Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 399
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Biomolecules ; 14(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38540694

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons responsible for unintended or uncontrollable movements. Mutations in the leucine-rich repeat kinase 2 locus contribute to genetic forms of PD. The fruit fly Drosophila melanogaster carrying this mutation (LRRK2-Dm) is an in vivo model of PD that develops motor impairment and stands for an eligible non-mammalian paradigm to test novel therapeutic approaches. Dehydrozingerone (DHZ) is a natural phenolic compound isolated from ginger and presents anti-inflammatory, antioxidant and neuroprotective properties, making it a potential therapeutic target for PD. We administered DHZ and its C2-symmetric dimer (DHZ-DIM) at 0.5 and 1 mM for 14 and 21 days in the LRRK2-Dm, with the aim of assessing changes in rescuing motor behavior, brain dopaminergic neurons, mitochondria and synapses (T-bars). The shorter treatment with both molecules revealed efficacy at the higher dose, improving climbing behavior with a prevention of dopaminergic neuronal demise. After 21 days, a recovery of the motor disability, dopaminergic neuron loss, mitochondrial damage and T-bars failure was observed with the DHZ-DIM. Our data indicate that the DHZ-DIM exerts a more potent neuroprotective effect with respect to the monomer in LRRK2-Dm, prompting further investigation of these compounds in rodent models of PD.


Subject(s)
Disabled Persons , Motor Disorders , Neuroprotective Agents , Parkinson Disease , Styrenes , Animals , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Drosophila , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Drosophila melanogaster/genetics , Dopaminergic Neurons , Dietary Supplements , Mutation
2.
Sci Rep ; 14(1): 3357, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336906

ABSTRACT

Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.


Subject(s)
Drosophila , Epilepsy , Potassium Channels, Sodium-Activated , Animals , Humans , Drosophila/genetics , Drosophila melanogaster/genetics , Drug Evaluation, Preclinical , Epilepsy/drug therapy , Epilepsy/genetics , Models, Animal , Mutation , Nerve Tissue Proteins/genetics , Potassium Channels, Sodium-Activated/genetics , Seizures/drug therapy , Seizures/genetics , Transgenes
3.
J Med Food ; 27(4): 348-358, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387003

ABSTRACT

Ginseng is an ancient medicinal and edible plant with many health benefits, and can serve as a drug and dietary supplement, but there are few relevant studies on its use to ease ultraviolet (UV) irradiation damage. After 0.8 mg/mL ginseng extract (GE) was added to the medium of female Drosophila melanogaster subjected to UV irradiation, the lifespan, climbing ability, sex ratio, developmental cycle, and antioxidant capacity of flies were examined to evaluate the GE function. In addition, the underlying mechanism by which GE enhances the irradiation tolerance of D. melanogaster was explored. With GE supplementation, female flies subjected to UV irradiation exhibited an extension in their lifespan, enhancement in their climbing ability, improvement in their offspring sex ratio, and restoration of the normal development cycle by increasing their antioxidant activity. Finally, further experiments indicated that GE could enhance the irradiation tolerance of female D. melanogaster by upregulating the gene expressions of SOD, GCL, and components of the autophagy signaling pathway. Finally, the performance of r4-Gal4;UAS-AMPKRNAi flies confirmed the regulatory role of the autophagy signaling pathway in mitigating UV irradiation injury.


Subject(s)
Drosophila melanogaster , Panax , Animals , Drosophila melanogaster/genetics , Signal Transduction , Antioxidants , Autophagy
4.
J Sci Food Agric ; 104(7): 3926-3935, 2024 May.
Article in English | MEDLINE | ID: mdl-38252625

ABSTRACT

BACKGROUND: Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes. RESULTS: AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes. CONCLUSION: The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.


Subject(s)
Artemisia , Drosophila melanogaster , Male , Female , Animals , Drosophila melanogaster/genetics , Antioxidants/pharmacology , Longevity , Aging , Dietary Supplements
5.
Biofactors ; 50(1): 161-180, 2024.
Article in English | MEDLINE | ID: mdl-37597249

ABSTRACT

Recent reports indicated that the phytochemical curcumin possesses iron-chelating activity. Here, by employing the fruit fly Drosophila melanogaster, we conducted feeding studies supplementing curcumin or, as a control, the iron chelator bathophenanthroline (BPA). First, the absorption and further metabolization of dietary curcuminoids were proved by metabolomics analyses. Next, we found that 0.2% dietary curcumin, similar to BPA, lowered the iron but also the cobalt content, and to a lesser extent affected the manganese and zinc status. Supplementation during larval stages was required and sufficient for both compounds to elicit these alterations in adult animals. However, curcumin-induced retarded larval development was not attributable to the changed trace metal status. In addition, a reduction in the iron content of up to 70% by curcumin or BPA supplementation did not reduce heme-dependent catalase activity and tolerance toward H2 O2 in D. melanogaster. Moreover, polyamines were not influenced by curcumin treatment and decreased iron levels. This was confirmed for selected organs from 0.2% curcumin-treated mice, except for the spleen. Here, elevated spermidine level and concomitant upregulation of genes involved in polyamine production were associated with a putatively anemia-derived increased spleen mass. Our data underline that the metal-chelating property of curcumin needs to be considered in feeding studies.


Subject(s)
Curcumin , Drosophila melanogaster , Mice , Animals , Drosophila melanogaster/genetics , Curcumin/pharmacology , Cobalt , Polyamines , Iron , Oxidative Stress , Chelating Agents , Antioxidants , Dietary Supplements
6.
Cancer Biother Radiopharm ; 39(1): 19-34, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37797218

ABSTRACT

It is now well understood that many signaling pathways are vital in carrying out and controlling essential pro-survival and pro-growth cellular functions. The NOTCH signaling pathway, a highly conserved evolutionary signaling pathway, has been thoroughly studied since the discovery of NOTCH phenotypes about 100 years ago in Drosophila melanogaster. Abnormal NOTCH signaling has been linked to the pathophysiology of several diseases, notably cancer. In tumorigenesis, NOTCH plays the role of a "double-edged sword," that is, it may act as an oncogene or as a tumor suppressor gene depending on the nature of the context. However, its involvement in several cancers and inhibition of the same provides targeted therapy for the management of cancer. The use of gamma (γ)-secretase inhibitors and monoclonal antibodies for cancer treatment involved NOTCH receptors inhibition, leading to the possibility of a targeted approach for cancer treatment. Likewise, several natural compounds, including curcumin, resveratrol, diallyl sulfide, and genistein, also play a dynamic role in the management of cancer by inhibition of NOTCH receptors. This review outlines the functions and structure of NOTCH receptors and their associated ligands with the mechanism of the signaling pathway. In addition, it also emphasizes the role of NOTCH-targeted nanomedicine in various cancer treatment strategies.


Subject(s)
Drosophila melanogaster , Neoplasms , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Signal Transduction , Receptors, Notch/genetics , Receptors, Notch/metabolism , Oncogenes
7.
Genomics ; 116(1): 110751, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052259

ABSTRACT

Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.


Subject(s)
Drosophila , Longevity , Animals , Drosophila/genetics , Longevity/genetics , Drosophila melanogaster/genetics , Transcriptome , Gene Expression Profiling , Plant Extracts/pharmacology
8.
Mol Biol (Mosk) ; 57(6): 979-994, 2023.
Article in Russian | MEDLINE | ID: mdl-38062954

ABSTRACT

Plant polyphenols are characterized by a wide range of biological activities, including antioxidant properties, and have a high geroprotective potential. The purpose of this work was to investigate the effect of the extract of rowan berries (Sorbus aucuparia L.) on the lifespan and stress resistance of Drosophila melanogaster with the identification of possible mechanisms of its biological activity. It has been established that an ethanol extract of S. aucuparia berries, the main components of which are rutin and cyanidin-3-rutinoside, has a pronounced antioxidant activity in vitro. At the same time, treatment with rowan berry extract increased the resistance of D. melanogaster males to starvation, but reduced resistance to hyperthermia. In females, the extract reduced resistance to oxidative stress but increased resistance to hyperthermia. The effects of rowan berry extract on longevity depended both on its concentration and on the sex of fruit flies. In response to treatment with rowan berry extract, D. melanogaster males and females showed slight differences in the background level of expression of cellular stress response genes, including heat shock genes (hsp27, hsp68, and hsp83), oxidative stress resistance genes (hif1, nrf2, and sod1), circadian rhythm genes (clk and per), and the longevity gene sirt1, which may explain the differences in the observed effects.


Subject(s)
Antioxidants , Sorbus , Animals , Female , Male , Antioxidants/pharmacology , Antioxidants/metabolism , Sorbus/metabolism , Fruit/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Plant Extracts/pharmacology
9.
Neuroscience ; 520: 1-17, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37004908

ABSTRACT

Dietary modifications often have a profound impact on the penetrance and expressivity of neurological phenotypes that are caused by genetic defects. Our previous studies in Drosophila melanogaster revealed that seizure-like phenotypes of gain-of-function voltage-gated sodium (Nav) channel mutants (paraShu, parabss1, and paraGEFS+), as well as other seizure-prone "bang-sensitive" mutants (eas and sda), were drastically suppressed by supplementation of a standard diet with milk whey. In the current study we sought to determine which components of milk whey are responsible for the diet-dependent suppression of their hyperexcitable phenotypes. Our systematic analysis reveals that supplementing the diet with a modest amount of milk lipids (0.26% w/v) mimics the effects of milk whey. We further found that a minor milk lipid component, α-linolenic acid, contributed to the diet-dependent suppression of adult paraShu phenotypes. Given that lipid supplementation during the larval stages effectively suppressed adult paraShu phenotypes, dietary lipids likely modify neural development to compensate for the defects caused by the mutations. Consistent with this notion, lipid feeding fully rescued abnormal dendrite development of class IV sensory neurons in paraShu larvae. Overall, our findings demonstrate that milk lipids are sufficient to ameliorate hyperexcitable phenotypes in Drosophila mutants, providing a foundation for future investigation of the molecular and cellular mechanisms by which dietary lipids modify genetically induced abnormalities in neural development, physiology, and behavior.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Milk , Seizures , Phenotype , Mutation/genetics , Dietary Supplements , Lipids
10.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835596

ABSTRACT

Inositol depletion has been associated with diabetes and related complications. Increased inositol catabolism, via myo-inositol oxygenase (MIOX), has been implicated in decreased renal function. This study demonstrates that the fruit fly Drosophila melanogaster catabolizes myo-inositol via MIOX. The levels of mRNA encoding MIOX and MIOX specific activity are increased when fruit flies are grown on a diet with inositol as the sole sugar. Inositol as the sole dietary sugar can support D. melanogaster survival, indicating that there is sufficient catabolism for basic energy requirements, allowing for adaptation to various environments. The elimination of MIOX activity, via a piggyBac WH-element inserted into the MIOX gene, results in developmental defects including pupal lethality and pharate flies without proboscises. In contrast, RNAi strains with reduced levels of mRNA encoding MIOX and reduced MIOX specific activity develop to become phenotypically wild-type-appearing adult flies. myo-Inositol levels in larval tissues are highest in the strain with this most extreme loss of myo-inositol catabolism. Larval tissues from the RNAi strains have inositol levels higher than wild-type larval tissues but lower levels than the piggyBac WH-element insertion strain. myo-Inositol supplementation of the diet further increases the myo-inositol levels in the larval tissues of all the strains, without any noticeable effects on development. Obesity and blood (hemolymph) glucose, two hallmarks of diabetes, were reduced in the RNAi strains and further reduced in the piggyBac WH-element insertion strain. Collectively, these data suggest that moderately increased myo-inositol levels do not cause developmental defects and directly correspond to reduced larval obesity and blood (hemolymph) glucose.


Subject(s)
Drosophila melanogaster , Inositol Oxygenase , Animals , Inositol Oxygenase/genetics , Inositol Oxygenase/metabolism , Drosophila melanogaster/genetics , Inositol/metabolism , Glucose/metabolism , Obesity/metabolism , RNA, Messenger
11.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675079

ABSTRACT

Flubendiamide (FLB) is an insecticide that is commonly employed to control pests on a variety of vegetables and fruits, with low toxicity for non-target organisms. However, due to its widespread use, the environmental risks and food safety have become major concerns. In this study, the toxicity potential of FLB was studied in the model organisms, Allium cepa and Drosophila melanogaster. The cyto-genotoxic effects of FLB on the root growth, mitotic index (MI), chromosomal aberrations (CAs) and deoxyribonucleic acid (DNA) damage in A. cepa root meristematic cells were investigated using the root growth inhibition Allium test and Comet assays. FLB caused CAs in the form of disturbed ana-telophase, chromosome laggards, stickiness, anaphase-bridge and polyploidy depending on the concentration and the exposure time. The toxicity and genotoxicity of FLB at various doses (0.001, 0.01, 0.1 and 1 mM) on D. melanogaster were investigated from the point of view of larval weight and movement, pupal formation success, pupal position, emergence success and DNA damage, respectively. FLB exposure led to a significant reduction of the locomotor activity at the highest concentration. While DNA damage increased significantly in the FLB-treated onions depending on the concentration and time, DNA damage in the FLB-treated D. melanogaster significantly increased only at the highest dose compared to that which occurred in the control group. Moreover, to provide a mechanistic insight into the genotoxic and locomotion-disrupting effects of FLB, molecular docking simulations of this pesticide were performed against the DNA and diamondback moth (DBM) ryanodine receptor (RyR) Repeat34 domain. The docking studies revealed that FLB binds strongly to a DNA region that is rich in cytosine-guanine-adenine bases (C-G-A) in the minor groove, and it displayed a remarkable binding affinity against the DBM RyR Repeat34 domain.


Subject(s)
Allium , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Onions/genetics , Molecular Docking Simulation , Plant Roots/genetics , DNA Damage , Meristem/genetics , Chromosome Aberrations
12.
Plant Foods Hum Nutr ; 78(1): 68-75, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36322321

ABSTRACT

Lycium barbarum (LB) is a famous traditional Chinese medicinal plant as well as food supplement possessing various pharmacological functions such as anti-aging and antioxidant effects. The Parkinson's disease (PD)-related kinase Pink1 plays vital role in maintaining the neuron cell homeostasis, having been recognized as a potential target for the development of anti-PD drugs. In this work, the neuroprotective effects of methanol extract of LB fruit (LBFE) were investigated using a Drosophila PD model (PINK1B9) and a human neuroblastoma SH-SY5Y cell line. We found that when LBFE was supplied to the PINK1B9 flies at 6, 12, and 18 days of age, it raised the ATP and dopamine levels at all ages, extended life span, improved motor behavior, and rescued olfactory deficits of the PINK1B9 flies. In addition, histopathological examinations indicated that muscle atrophy in thoraces of the mutant flies was significantly repaired. Finally, LBFE was able to rescue the SH-SY5Y cells against MPP+-induced neurotoxicity. This work reports for the first time the anti-PD potential of L. barbarum fruit extract in PINK1 mutant fruit flies, presenting a new viewpoint for studing the mechanism of action of LBFE.


Subject(s)
Drosophila Proteins , Lycium , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Parkinson Disease/genetics , Neuroprotective Agents/pharmacology , Lycium/metabolism , Models, Genetic , Plant Extracts/pharmacology , Protein Kinases/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/pharmacology
13.
J Food Biochem ; 46(12): e14503, 2022 12.
Article in English | MEDLINE | ID: mdl-36331088

ABSTRACT

Chrysanthemum morifolium is a well-known edible medicinal plant in Asia and some other regions. Content of selenium in Se-enriched C. morifolium (SeCM) is significantly higher than that in traditional C. morifolium (non-Se-enriched C. morifolium, TCM). In order to understand health effects of SeCM, its chemical composition, lifespan-prolonging activities, and impacts on antioxidant defense-related gene expressions of model organism D. melanogaster were systematically studied. A total of eight phenols, including luteolin-7-O-glucoside, linarin, luteolin, apigenin, diosmetin, acacetin, 3-caffeoylquinic acid and 4,5-dicaffeoylquinic acid, were identified in SeCM extract. Compared with TCM, SeCM exhibited superior antioxidant properties. Intake of SeCM dramatically reduced malondialdehyde level and increased activities of endogenous antioxidant enzymes in fruit flies. SeCM was able to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase and hydrogen peroxide catalase, and extend lifespans of fruit flies. Comparatively high antioxidant capacities and lifespan-prolonging activities of SeCM might be attributed to its abundant phenols and selenium, which probably ameliorated accumulation of free radicals and susceptibility to oxidative stress. These findings provide clues on further exploitation and utilization of Se-enriched C. morifolium. PRACTICAL APPLICATIONS: Chrysanthemum morifolium has been used for nutraceutical and curative purposes in China for thousands of years. Se-enriched C. morifolium typically contains more selenium than traditional C. morifolium, and is widely consumed in Asia and some other regions. Selenium is an essential micronutrient for humans, and selenium deficiency may result in several diseases such as myocardial infarction. SeCM is one of important selenium supplements. In this study, SeCM was found to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and hydrogen peroxide catalase, and extend lifespans of experimental animals. These results provide supporting information for developing SeCM-based functional foods with distinct health benefits.


Subject(s)
Chrysanthemum , Selenium , Humans , Animals , Antioxidants/pharmacology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Catalase/genetics , Catalase/metabolism , Selenium/pharmacology , Longevity , Chrysanthemum/genetics , Chrysanthemum/chemistry , Chrysanthemum/metabolism , Hydrogen Peroxide , Superoxides , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Phenols , Gene Expression
14.
Elife ; 112022 10 04.
Article in English | MEDLINE | ID: mdl-36193674

ABSTRACT

RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino's specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.


The genes within our DNA encode the essentials of our body plan and how each task in the body is achieved. However, our genome also contains many repetitive regions of DNA that do not encode functional genes. Some of these regions are genetic parasites known as transposons that try to multiply and spread around the DNA of their host. To prevent transposon DNA from interfering with the way the body operates, humans and other animals have evolved elaborate defense mechanisms to identify transposons and prevent them from multiplying. In one such mechanism, known as the piRNA pathway, the host makes small molecules known as piRNAs that have sequences complementary to those of transposons, and act as guides to silence the transposons. The instructions to make these piRNAs are stored in the form of transposon fragments in dedicated regions of host DNA called piRNA clusters. These clusters thereby act as genetic memory, allowing the host to recognize and silence specific transposons in other locations within the host's genome. In fruit flies, a protein called Rhino binds to piRNA clusters that are densely packed to allow piRNAs to be made. However, it remained unclear how Rhino is able to identify and bind to piRNA clusters, but not to other similarly densely packed regions of DNA. Baumgartner et al. used a combination of genetic, genomic, and imaging approaches to study how Rhino finds its way in the fruit fly genome. They found that another protein called Kipferl interacts with Rhino and is required for Rhino to bind to nearly all piRNA clusters. Since Kipferl can by itself bind to the sequences that Rhino needs to find, the results suggest that Kipferl acts to recruit and initiate Rhino binding within densely packed piRNA clusters. Further experiments found that, in flies lacking Kipferl, Rhino binds to regions of DNA called Satellite repeats, hinting that these selfish sequences may compete for Rhino for their own benefit. The finding that Kipferl and Rhino work together to define the memory system of the piRNA pathway strongly advances our understanding of how a sequence-specific defense system based on small RNAs can be established.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Guanosine/metabolism , RNA Precursors/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Zinc Fingers
15.
Sci Rep ; 12(1): 17552, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266436

ABSTRACT

In this study, the level of DNA modifications was investigated in three developmental stages of Drosophila melanogaster (larvae, pupae, imago) and in an in vitro model (Schneider 2 cells). Analysis was carried out using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. Our method made it possible, for the first time, to analyze a broad spectrum of DNA modifications in the three stages of Drosophila. Each stage was characterized by a specific modification pattern, and the levels of these compounds fluctuated throughout the D. melanogaster life cycle. The level of DNA modification was also compared between insects bred at 25 °C (optimal temperature) and at 18 °C, and the groups differed significantly. The profound changes in N6-methyladenine and 5-hydroxymethyluracil levels during the Drosophila life cycle and as a result of breeding temperature changes indicate that these DNA modifications can play important regulatory roles in response to environmental changes and/or biological conditions. Moreover, the supplementation of Schneider 2 cells with 1 mM L-ascorbic acid caused a time-dependent increase in the level of 5-(hydroxymethyl)-2'-deoxyuridine. These data suggest that a certain pool of this compound may arise from the enzymatic activity of the dTET protein.


Subject(s)
Drosophila melanogaster , Life Cycle Stages , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Temperature , Drosophila/genetics , DNA/metabolism , Genomics , Ascorbic Acid , Deoxyuridine
16.
BMC Biol ; 20(1): 126, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35655259

ABSTRACT

BACKGROUND: The heme group constitutes a major functional form of iron, which plays vital roles in various biological processes including oxygen transport and mitochondrial respiration. Heme is an essential nutrient, but its pro-oxidant nature may have toxic cellular effects if present at high levels, and its synthesis is therefore tightly regulated. Deficiency and excess of heme both lead to pathological processes; however, our current understanding of metazoan heme transport is largely limited to work in mammals and the worm Caenorhabditis elegans, while functional analyses of heme transport in the genetically amenable Drosophila melanogaster and other arthropods have not been explored. RESULTS: We implemented a functional screening in Schneider 2 (S2) cells to identify putative heme transporters of D. melanogaster. A few multidrug resistance-associated protein (MRP) members were found to be induced by hemin and/or involved in heme export. Between the two plasma membrane-resident heme exporters CG4562 and CG7627, the former is responsible for heme transit across the intestinal epithelium. CG4562 knockdown resulted in heme accumulation in the intestine and lethality that could be alleviated by heme synthesis inhibition, human MRP5 (hMRP5) expression, heme oxygenase (HO) expression, or zinc supplement. CG4562 is mainly expressed in the gastric caeca and the anterior part of the midgut, suggesting this is the major site of heme absorption. It thus appears that CG4562 is the functional counterpart of mammalian MRP5. Mutation analyses in the transmembrane and nucleotide binding domains of CG4562 characterized some potential binding sites and conservative ATP binding pockets for the heme transport process. Furthermore, some homologs in Aedes aegypti, including that of CG4562, have also been characterized as heme exporters. CONCLUSIONS: Together, our findings suggest a conserved heme homeostasis mechanism within insects, and between insects and mammals. We propose the fly model may be a good complement to the existing platforms of heme studies.


Subject(s)
Drosophila melanogaster , Heme , Animals , Caenorhabditis elegans , Drosophila melanogaster/genetics , Iron , Mammals , Multidrug Resistance-Associated Proteins/genetics
17.
Biomarkers ; 27(6): 587-598, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35546534

ABSTRACT

INTRODUCTION: We investigated the effect of African eggplant (AE) (Solanum macrocarpon L) and Black nightshade (BN) (Solanum nigrum L) leaves; two tropical vegetables consumed by humans on behavioural, biochemical and histological indices in Drosophila melanogaster model of Alzheimer's disease (AD). MATERIALS AND METHOD: Transgenic flies expressing human Amyloid Precursor Protein (hAPP) and ß-secretase (hBACE 1) were exposed to the pulverised leaf samples (0.1 and 1.0%) in their diets for fourteen days. Thereafter, the flies were assessed for their behavioural indices and routine histology of brain cells. Furthermore, fly head homogenates were assayed for ß-amyloid level, activities of acetylcholinesterase (AChE) and ß-secretase (BACE-1), as well as oxidative stress markers. RESULTS: Result showed that the significantly lower (p < 0.05) behavioural parameters (survival, locomotor performance and memory index), higher AChE and BACE-1 activities, ß-amyloid, ROS and lipid peroxidation levels, as well as reduced antioxidant indices observed in the AD flies, were significantly ameliorated (p < 0.05) in AD flies treated with the leaf samples. DISCUSSION: This study has showed that leaves of AE and BN ameliorated behavioural and biochemical indices in AD flies via neural enzyme modulatory, and antioxidant mechanisms. CONCLUSION: Hence, this study further justifies the neuroprotective properties of both AE and BN.


Subject(s)
Alzheimer Disease , Plant Preparations , Solanum nigrum , Solanum , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/drug effects , Amyloid Precursor Protein Secretases/metabolism , Animals , Antioxidants/metabolism , Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Plant Preparations/pharmacology , Plant Preparations/therapeutic use , Solanum/metabolism , Solanum nigrum/metabolism
18.
BMC Genomics ; 23(Suppl 1): 301, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35418074

ABSTRACT

BACKGROUND: Nucleosome positioning is the precise determination of the location of nucleosomes on DNA sequence. With the continuous advancement of biotechnology and computer technology, biological data is showing explosive growth. It is of practical significance to develop an efficient nucleosome positioning algorithm. Indeed, convolutional neural networks (CNN) can capture local features in DNA sequences, but ignore the order of bases. While the bidirectional recurrent neural network can make up for CNN's shortcomings in this regard and extract the long-term dependent features of DNA sequence. RESULTS: In this work, we use word vectors to represent DNA sequences and propose three new deep learning models for nucleosome positioning, and the integrative model NP_CBiR reaches a better prediction performance. The overall accuracies of NP_CBiR on H. sapiens, C. elegans, and D. melanogaster datasets are 86.18%, 89.39%, and 85.55% respectively. CONCLUSIONS: Benefited by different network structures, NP_CBiR can effectively extract local features and bases order features of DNA sequences, thus can be considered as a complementary tool for nucleosome positioning.


Subject(s)
Deep Learning , Nucleosomes , Animals , Base Sequence , Caenorhabditis elegans/genetics , Drosophila melanogaster/genetics , Nucleosomes/genetics , Plant Extracts
19.
J Gerontol A Biol Sci Med Sci ; 77(11): 2181-2185, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35486979

ABSTRACT

Dietary restriction (DR) is one of the most potent ways to extend health and life span. Key progress in understanding the mechanisms of DR, and aging more generally, was made when dietary protein, and more specifically essential amino acids (EAA), were identified as the dietary component to restrict to obtain DR's health and life-span benefits. This role of dietary amino acids has influenced work on aging mechanisms, especially in nutrient sensing, for example, Target of Rapamycin and insulin(-like) signaling networks. Experimental biology in Drosophila melanogaster has been instrumental in generating and confirming the hypothesis that EAA availability is important in aging. Here, we expand on previous work testing the involvement of EAA in DR through large-scale (N = 6 238) supplementation experiments across 4 diets and 2 genotypes in female flies. Surprisingly, we find that EAA are not essential to DR's life-span benefits. Importantly, we do identify the fecundity benefits of EAA supplementation suggesting the supplemented EAA were bioavailable. Furthermore, we find that the effects of amino acids on life span vary by diet and genetic line studied and that at our most restricted diet fecundity is constrained by other nutrients than EAA. We suggest that DR for optimal health is a concert of nutritional effects, orchestrated by genetic, dietary, and other environmental interactions. Our results question the universal importance of amino acid availability in the biology of aging and DR.


Subject(s)
Amino Acids , Drosophila melanogaster , Animals , Female , Drosophila melanogaster/genetics , Amino Acids/metabolism , Caloric Restriction , Longevity , Aging/metabolism , Amino Acids, Essential/metabolism
20.
Ann Pharm Fr ; 80(6): 864-875, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35231396

ABSTRACT

BACKGROUND: Lamivudine and tenofovir disoproxil fumarate act against the replication of hepatitis B and human immunodeficiency viruses via inhibition of the reverse transcriptase enzyme activity, thereby preventing the synthesis of viral DNA. Chronic administration of these drugs has been associated with toxicities, including senescence, oxidative stress and premature death. A study of these toxicities in Drosophila melanogaster, which share 75% genomic similarity with humans could help to develop a pharmacologic intervention. METHODS: Susceptibility of D. melanogaster for lamivudine and tenofovir-induced toxicities were investigated. First, flies (≤3 days old) were fed with drugs-supplemented diet at varying concentrations (1mg to 300mg/10-gram diet) or distilled water for seven days to determine LD50. Secondly, five groups of 60 flies were fed with four concentrations of test drugs: 2.9mg, 5.82mg, 11.64mg and 23.28mg each per 10-gram diet for 28 days survival and lifespan assays. Then 5-day treatment plan was utilized to determine drugs toxicities on climbing ability and some biomarkers of oxidative stress. Finally, molecular docking was carried out using the Auto-dock vina mode to predict the biological interactions between the test drugs and D. melanogaster acetylcholinesterase (AChE) or glutathione-S-transferase (GST). RESULTS: The LD50 of lamivudine or tenofovir was 47.07 or 43.95mg/10g diet, respectively. Each drug significantly (P<0.05) reduced the survival rate, longevity and climbing performance of the flies dose-dependently. These drugs also altered levels of biochemical parameters: AChE, GST, superoxide dismutase (SOD), catalase (CAT), total thiol (T-SH), and malondialdehyde (MDA) of the flies significantly (P<0.05). In silico molecular analysis showed that the test drugs interacted with significantly (P<0.05) higher binding affinities at the same catalytic sites of D. melanogaster GST and AChE compared with substrates (glutathione or acetylcholine). CONCLUSION: The significant lamivudine and tenofovir-induced toxicities observed as increased mortality, climbing deficits and compromised antioxidant defence in D. melanogaster demands further research for possible pharmacological intervention.


Subject(s)
Antioxidants , Drosophila melanogaster , Animals , Humans , Acetylcholine/metabolism , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Biomarkers , Catalase/genetics , Catalase/metabolism , DNA, Viral/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Glutathione , Glutathione Transferase/metabolism , Lamivudine/toxicity , Lamivudine/metabolism , Malondialdehyde/metabolism , Molecular Docking Simulation , Oxidative Stress , RNA-Directed DNA Polymerase/metabolism , Sulfhydryl Compounds , Superoxide Dismutase/metabolism , Tenofovir/toxicity , Tenofovir/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL