Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
Add more filters

Publication year range
1.
Adv Healthc Mater ; 13(15): e2400049, 2024 06.
Article in English | MEDLINE | ID: mdl-38416676

ABSTRACT

Wound healing and infection remain significant challenges due to the ineffectiveness against multidrug-resistant (MDR) bacteria and the complex oxidative wound microenvironments. To address these issues, thymoquinone-reinforced injectable and thermosensitive TQ@PEG-PAF-Cur hydrogels with dual functions of microenvironment reshaping and photodynamic therapy are developed. The hydrogel comprises natural compound thymoquinone (TQ) and poly (ethylene glycol)-block-poly (alanine-co-phenyl alanine) copolymers (PEG-PAF) conjugated with natural photosensitizer curcumin (Cur). The incorporation of TQ and Cur reduces the sol-to-gel transition temperature of TQ@PEG-PAF-Cur to 30°C, compared to PEG-PAF hydrogel (37°C), due to the formation of strong hydrogen bonding, matching the wound microenvironment temperature. Under blue light excitation, TQ@PEG-PAF-Cur generates significant amounts of reactive oxygen species such as H2O2, 1O2, and ·OH, exhibiting rapid and efficient bactericidal capacities against methicillin-resistant Staphylococcus aureus and broad spectrum ß-lactamases Escherichia coli via photodynamic therapy (PDT). Additionally, Cur effectively inhibits the expressions of proinflammatory cytokines in skin tissue-forming cells. As a result, the composite hydrogel can rapidly transform into a gel to cover the wound, reshape the wound microenvironment, and accelerate wound healing in vivo. This collaborative antibacterial strategy provides valuable insights to guide the development of multifunctional materials for efficient wound healing.


Subject(s)
Curcumin , Drug Resistance, Multiple, Bacterial , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Curcumin/pharmacology , Curcumin/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Photochemotherapy/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Mice , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Phototherapy/methods , Humans
2.
Small ; 20(20): e2306909, 2024 May.
Article in English | MEDLINE | ID: mdl-38100246

ABSTRACT

Helicobacter pylori (H. pylori) infection presents increasing challenges to antibiotic therapies in limited penetration through gastric mucus, multi-drug resistance (MDR), biofilm formation, and intestinal microflora dysbiosis. To address these problems, herein, a mucus-penetrating phototherapeutic nanomedicine (RLs@T780TG) against MDR H. pylori infection is engineered. The RLs@T780TG is assembled with a near-infrared photosensitizer T780T-Gu and an anionic component rhamnolipids (RLs) for deep mucus penetration and light-induced anti-H. pylori performances. With optimized suitable size, hydrophilicity and weak negative surface, the RLs@T780TG can effectively penetrate through the gastric mucus layer and target the inflammatory site. Subsequently, under irradiation, the structure of RLs@T780TG is disrupted and facilitates the T780T-Gu releasing to target the H. pylori surface and ablate multi-drug resistant (MDR) H. pylori. In vivo, RLs@T780TG phototherapy exhibits impressive eradication against H. pylori. The gastric lesions are significantly alleviated and intestinal bacteria balance is less affected than antibiotic treatment. Summarily, this work provides a potential nanomedicine design to facilitate in vivo phototherapy in treatment of H. pylori infection.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Mucus , Helicobacter pylori/drug effects , Helicobacter Infections/drug therapy , Mucus/metabolism , Animals , Phototherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glycolipids/chemistry , Glycolipids/pharmacology , Mice , Administration, Oral
3.
Sci Rep ; 12(1): 3106, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210515

ABSTRACT

Inappropriate use of antibiotics has been shown to contribute to the occurrence of multidrug-resistant organisms (MROs). A surveillance study was performed in the largest tertiary care hospital in Kuala Lumpur, Malaysia, from 2018 to 2020 to observe the trends of broad-spectrum antibiotics (beta-lactam/beta-lactamases inhibitors (BL/BLI), extended-spectrum cephalosporins (ESC), and fluoroquinolones (FQ)) and antibiotics against MRO (carbapenems, polymyxins, and glycopeptides) usage and the correlation between antibiotic consumption and MROs. The correlation between 3-year trends of antibiotic consumption (defined daily dose (DDD)/100 admissions) with MRO infection cases (per 100 admissions) was determined using a Jonckheere-Terpstra test and a Pearson's Correlation coefficient. The antimicrobial resistance trend demonstrated a positive correlation between ESC and FQ towards the development of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Klebsiella spp, ESBL-producing Escherichia coli (E. coli), and MRO Acinetobacter baumannii (A. baumannii). Increasing carbapenem consumption was positively correlated with the occurrence of ESBL-producing Klebsiella spp and E. coli. Polymyxin use was positively correlated with ESBL-producing Klebsiella spp, MRO A. baumannii, and carbapenem-resistant Enterobacteriaceae. The findings reinforced concerns regarding the association between MRO development, especially with a surge in ESC and FQ consumption. Stricter use of antimicrobials is thus crucial to minimise the risk of emerging resistant organisms.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects , Inappropriate Prescribing/trends , Carbapenems/pharmacology , Cephalosporins/pharmacology , Cross Infection/epidemiology , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Fluoroquinolones/pharmacology , Humans , Klebsiella/drug effects , Klebsiella Infections/drug therapy , Malaysia/epidemiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Tertiary Care Centers , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases
4.
Microbiol Spectr ; 10(1): e0176821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196792

ABSTRACT

Carbapenem resistance of Acinetobacter baumannii poses challenges to public health. Biofilm contributes to the persistence of A. baumannii cells. This study was designed to investigate the genetic relationships among carbapenem resistance, polymyxin resistance, multidrug resistance, biofilm formation, and surface-associated motility and evaluate the antibiofilm effect of polymyxin in combination with other antibiotics. A total of 103 clinical A. baumannii strains were used to determine antibiotic susceptibility, biofilm formation capacity, and motility. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting was used to determine the genetic variation among strains. The distribution of 17 genes related to the resistance-nodulation-cell division (RND)-type efflux, autoinducer-receptor (AbaI/AbaR) quorum sensing, oxacillinases (OXA)-23, and insertion sequence of ISAba1 element was investigated. The representative strains were chosen to evaluate the gene transcription and the antibiofilm activity by polymyxin B (PB) in combination with merapenem, levofloxacin, and ceftazidime, respectively. ERIC-PCR-dependent fingerprints were found to be associated with carbapenem resistance and multidrug resistance. The presence of blaOXA-23 was found to correlate with genes involved in ISAba1 insertion, AbaI/AbaR quorum sensing, and AdeABC efflux. Carbapenem resistance was observed to be negatively correlated with biofilm formation and positively correlated with motility. PB in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with deficiency in AbaI/AbaR quorum sensing. Our results not only clarify the genetic correlation among carbapenem resistance, biofilm formation, and pathogenicity in a certain level but also provide a theoretical basis for clinical applications of polymyxin-based combination of antibiotics in antibiofilm therapy. IMPORTANCE Deeper explorations of molecular correlation among antibiotic resistance, biofilm formation, and pathogenicity could provide novel insights that would facilitate the development of therapeutics and prevention against A. baumannii biofilm-related infections. The major finding that polymyxin B in combination with ceftazidime displayed a synergistic antibiofilm effect against robust biofilm formed by an A. baumannii strain with genetic deficiency in AbaI/AbaR quorum sensing further provides a theoretical basis for clinical applications of antibiotics in combination with quorum quenching in antibiofilm therapy.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Biofilms/drug effects , Ceftazidime/therapeutic use , Polymyxin B/therapeutic use , Quorum Sensing/genetics , Acinetobacter Infections/drug therapy , Acinetobacter baumannii/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms/growth & development , Ceftazidime/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Drug Therapy, Combination/methods , Microbial Sensitivity Tests , Polymerase Chain Reaction , Polymyxin B/pharmacology , Quorum Sensing/drug effects , beta-Lactamases/genetics
5.
J Antibiot (Tokyo) ; 75(3): 155-163, 2022 03.
Article in English | MEDLINE | ID: mdl-35064243

ABSTRACT

The high prevalence of multidrug-resistant Acinetobacter baumannii has emerged as a serious problem in the treatment of nosocomial infections in the past three decades. Recently, we developed a new small-molecule inhibitor belonging to a class of 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones, Fluorothiazinon (FT, previously called CL-55). FT effectively suppressed the T3SS of Chlamydia spp., Pseudomonas aeruginosa, and Salmonella sp. without affecting bacterial growth in vitro. In this study, we describe that prophylactic use of FT for 4 days prior to challenge with resistant clinical isolates of A. baumannii (ABT-897-17 and 52TS19) suppressed septic infection in mice, resulting in improved survival, limited bacteraemia and decreased bacterial load in the organs of the mice. We show that FT had an inhibitory effect on A. baumannii biofilm formation in vitro and, to a greater extent, on biofilm maturation. In addition, FT inhibited Acinetobacter isolate-induced death of HeLa cells, which morphologically manifested as apoptosis. The mechanism of FT action on A. baumannii is currently being studied. FT may be a promising candidate for the development of a broad-spectrum anti-virulence drug to use in the prevention of nosocomial infections.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anilides/pharmacology , Anti-Bacterial Agents/pharmacology , Sepsis/drug therapy , Thiadiazines/pharmacology , Animals , Bacterial Load/drug effects , Biofilms/drug effects , Cell Line, Tumor , Drug Resistance, Multiple, Bacterial/drug effects , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Microbial Sensitivity Tests/methods , Sepsis/metabolism , Sepsis/microbiology , Virulence/drug effects
6.
J Antibiot (Tokyo) ; 75(1): 21-28, 2022 01.
Article in English | MEDLINE | ID: mdl-34526667

ABSTRACT

The increasing incidence of multidrug resistant uropathogenic E. coli (MDR-UPEC), the most common opportunistic pathogen in urinary tract infections (UTI) pose a global health problem and demands searching for alternative therapeutics. Antibiotics generate oxidative stress in bacteria which results in overexpression of the universal stress protein, UspA that helps in bacterial survival. An in silico study showed that two compounds ZINC000104153710, and ZINC000000217308 effectively bound bacterial UspA. This study aimed to determine the activity of ZINC000104153710, and ZINC000000217308 against bacterial UspA function in MDR-UPEC in vitro. Twenty-five highly MDR-UPEC were screened against ZINC000104153710, and, ZINC000000217308 either alone or in combination with the bactericidal antibiotics; ciprofloxacin (CIP), ceftazidime(CAZ), gentamicin(GEN) respectively by determining minimum inhibitory concentrations (MICs) using a broth microdilution assay. Additionally, the effect of ZINC000104153710, and ZINC000000217308 in the absence and presence of antibiotics on the bacteria was monitored by bacterial growth curve assays, ROS production, structure of the organism by scanning electron microscopy (FESEM) and quantitating UspA using a western blot technique. A 2-8 fold reduction in MIC values against ZINC000104153710, and ZINC000000217308 was observed against all 25 MDR-UPEC isolates in the presence of antibiotics with no alteration in intracellular ROS production. Discrete changes in cell morphology was evident in bacteria treated with ZINC000104153710 or ZINC000000217308 and antibiotics individually by FESEM compared with untreated control. Reduction in the level of UspA protein in bacteria treated with combination of ZINC000104153710 or ZINC000000217308 with individual antibiotics established their ability to inhibit UspA whose expression was elevated in presence of antibiotics alone. Therefore this study validated ZINC000104153710, and ZINC000000217308 as potent inhibitors of bacterial UspA function and indicated their potential as alternative therapeutics to combat the MDR-UPEC.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli Infections/drug therapy , Heat-Shock Proteins/antagonists & inhibitors , Urinary Tract Infections/drug therapy , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/urine , Humans , Microbial Sensitivity Tests , Reactive Oxygen Species , Urinary Tract Infections/microbiology , Urinary Tract Infections/urine
7.
J Ethnopharmacol ; 282: 114589, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34492321

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber officinale Roscoe has been utilized traditionally to cure various diseases like cold, cough, diarrhoea, nausea, asthma, vomiting, toothache, stomach upset, respiratory disorders, joint pain, and throat infection. It is also consumed as spices and ginger tea. AIM OF THE STUDY: The current study was aimed to identify the phytocompounds of traditional medicinal plants of North-Western Himalaya that could inhibit the AcrAB-TolC efflux pump activity of Salmonella typhimurium and become sensitive to antibiotic killing at reduced dosage. MATERIAL AND METHODS: Medicinal plant extracts were prepared using methanol, aqueous, and ethyl acetate and tested for efflux pump inhibitory activity of Salmonella typhimurium NKS70, NKS174, and NKS773 strains using Ethidium Bromide (EtBr)-agar cartwheel assay. Synergism was assessed by the agar well diffusion method and EPI activity by berberine uptake and EtBr efflux inhibition assays. Microdilution method and checkerboard assays were done to determine the minimum inhibitory concentration (MIC) and fractional inhibitory concentration index (FICI) respectively for a bioactive compound. To validate the phytocompound and efflux pump interaction, molecular docking with 6IE8 (RamA) and 6IE9 (RamR) targets was done using autoDock vina software. Toxicity prediction and drug-likeness were predicted by using ProTox-II and Molinspiration respectively. RESULTS: Methanolic and ethyl acetate extracts of P. integerrima, O. sanctum, C. asiatica, M. charantia, Z. officinale, and W. somnifera in combination with ciprofloxacin and tetracycline showed synergistic antimicrobial activity with GIIs of 0.61-1.32 and GIIs 0.56-1.35 respectively. Methanolic extract of Z. officinal enhanced the antimicrobial potency of berberine (2 to 4-folds) and increased the EtBr accumulation. Furthermore, bioassay-guided fractionation leads to the identification of lariciresinol in ethyl acetate fraction, which decreased the MIC by 2-to 4-folds. The ΣFIC values varied from 0.30 to 0.55 with tetracycline, that indicated synergistic/additive effects. Lariciresinol also showed a good binding affinity with 6IE8 (-7.4 kcal mol-1) and 6IE9 (-8.2 kcal mol-1), which is comparable to tetracycline and chenodeoxycholic acid. Lariciresinol followed Lipinski's rule of five. CONCLUSION: The data suggest that lariciresinol from Z. officinale could be a potential efflux pump inhibitor that could lead to effective killing of drug resistant Salmonella typhimurium at lower MIC. Molecular docking confirmed the antibacterial EPI mechanism of lariciresinol in Salmonella typhimurium and confirmed to be safe for future use.


Subject(s)
Furans/pharmacology , Lignans/pharmacology , Salmonella Infections/drug therapy , Salmonella typhimurium , Zingiber officinale , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gene Expression Regulation, Bacterial/drug effects , Humans , India , Microbial Sensitivity Tests , Molecular Docking Simulation/methods , Plant Extracts/pharmacology , Plants, Medicinal , Salmonella Infections/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Serogroup
8.
Eur J Clin Microbiol Infect Dis ; 41(2): 319-324, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34657213

ABSTRACT

Pseudomonas aeruginosa isolates were consecutively collected from patients with pneumonia in 29 medical centers in 2020 and susceptibility tested by broth microdilution method. Ceftazidime-avibactam (95.5% susceptible), imipenem-relebactam (94.3% susceptible), and ceftolozane-tazobactam (93.3% susceptible) were the most active compounds after colistin (99.5% susceptible). Susceptibility rates for the ß-lactam/ß-lactamase inhibitor combinations (BL/BLIs) varied against isolates resistant to piperacillin-tazobactam, meropenem, imipenem, and/or ceftazidime. Ceftazidime-avibactam was the most active BL/BLI against resistant subsets from Western Europe, whereas imipenem-relebactam was slightly more active than other BL/BLIs against resistant subsets from Eastern Europe. Susceptibility rates were markedly lower in Eastern Europe than Western Europe.


Subject(s)
Pneumonia/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Azabicyclo Compounds , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Cephalosporins , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Hospitalization , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Jupiter , Microbial Sensitivity Tests , Piperacillin, Tazobactam Drug Combination , Pseudomonas Infections/microbiology , Tazobactam
9.
Appl Biochem Biotechnol ; 194(1): 246-265, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34762270

ABSTRACT

Mastitis is a widespread disease in dairy cattle occurring throughout the world. The increased use of antibiotics brings about the development of antibiotic-resistant microbes. The application of antibiotics in dairy farming led to increased antibiotic resistance and represents a major obstacle for the treatment of mastitis. Recent advancements in nanotechnology led to the development of nanocolloids to overcome disadvantages posed by conventional antimicrobial agents. Hence, a novel, environmentally friendly, cost-effective, biocompatible, and long-term antibacterial represents a promising solution for medicine and farming. Hence, polyherbal nanocolloids (PHNc) was formulated by using the extracts of Syzygium aromaticum, Cinnamomum verum, Emblica officinalis, Terminalia belerica, Terminalia chebula, and Cymbopogon citratus and physicochemically characterized. From mastitis milk samples, microorganisms were isolated including Acinetobacter junii, Klebsiella pneumoniae, Pseudomonas stutzeri, and Acinetobacter baumannii and screened for antibiotic susceptibility. All the isolated strains were tested with PHNc and compared with antibiotics. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and biofilm assays were performed at different concentrations, and antibacterial effects were quantified. In our results, PHNc showed potent bacteriostatic, bactericidal, and antibiofilm activity against all the strains. Our results indicated that PHNc can reduce the virulence factors responsible for infection by different bacterial strains. This study confirmed that PHNc had the potential to inhibit the growth of pathogenic Gram-negative and Gram-positive strains and could be utilized as an alternative to antibiotics to inhibit multidrug-resistant microbial pathogens in cattle.


Subject(s)
Anti-Infective Agents , Bacteria/growth & development , Drug Resistance, Multiple, Bacterial/drug effects , Mastitis, Bovine , Plant Extracts , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria/classification , Cattle , Female , Mastitis, Bovine/drug therapy , Mastitis, Bovine/microbiology , Plant Extracts/chemistry , Plant Extracts/pharmacology
10.
Diagn Microbiol Infect Dis ; 102(2): 115569, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34775292

ABSTRACT

Iron uptake and metabolism have become attractive targets for the development of new antibacterial drugs. In this scenario, the FDA-approved iron mimetic metal gallium [Ga (III)] has been successfully researched as an antimicrobial drug. Ga (III) inhibits microbial growth by disrupting ferric iron-dependent metabolic pathways. In this study, we revealed that gallium nitrate III (GaN) inhibits the growth of a collection of twenty polymyxin-resistant Klebsiella pneumoniae strains at concentrations ranging from 2 to 16µg/mL, using a medium, on which the low iron content and the presence of human serum better mimic the in vivo environment. GaN was also successful in protecting Caenorhabditis elegans from polymyxin-resistant K. pneumoniae strains lethal infection, with survival rates of >75%. GaN also exhibited synergism with polymyxin B, suggesting that a polymyxin B-GaN combination holds promise like as one alternative therapy for infections caused by resistant polymyxin B K. pneumoniae strains.


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Gallium/pharmacology , Gallium/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Genetic Variation , Genotype , Humans , Microbial Sensitivity Tests
11.
ACS Appl Mater Interfaces ; 14(1): 245-258, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34964342

ABSTRACT

The emergence of multidrug-resistant microorganisms has been termed one of the most common global health threats, emphasizing the discovery of new antibacterial agents. To address this issue, we engineered peptides harboring "RWWWR" as a central motif plus arginine (R) end-tagging and then tested them in vitro and in vivo. Our results demonstrate that Pep 6, one of the engineered peptides, shows great potential in combating Escherichia coli bacteremia and the Staphylococcus aureus skin burn infection model, which induces a 62-90% reduction in bacterial burden. Remarkably, after long serial passages of S. aureus and E. coli for 30 days, Pep 6 is still highly efficient in killing pathogens, compared with 64- and 128-fold increase in minimal inhibitory concentrations (MICs) for vancomycin and polymyxin B, respectively. We also found that Pep 6 exhibited robust biofilm-inhibiting activity and eliminated 61.33% of the mature methicillin-resistant Staphylococcus aureus (MRSA) biofilm with concentration in the MIC level. These results suggest that the RWWWR motif and binding of arginine end-tagging could be harnessed as a new agent for combating multidrug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects , Amino Acid Motifs , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/toxicity , Biofilms/drug effects , Burns/drug therapy , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Chlorocebus aethiops , Drug Design , Escherichia coli/drug effects , Escherichia coli/physiology , Female , HEK293 Cells , Humans , Inflammation/drug therapy , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , RAW 264.7 Cells , Sepsis/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Vero Cells , Wound Healing/drug effects
12.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884521

ABSTRACT

The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Textiles , Vaccinium macrocarpon/chemistry , Animals , Anti-Bacterial Agents , Anti-Infective Agents , Bacteriophage phi 6/drug effects , COVID-19/prevention & control , Caenorhabditis elegans/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
13.
Sci Rep ; 11(1): 23447, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873199

ABSTRACT

The emergence of infections by carbapenem resistant Enterobacteriaceae (CRE) pathogens has created an urgent public health threat, as carbapenems are among the drugs of last resort for infections caused by a growing fraction of multi-drug resistant (MDR) bacteria. There is global consensus that new preventive and therapeutic strategies are urgently needed to combat the growing problem of MDR bacterial infections. Here, we report on the efficacy of a novel macrocyclic peptide, minimized theta-defensin (MTD)-12813 in CRE sepsis. MTD12813 is a theta-defensin inspired cyclic peptide that is highly effective against CRE pathogens K. pneumoniae and E. coli in vivo. In mouse septicemia models, single dose administration of MTD12813 significantly enhanced survival by promoting rapid host-mediated bacterial clearance and by modulating pathologic cytokine responses, restoring immune homeostasis, and preventing lethal septic shock. The peptide lacks direct antibacterial activity in the presence of mouse serum or in peritoneal fluid, further evidence for its indirect antibacterial mode of action. MTD12813 is highly stable in biological matrices, resistant to bacterial proteases, and nontoxic to mice at dose levels 100 times the therapeutic dose level, properties which support further development of the peptide as a first in class anti-infective therapeutic.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Gram-Negative Bacterial Infections/drug therapy , Klebsiella pneumoniae/drug effects , Animals , Bacterial Infections/drug therapy , Carbapenems/pharmacology , Cytokines/metabolism , Drug Design , Female , Humans , Inflammation , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Peptides/pharmacology , Phagocytosis , Sepsis/blood
14.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830146

ABSTRACT

The widespread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern in clinical settings worldwide. It is urgent to develop new therapeutic agents against this pathogen. This study aimed to evaluate the therapeutic potentials of compound 62520, which has been previously identified as an inhibitor of the ompA promoter activity of A. baumannii, against CRAB isolates, both in vitro and in vivo. Compound 62520 was found to inhibit the ompA expression and biofilm formation in A. baumannii ATCC 17978 at sub-inhibitory concentrations in a dose-dependent manner. These inhibitory properties were also observed in clinical CRAB isolates belonging to sequence type (ST) 191. Additionally, compound 62520 exhibited a bacteriostatic activity against clinical clonal complex (CC) 208 CRAB isolates, including ST191, and ESKAPE pathogens. This bacteriostatic activity was not different between STs of CRAB isolates. Bacterial clearance was observed in mice infected with bioimaging A. baumannii strain 24 h after treatment with compound 62520. Compound 62520 was shown to significantly increase the survival rates of both immunocompetent and neutropenic mice infected with A. baumannii ATCC 17978. This compound also increased the survival rates of mice infected with clinical CRAB isolate. These results suggest that compound 62520 is a promising scaffold to develop a novel therapeutic agent against CRAB infections.


Subject(s)
Acinetobacter Infections/prevention & control , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gene Expression Regulation, Bacterial/drug effects , Acinetobacter Infections/microbiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/physiology , Animals , Anti-Bacterial Agents/administration & dosage , Bacterial Outer Membrane Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Mice, Inbred BALB C , Microbial Sensitivity Tests/methods , Promoter Regions, Genetic/genetics , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/pharmacology , Survival Analysis
15.
EBioMedicine ; 73: 103652, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34740109

ABSTRACT

BACKGROUND: The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). METHODS: A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. FINDINGS: EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. INTERPRETATION: This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Hydrogen-Ion Concentration , Nebramycin/analogs & derivatives , Pyelonephritis/drug therapy , Urinary Tract Infections/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Mice , Microbial Sensitivity Tests , Nebramycin/pharmacology , Nebramycin/therapeutic use , Pyelonephritis/etiology , Rats , Treatment Outcome , Urinary Tract Infections/etiology
16.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 159-164, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817352

ABSTRACT

Aim of the present study was to determine the In-vitro antibacterial activity of ethanolic extract of E. globulus leaves against common multidrug resistant poultry pathogens. Phytochemical analysis through HPLC revealed that kaempeferol (7.315min) followed by querecetin (6.655min) and myrecetin (3.655min). Percent area of kaempeferol (6826.88%) was highest, followed by myrecetin (5516.22%) and querecetin (163.748%). Phytochemical investigation of ethanolic extract of E. globulus leaves through GCMS showed highest retention time (min) α-pinene (20.43) and α-terpineol (20.15) accompanied by spathulenol (11.97), piperitone (11.04). The ethanolic extracts of E. globulus leaves showed a highest zone of inhibition against S. pullorum SP6; 20.64± 2.08, E. coli SE 12; 19.75± 2.83, C. perfringens type A (CPM38-01); 19.46± 2.02. The highest level of MIC of E. globulus noted were against S. gallinarum S22; 133.37±53.294, S. gallinarum S1; 130.20±45.10, S. gallinarum S4; 129.47±24.182, S. gallinarum S3; 126.83±72.392. In conclusion, the study confirmed that the ethanolic extract of E. globulus is composed of active ingredients having antibacterial activity and can be referred as an alternate to antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Eucalyptus/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Chromatography, High Pressure Liquid/methods , Clostridium perfringens/drug effects , Clostridium perfringens/physiology , Escherichia coli/drug effects , Escherichia coli/physiology , Ethanol/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Gas Chromatography-Mass Spectrometry/methods , Kaempferols/analysis , Kaempferols/chemistry , Kaempferols/pharmacology , Microbial Sensitivity Tests/methods , Phytochemicals/analysis , Phytochemicals/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Poultry , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Quercetin/analysis , Quercetin/chemistry , Quercetin/pharmacology
17.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 153-158, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817353

ABSTRACT

The present study was designed to evaluate the antimicrobial activity of E. globulus leaves in broiler chicks. Total (n=255) day-old chicks were segregated into five groups i.e. Pathogenic E. coli, S. pullorum, S. gallinarum and C. perfringens type A and control negative group. Each bacterial challenged (1x 107 CFU) group was divided into control positive, antibiotic, probiotic and E. globulus group. Experimental birds were exposed to E. coli, S. pullorum, S. gallinarum and C. perfringens type A at different ages. At 35th day of experiment the log reduction for each group was determined. The highest log reduction in E. coli and C. perfringens Type A colonies count were found in E. globulus (3.26) (2.33) treated group followed by antibiotic (2.85) (1.59) and probiotic (2.84) (1.50) respectively. The log reduction in S. pullorum colonies count was highest in E. globulus (2.50) followed by probiotic (2.24) and antibiotic (2.16). The S. gallinarum colonies count log reduction was found highest for antibiotic (2.84) followed by probiotic (2.48) and E. globulus group. The results of in-vivo experiment revealed that ethanolic extract of E. globulus has antibacterial activity and it can be used as a replacement to low level of antibiotics added in poultry feed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Eucalyptus/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Poultry Diseases/prevention & control , Animals , Anti-Bacterial Agents/chemistry , Chickens , Clostridium perfringens/drug effects , Clostridium perfringens/physiology , Escherichia coli/drug effects , Escherichia coli/physiology , Ethanol/chemistry , Phytotherapy/methods , Plant Extracts/chemistry , Poultry Diseases/microbiology
18.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 116-124, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817358

ABSTRACT

With the spread of bacterial resistance against clinically used antibiotics, natural plant-derived products are being studied as new sources of antibacterial molecules. Manilkara zapota is a common plant species in the American continent that is used as a food source. Studies show the M. zapota extract is rich in phenolic substances that can serve as basic molecules for the pharmaceutical industry. An extract from fresh M. zapota leaves was produced and tested to identify the compounds present, as well as its direct antibacterial and clinical antibiotic modulatory activities. To analyze the results, a new statistical methodology based on the Shannon-Wiener index was tested, capable of correcting distortions in heterogeneous environments. The Hydroethanolic Extract of Manilkara zapota leaves (HEMzL) presented a wide variety of phenolic products, as well as tannins, in the UPLC analysis. The extract showed direct antibacterial activity against the standard Staphylococcus aureus strain, however, it either acted antagonistically when associated with the tested antibiotics, or it did not present statistical significance when compared to the control. This demonstrates a need to be cautious when associating natural products with antibiotics for clinical use, as a hindrance to infectious treatments may occur. As for the statistical analysis mechanism tested, this proved to be effective, reducing false negatives at low antibiotic concentrations and false positives at high concentrations in the microdilution plate.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chromatography, Liquid/methods , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Manilkara/chemistry , Tandem Mass Spectrometry/methods , Animals , Anti-Bacterial Agents/analysis , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Humans , Microbial Sensitivity Tests/methods , Phenols/analysis , Phenols/pharmacology , Phytotherapy/methods , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry
19.
PLoS One ; 16(11): e0257272, 2021.
Article in English | MEDLINE | ID: mdl-34780494

ABSTRACT

INTRODUCTION: Hospital admitted patients are at increased risk of nosocomial infections (NIs) with multi-drug resistant (MDR) pathogens which are prevalent in the hospital environment. Pseudomonas aeruginosa (P. aeruginosa) and Acinetobacter baumannii (A. baumannii) are common causes of NIs worldwide. The objective of this study is to determine antimicrobial resistance profiles and associated factors of Acinetobacter spp and P. aeruginosa NIs among hospitalized patients. METHODS: A cross-sectional study was conducted at Dessie comprehensive specialized hospital, North-East Ethiopia, from February 1 to April 30, 2020. A total of 254 patients who were suspected of the bloodstream, urinary tract, or surgical site nosocomial infections were enrolled consecutively. Socio-demographic and other variables of interest were collected using a structured questionnaire. Specimens were collected and processed following standard microbiological procedures. Antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Data were analyzed with SPSS version 23 and p-value < 0.05 was considered statistically significant. RESULTS: Overall, 13% of patients had nosocomial Acinetobacter spp and/or P. aeruginosa infections. The culture positivity rate was 16(6.3%) for Acinetobacter spp and 18(7.1%) for P. aeruginosa. Patients admitted in the surgical ward (Adjusted odds ratio (AOR):10.66;95% confidence interval (CI):1.22-93.23), pediatric ward (AOR:14.37;95%CI:1.4-148.5), intensive care unit (AOR:41.93;95%CI:4.7-374.7) and orthopedics (AOR:52.21;95%CI:7.5-365) were significantly at risk to develop NIs compared to patients admitted in the medical ward. Patients who took more than two antimicrobial types at admission were 94% (AOR:0.06; 95% CI:0.004-0.84) times more protected from NIs compared to those who did not take any antimicrobial. About 81% of Acinetobacter spp and 83% of P. aeruginosa isolates were MDR. Amikacin and meropenem showed promising activity against Acinetobacter spp and P. aeruginosa isolates. CONCLUSION: The high prevalence of MDR Acinetobacter spp and P. aeruginosa nosocomial isolates enforce treating of patients with NIs based on antimicrobial susceptibility testing results.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Amikacin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Drug Resistance, Multiple, Bacterial/drug effects , Hospitals, Special , Meropenem/therapeutic use , Patient Admission , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Cross Infection/microbiology , Cross-Sectional Studies , Ethiopia/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Meropenem/pharmacology , Microbial Sensitivity Tests , Middle Aged , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Risk Factors , Treatment Outcome , Young Adult
20.
Chem Biodivers ; 18(12): e2100538, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34609784

ABSTRACT

The aim of this study was to evaluate the phytochemical composition, antioxidant, and antimicrobial potential of crude extract and fractions of Punica granatum leaves. The extract was produced by turbo extraction, after which hexanic, ethyl acetate, and aqueous fractions were obtained by partitioning. The chemical analyses were performed by thin layer chromatography and high-performance liquid chromatography, and the antioxidant activities were assayed by DPPH. and ABTS.+ . Minimal inhibitory and bactericidal concentrations (MIC/MBC) were applied to twenty-two bacteria. Most strains susceptible to extract/fractions and resistant to antibiotics were selected, and ampicillin, azithromycin, ciprofloxacin, and gentamicin were associated with the ethyl acetate fraction (EAF) against multidrug-resistant strains in modulatory and checkboard models. The data from chromatographic analyses showed flavonoids and tannins in the extract, as well as the enrichment of EAF in phenols, mainly flavonoids. The flavonoids were connected to the electron transfer activity demonstrated in the DPPH. and ABTS.+ assays. Gram-positive strains are more susceptible to EAF. The subinhibitory concentrations of P. granatum enhanced the antimicrobial activity of the agents and reduced the EAF individual MIC, and the combination of EAF and antibiotics demonstrated a synergistic effect. These results present a promising approach for developing a therapy in which antioxidant extracts and fractions can be used in combination with antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Lythraceae/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Sulfonic Acids/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL