SDS group, p < 0.001). The analysis of intestinal microbiota showed that pPMTLs decreased the relative abundance of Raoultella while Wolbachia increased (p < 0.05). CONCLUSIONS: Collectively, our results revealed the potential application of pPMTLs in enhancing inflammation defense, which would be enormous significance for the inflammation-related disorders treatment.


Subject(s)
Inflammation/prevention & control , Intestines/drug effects , Intestines/immunology , Lamiaceae/chemistry , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Protective Agents/pharmacology , Animals , Autophagy/drug effects , Autophagy/immunology , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Epithelial Cells/drug effects , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Inflammation/chemically induced , Inflammation/genetics , Inflammation/mortality , Intestines/microbiology , Intestines/pathology , Metabolic Networks and Pathways , Plant Extracts/therapeutic use , Polysaccharides/therapeutic use , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Principal Component Analysis , Protective Agents/therapeutic use , Sodium Dodecyl Sulfate/toxicity , Survival Rate , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
17.
Gut Microbes ; 13(1): 1-6, 2021.
Article in English | MEDLINE | ID: mdl-33966605

ABSTRACT

Varieties and cultivars of the cruciferous vegetable Brassica oleracea are widely presumed to elicit positive influences on mammalian health and disease, particularly related to their indole and sulforaphane content. However, there is a considerable gap in knowledge regarding the mechanisms whereby these plant-derived molecules elicit their beneficial effects on the host. In this study, we examined the chemical variation between B. oleracea varieties and evaluated their capacity to both activate Nrf2 in the Drosophila intestine and elicit cytoprotection. Ten types of edible B. oleracea were purchased and B. macrocarpa was wild collected. Fresh material was dried, extracted by double maceration and green kale was also subjected to anaerobic fermentation before processing. Untargeted metabolomics was used to perform Principal Component Analysis. Targeted mass spectral analysis determined the presence of six indole species and quantified indole. Extracts were tested for their capacity to activate Nrf2 in the Drosophila intestine in third instar Drosophila larvae. Cytoprotective effects were evaluated using a paraquat-induced oxidative stress gut injury model. A "Smurf" assay was used to determine protective capacity against a chemically induced leaky gut. Extracts of Brussels sprouts and broccoli activated Nrf2 and protected against paraquat-induced damage and leaky gut. Lacto-fermented kale showed a cytoprotective effect, increasing survival by 20% over the non-fermented extract, but did not protect against leaky gut. The protective effects observed do not directly correlate with indole content, suggesting involvement of multiple compounds and a synergistic mechanism.


Subject(s)
Brassica/chemistry , Drosophila/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Drosophila/genetics , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Intestines/drug effects , Larva/drug effects , Larva/genetics , Larva/growth & development , Larva/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Protective Agents/chemistry , Vegetables/chemistry
18.
Cell Rep ; 35(2): 108941, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852845

ABSTRACT

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Lysine/analogs & derivatives , Mitochondria/metabolism , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/metabolism , Spermidine/pharmacology , Administration, Oral , Aging, Premature/genetics , Aging, Premature/metabolism , Animals , Brain/metabolism , Brain/pathology , Cell Respiration/genetics , Drosophila Proteins/classification , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Locomotion/physiology , Lysine/metabolism , Memory/physiology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Animal , Neurons/metabolism , Neurons/pathology , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Spermidine/metabolism , Eukaryotic Translation Initiation Factor 5A
19.
J Food Biochem ; 45(4): e13602, 2021 04.
Article in English | MEDLINE | ID: mdl-33587316

ABSTRACT

Rice protein hydrolysates (RPH) prepared by enzymatic hydrolysis have plenty of bioactive functions. Herein, we investigated the antiaging effect of RPH on Drosophila melanogaster (fruit fly) and its mechanisms. According to the results, fruit flies reared on 0.2% and 3.2% RP-supplement diet prolonged their average lifespan, 50% survival days, and the maximum lifespan, together with increasing superoxide dismutase, manganese superoxide dismutase, and catalase activity compared to those reared on basal diet. Further studies showed the lifespan extending effect of RPH was regulated by the cooperation with the intrinsic stress protection system (Nrf2/Keap1), age-related signaling pathway (TOR, S6K) and the expression of longevity genes (methuselah). In conclusion, the lifespan extending effect of RPH makes it possible to be applied in food and healthcare industry. PRACTICAL APPLICATIONS: In previous studies, rice protein hydrolysates (RPH) have been found to have strong antioxidant properties. But so far, most researches focused on the preparation, identification and in vitro antioxidant experiments of RPH, and there is still a lack of researches on its effect on the antioxidant system of fruit flies and the antiaging of fruit flies. This report showed that RPH enhanced the antioxidant system and prolonged the lifespan of Drosophila, which might help us rationally use rice peptides in functional foods.


Subject(s)
Drosophila Proteins , Oryza , Animals , Catalase/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/metabolism , Protein Hydrolysates/pharmacology
20.
Nat Cell Biol ; 23(2): 172-183, 2021 02.
Article in English | MEDLINE | ID: mdl-33558728

ABSTRACT

In patients with advanced-stage cancer, cancer-associated anorexia affects treatment success and patient survival. However, the underlying mechanism is poorly understood. Here, we show that Dilp8, a Drosophila homologue of mammalian insulin-like 3 peptide (INSL3), is secreted from tumour tissues and induces anorexia through the Lgr3 receptor in the brain. Activated Dilp8-Lgr3 signalling upregulated anorexigenic nucleobinding 1 (NUCB1) and downregulated orexigenic short neuropeptide F (sNPF) and NPF expression in the brain. In the cancer condition, the protein expression of Lgr3 and NUCB1 was significantly upregulated in neurons expressing sNPF and NPF. INSL3 levels were increased in tumour-implanted mice and INSL3-treated mouse hypothalamic cells showed Nucb2 upregulation and Npy downregulation. Food consumption was significantly reduced in intracerebrospinal INSL3-injected mice. In patients with pancreatic cancer, higher serum INSL3 levels increased anorexia. These results indicate that tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding hormones through the Lgr3/Lgr8 receptor in Drosophila and mammals.


Subject(s)
Anorexia/metabolism , Brain/metabolism , Drosophila Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasms/metabolism , Neuropeptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Anorexia/etiology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Disease Models, Animal , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Eye Neoplasms/pathology , Feeding Behavior , Humans , Hypothalamus/metabolism , Insulin/blood , Insulin/chemistry , Insulin/metabolism , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Mice, Inbred C57BL , Neoplasms/complications , Neurons/metabolism , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/complications , Proteins/chemistry , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL