Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Toxicol Pathol ; 46(5): 511-529, 2018 07.
Article in English | MEDLINE | ID: mdl-29973125

ABSTRACT

Bone is a unique tissue with turnover, metabolic, and cellular activities that vary through development to aging and with a mineralized matrix in which the current state and the history of a bone coexist. Qualitative histopathology often lacks sensitivity to detect changes in bone formation, mineralization and resorption, which often requires chronic dosing to result in structural changes such as variation in bone mass and geometry. A large panel of modalities can be used to fully analyze the health of the skeleton, including biomarker evaluation in serum or urine, imaging techniques ranging from radiology to computed tomography, biomechanical testing, and undecalcified tissue processing with bone histomorphometry. The use of clinically relevant biomarkers provides an important noninvasive, sensitive, rapid, and real-time tool to monitor bone activity at the whole skeleton level when conducting safety assessments in a preclinical setting. Imaging modalities also allow in vivo longitudinal assessments with a powerful, noninvasive and clinically translatable tools to monitor drug effects. Different imaging modalities are used in the preclinical studies to evaluate the bone tissues: standard radiography, dual-energy X-ray absorptiometry, peripheral quantitative computed tomography (pQCT), micro-computed tomography, and high-resolution pQCT. Bone histomorphometry is an important tool that provides sensitive evaluation to detect effects of test articles on bone resorption, formation, mineralization, remodeling rates and growth to address a potential target- or class-related theoretical bone liability. Ultimately, the measurement of bone mechanical properties in pharmaceutical testing is critical to understand the potential effects of that pharmaceutical on bone health and fracture risk. Important considerations are required for including these different techniques in toxicology rodents and nonrodent studies, to actually integrate these into safety assessment.


Subject(s)
Bone Remodeling/drug effects , Bone and Bones/drug effects , Drug-Related Side Effects and Adverse Reactions , Pharmaceutical Preparations/standards , Absorptiometry, Photon , Animals , Biomarkers/blood , Biomechanical Phenomena , Bone Density , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Drug Evaluation, Preclinical , Drug-Related Side Effects and Adverse Reactions/blood , Drug-Related Side Effects and Adverse Reactions/diagnostic imaging , Drug-Related Side Effects and Adverse Reactions/urine , Humans
2.
Toxicol Sci ; 163(2): 409-419, 2018 06 01.
Article in English | MEDLINE | ID: mdl-28329870

ABSTRACT

A number of drugs can cause precipitates within renal tubules leading to crystal nephropathy. Crystal nephropathy is usually an exposure-related finding and is not uncommon in preclinical studies, where high doses are tested. An understanding of the nature of precipitates is important for human risk assessment and further development. Our aim was to investigate the ability of various imaging techniques to detect the presence of drugs or metabolites in renal crystals. We applied matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) imaging, Raman and infrared microspectroscopy, scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) spectroscopy and standard histopathology to cases of drug-induced crystal nephropathy, induced in rodents and primates by 4 compounds. MALDI-FTICR MS imaging enabled the identification of the drug-related crystal content in all 4 cases of nephropathy, without reference material and with high accuracy. Crystals were composed of unchanged parent drug and/or metabolites. Similar results were obtained using Raman and infrared microspectroscopy for 2 compounds. In the absence of reference standards of metabolites, Raman and infrared microspectroscopy showed that the crystals consisted of components similar, but not identical, to the administered drug for the other compounds, a limitation for these techniques. SEM/EDX showed which counter ions were colocalized with the identified drug-related material, complementing the MALDI-FTICR MS findings. Therefore, we recommend MALDI-FTICR MS as a first-line methodology to characterize crystal nephropathies. Raman and infrared microspectroscopy may be useful when MALDI-FTICR MS imaging cannot be applied. SEM/EDX could be considered as a complementary technology.


Subject(s)
Acute Kidney Injury/diagnostic imaging , Drug-Related Side Effects and Adverse Reactions/diagnostic imaging , Kidney/drug effects , Pharmaceutical Preparations/chemistry , Animals , Crystallization , Drug Evaluation, Preclinical , Kidney/diagnostic imaging , Macaca fascicularis , Mice , Molecular Structure , Pharmaceutical Preparations/analysis , Rats , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL