Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Sci Rep ; 12(1): 12631, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879381

ABSTRACT

Levodopa-induced dyskinesia (LID), a long-term motor complication in Parkinson's disease (PD), is attributable to both presynaptic and postsynaptic mechanisms. However, no studies have evaluated the baseline structural changes associated with LID at a subcortical level in PD. A total of 116 right-handed PD patients were recruited and based on the LID latency of 5 years, we classified patients into those vulnerable to LID (PD-vLID, n = 49) and those resistant to LID (PD-rLID, n = 67). After adjusting for covariates including dopamine transporter (DAT) availability of the posterior putamen, we compared the subcortical shape between the groups and investigated its association with the onset of LID. The PD-vLID group had lower DAT availability in the posterior putamen, higher parkinsonian motor deficits, and faster increment in levodopa equivalent dose than the PD-rLID group. The PD-vLID group had significant inward deformation in the right thalamus compared to the PD-rLID group. Inward deformation in the thalamus was associated with an earlier onset of LID at baseline. This study suggests that independent of presynaptic dopamine depletion, the thalamus is a major neural substrate for LID and that a contracted thalamic shape at baseline is closely associated with an early development of LID.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/diagnostic imaging , Dyskinesia, Drug-Induced/etiology , Humans , Levodopa/adverse effects , Parkinson Disease/complications , Parkinson Disease/drug therapy , Thalamus/diagnostic imaging
2.
Neurosci Lett ; 765: 136251, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34536508

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characterized by motor dysfunction. While PD symptoms are well treated with L-DOPA, continuous use can cause L-DOPA-induced dyskinesia (LID). We have previously demonstrated that sub-anesthetic ketamine attenuated LID development in rodents, measured by abnormal involuntary movements (AIMs), and reduced the density of maladaptive striatal dendritic mushroom spines. Microglia may play a role by phagocytosing maladaptive neuronal spines. In this exploratory study, we hypothesized that ketamine would prevent AIMs and change microglia ramified morphology - an indicator of a microglia response. Unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats were primed with daily injections of L-DOPA for 14 days, treated on days 0 and 7 for 10-hours with sub-anesthetic ketamine (i.p.), and we replicated that this attenuated LID development. We further extended our prior work by showing that while ketamine treatment did lead to an increase of striatal interleukin-6 in dyskinetic rats, indicating a modulation of an inflammatory response, it did not change microglia number or morphology in the dyskinetic striatum. Yet an increase of CD68 in the SNpc of 6-OHDA-lesioned hemispheres post-ketamine indicates increased microglia phagocytosis suggestive of a lingering microglial response to 6-OHDA injury in the SNpc pointing to possible anti-inflammatory action in the PD model in addition to anti-dyskinetic action. In conclusion, we provide further support for sub-anesthetic ketamine treatment of LID. The mechanisms of action for ketamine, specifically related to inflammation and microglia phagocytic functions, are emerging, and require further examination.


Subject(s)
Dyskinesia, Drug-Induced/prevention & control , Excitatory Amino Acid Antagonists/administration & dosage , Ketamine/administration & dosage , Levodopa/administration & dosage , Parkinson Disease/drug therapy , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/pathology , Humans , Levodopa/adverse effects , Male , Microglia/drug effects , Microglia/pathology , Phagocytosis/drug effects , Rats , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Substantia Nigra/drug effects , Substantia Nigra/pathology
3.
Behav Brain Res ; 410: 113342, 2021 07 23.
Article in English | MEDLINE | ID: mdl-33961911

ABSTRACT

Using marijuana has become popular and is allowed for medical purposes in some countries. The effect of marijuana on Parkinson's disease is controversial and Medical marijuana may benefit for motor and non-motor symptoms of patients with Parkinson's disease. No research has been conducted to fully prove the benefits, risks, and uses of marijuana as a treatment for patients with Parkinson's disease. In the present study, several different approaches, including behavioral measures and the western blot method for protein level assay, were used to investigate whether exposure to marijuana affects the motor and synaptic plasticity impairment induced by 6-OHDA. Marijuana consumption significantly decreased apomorphine-induced contralateral rotation, beam travel time, beam freeze time, and catalepsy time, but significantly increased latency to fall in the rotarod test, balance time, and protein level of PSD-95 and dopamine receptor D1 in the 6-OHDA + marijuana group. These results suggest that marijuana may be helpful for motor disorders and synaptic changes in patients with Parkinson's disease.


Subject(s)
Behavior, Animal/drug effects , Cannabinoid Receptor Agonists/pharmacology , Disks Large Homolog 4 Protein/drug effects , Dronabinol/pharmacology , Dyskinesia, Drug-Induced/drug therapy , Medical Marijuana/pharmacology , Neuronal Plasticity/drug effects , Receptors, Dopamine D1/drug effects , Adrenergic Agents/pharmacology , Animals , Cannabinoid Receptor Agonists/administration & dosage , Disease Models, Animal , Dronabinol/administration & dosage , Male , Medical Marijuana/administration & dosage , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Plant Extracts , Rats , Rats, Wistar
4.
Exp Neurol ; 333: 113413, 2020 11.
Article in English | MEDLINE | ID: mdl-32717354

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease. Pharmacotherapy with L-DOPA remains the gold-standard therapy for PD, but is often limited by the development of the common side effect of L-DOPA-induced dyskinesia (LID), which can become debilitating. The only effective treatment for disabling dyskinesia is surgical therapy (neuromodulation or lesioning), therefore effective pharmacological treatment of LID is a critical unmet need. Here, we show that sub-anesthetic doses of ketamine attenuate the development of LID in a rodent model, while also having acute anti-parkinsonian activity. The long-term anti-dyskinetic effect is mediated by brain-derived neurotrophic factor-release in the striatum, followed by activation of ERK1/2 and mTOR pathway signaling. This ultimately leads to morphological changes in dendritic spines on striatal medium spiny neurons that correlate with the behavioral effects, specifically a reduction in the density of mushroom spines, a dendritic spine phenotype that shows a high correlation with LID. These molecular and cellular changes match those occurring in hippocampus and cortex after effective sub-anesthetic ketamine treatment in preclinical models of depression, and point to common mechanisms underlying the therapeutic efficacy of ketamine for these two disorders. These preclinical mechanistic studies complement current ongoing clinical testing of sub-anesthetic ketamine for the treatment of LID by our group, and provide further evidence in support of repurposing ketamine to treat individuals with PD. Given its clinically proven therapeutic benefit for both treatment-resistant depression and several pain states, very common co-morbidities in PD, sub-anesthetic ketamine could provide multiple therapeutic benefits for PD in the future.


Subject(s)
Anesthetics, Dissociative/therapeutic use , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Ketamine/therapeutic use , Levodopa/adverse effects , Animals , Brain-Derived Neurotrophic Factor/metabolism , Dendritic Spines/drug effects , Dendritic Spines/pathology , Depression/drug therapy , Depression/psychology , Drug Repositioning , MAP Kinase Signaling System/drug effects , Male , Neurons/drug effects , Neurons/pathology , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/drug effects
5.
Neurotox Res ; 37(1): 12-29, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31637586

ABSTRACT

Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.


Subject(s)
Cannabidiol/therapeutic use , Cannabinoids/therapeutic use , Dyskinesia, Drug-Induced/drug therapy , Parkinson Disease/drug therapy , Animals , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Humans , Levodopa/adverse effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
6.
Parkinsonism Relat Disord ; 67: 36-41, 2019 10.
Article in English | MEDLINE | ID: mdl-31621605

ABSTRACT

OBJECTIVES: In this study, the alterations of structural topological properties in Parkinson's disease (PD) patients with levodopa-induced dyskinesias (LIDs) were explored using white matter structural network connectome derived from diffusion tensor imaging (DTI). METHODS: 21 dyskinetic PD patients, 21 non-dyskinetic PD patients and 25 healthy controls were studied in global and nodal topological properties of structural networks after controlling age, gender and education. Afterwards, post hoc analyses were performed to explore further differences. Finally, multiple linear regression analysis was employed to test the associations between significant different properties and the severity of dyskinesias in PD. RESULTS: Dyskinetic PD patients exhibited significant increased global efficiency, local efficiency, clustering coefficient, but decreased shortest path length compared with the non-dyskinetic. Additionally, increased nodal efficiency in bilateral inferior frontal gyrus (IFG), right putamen, right thalamus, and decreased nodal shortest path length in bilateral IFG and right thalamus, were discovered in dyskinetic PD in comparison with non-dyskinetic PD. Notably, a negative correlation between the Abnormal Involuntary Movement Scale (AIMS) scores and shortest path length of whole-brain network was found in PD with LIDs. CONCLUSIONS: Our results indicated excessively optimized topological organization of whole-brain structural connectome in PD patients with LIDs. These findings also illustrated that excessively strengthened basal ganglia-thalamocortical nodal structural connections played an important role in the presence of LIDs.


Subject(s)
Antiparkinson Agents/adverse effects , Basal Ganglia/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Dyskinesia, Drug-Induced/diagnostic imaging , Levodopa/adverse effects , Parkinson Disease/diagnostic imaging , Thalamus/diagnostic imaging , White Matter/diagnostic imaging , Aged , Brain/diagnostic imaging , Case-Control Studies , Connectome , Diffusion Magnetic Resonance Imaging , Dyskinesia, Drug-Induced/etiology , Female , Humans , Male , Middle Aged , Neural Pathways , Parkinson Disease/drug therapy
7.
Expert Opin Drug Saf ; 18(12): 1203-1218, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31619083

ABSTRACT

Introduction: Dyskinesia is a motor complication of Parkinson's disease (PD) characterized by clinical heterogeneity and complex pathogenesis and associated with long-term levodopa therapy. Recent and controversial views on the management of PD patients have suggested that overall dyskinesia rates, and particularly troublesome dyskinesia, may be declining due to more conservative levodopa dosing regimens, widespread availability and early introduction of deep brain stimulation, and use of continuous drug delivery strategies. Nevertheless, anti-dyskinetic agents continue to be evaluated in clinical trials and recent efforts have focused on non-dopaminergic drugs.Areas covered: In this review, the authors discuss the clinical phenomenology and current understanding of dyskinesia in PD with a focus on up-to-date therapeutic strategies to prevent and manage these drug-related involuntary movements.Expert opinion: The way dyskinesia in PD is currently managed should be changed and attention should be focused toward a more personalized medicine rather than a one-fits-all-approach. The correct identification of dyskinesia types and tailored treatments are crucial for a better management of these involuntary movements together with a holistic approach which considers additional influencing factors. The future for dyskinesia treatment is likely to be found in non-dopaminergic approaches, first set into motion by the introduction of amantadine.


Subject(s)
Antiparkinson Agents/administration & dosage , Dyskinesias/drug therapy , Parkinson Disease/drug therapy , Animals , Antiparkinson Agents/adverse effects , Deep Brain Stimulation , Drug Delivery Systems , Dyskinesia, Drug-Induced/prevention & control , Dyskinesias/etiology , Dyskinesias/physiopathology , Humans , Levodopa/administration & dosage , Levodopa/adverse effects , Parkinson Disease/physiopathology
8.
Mov Disord ; 34(5): 697-707, 2019 05.
Article in English | MEDLINE | ID: mdl-31002755

ABSTRACT

BACKGROUND: Levodopa-induced dyskinesias are an often debilitating side effect of levodopa therapy in Parkinson's disease. Although up to 90% of individuals with PD develop this side effect, uniformly effective and well-tolerated antidyskinetic treatment remains a significant unmet need. The pathognomonic loss of striatal dopamine in PD results in dysregulation and disinhibition of striatal CaV1.3 calcium channels, leading to synaptopathology that appears to be involved in levodopa-induced dyskinesias. Although there are clinically available drugs that can inhibit CaV1.3 channels, they are not adequately potent and have only partial and transient impact on levodopa-induced dyskinesias. METHODS: To provide unequivocal target validation, free of pharmacological limitations, we developed a CaV1.3 shRNA to provide high-potency, target-selective, mRNA-level silencing of striatal CaV1.3 channels and examined its ability to impact levodopa-induced dyskinesias in severely parkinsonian rats. RESULTS: We demonstrate that vector-mediated silencing of striatal CaV1.3 expression in severely parkinsonian rats prior to the introduction of levodopa can uniformly and completely prevent induction of levodopa-induced dyskinesias, and this antidyskinetic benefit persists long term and with high-dose levodopa. In addition, this approach is capable of ameliorating preexisting severe levodopa-induced dyskinesias. Importantly, motoric responses to low-dose levodopa remained intact in the presence of striatal CaV1.3 silencing, indicating preservation of levodopa benefit without dyskinesia liability. DISCUSSION: The current data provide some of the most profound antidyskinetic benefit reported to date and suggest that genetic silencing of striatal CaV1.3 channels has the potential to transform treatment of individuals with PD by allowing maintenance of motor benefit of levodopa in the absence of the debilitating levodopa-induced dyskinesia side effect. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Antiparkinson Agents/adverse effects , Calcium Channels/genetics , Dyskinesia, Drug-Induced/prevention & control , Levodopa/adverse effects , Neostriatum/metabolism , Parkinsonian Disorders/drug therapy , Adrenergic Agents/toxicity , Animals , Disease Models, Animal , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/therapy , Green Fluorescent Proteins , Luminescent Agents , Medial Forebrain Bundle , Oxidopamine/toxicity , Parkinsonian Disorders/chemically induced , RNA Interference , RNA, Small Interfering , Rats , Substantia Nigra , Tyrosine 3-Monooxygenase/metabolism
9.
Mol Neurobiol ; 56(4): 2408-2423, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30030752

ABSTRACT

Although L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the most effective medication for treating Parkinson's disease (PD) motor symptoms, its prolonged administration causes several adverse effects, including dyskinesia. To identify the mechanisms underlying the effects of acupuncture on L-DOPA-induced dyskinesia (LID), antidyskinetic effects of acupuncture were investigated in two mouse models of PD. Acupuncture stimulation at GB34 alleviated abnormal involuntary movements (AIMs) in Pitx3-deficient aphakia mice (ak/ak) following L-DOPA administration and these effects were reproduced in 6-hydroxydopamine (6-OHDA)-lesioned mice with LID. A transcriptome analysis of the hypothalamus revealed pro-melanin-concentrating hormone (Pmch) gene was highly expressed in acupuncture-treated mouse from ak/ak model of LID as well as 6-OHDA model of LID. Acupuncture combined with the administration of MCH receptor antagonist did not have any beneficial effects on dyskinesia in L-DOPA-injected ak/ak mice, but the intranasal administration of MCH attenuated LID to the same degree as acupuncture in both ak/ak and 6-OHDA mice with LID. A gene expression profile with a hierarchical clustering analysis of the dyskinesia-induced ak/ak mouse brain revealed an association between the mechanisms underlying acupuncture and MCH. Additionally, altered striatal responses to L-DOPA injection were observed after prolonged acupuncture and MCH treatments, which suggests that these treatment modalities influenced the compensatory mechanisms of LID. In summary, present study demonstrated that acupuncture decreased LID via hypothalamic MCH using L-DOPA-administered ak/ak and 6-OHDA mouse models and that MCH administration resulted in novel antidyskinetic effects in these models. Thus, acupuncture and MCH might be valuable therapeutic candidates for PD patients suffering from LID.


Subject(s)
Acupuncture Therapy , Aphakia/complications , Dyskinesia, Drug-Induced/complications , Dyskinesia, Drug-Induced/therapy , Hypothalamic Hormones/metabolism , Levodopa/adverse effects , Melanins/metabolism , Pituitary Hormones/metabolism , Transcription Factors/deficiency , Animals , Aphakia/genetics , Dyskinesia, Drug-Induced/genetics , Dyskinesia, Drug-Induced/pathology , Gene Expression Regulation , Homeodomain Proteins , Hypothalamus/pathology , Mice, Inbred C57BL , Neostriatum/metabolism , Neostriatum/pathology , Oxidopamine , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Up-Regulation
10.
J Neural Transm (Vienna) ; 125(9): 1319-1331, 2018 09.
Article in English | MEDLINE | ID: mdl-29998409

ABSTRACT

Histone acetylation is a key regulatory factor for gene expression in cells. Modulation of histone acetylation by targeting of histone acetyltransferases (HATs) effectively alters many gene expression profiles and synaptic plasticity in the brain. However, the role of HATs on L-DOPA-induced dyskinesia of Parkinson's disease (PD) has not been reported. Our aim was to determine whether HAT inhibitors such as anacardic acid, garcinol, and curcumin from natural plants reduce severity of L-DOPA-induced dyskinesia using a unilaterally 6-hydroxydopamine (6-OHDA)-lesioned PD mouse model. Anacardic acid 2 mg/kg, garcinol 5 mg/kg, or curcumin 100 mg/kg co-treatment with L-DOPA significantly reduced the axial, limb, and orofacial (ALO) score indicating less dyskinesia with administration of HAT inhibitors in 6-OHDA-lesioned mice. Additionally, L-DOPA's efficacy was not altered by the compounds in the early stage of treatment. The expression levels of c-Fos, Fra-2, and Arc were effectively decreased by administration of HAT inhibitors in the ipsilateral striatum. Our findings indicate that HAT inhibitor co-treatment with L-DOPA may have therapeutic potential for management of L-DOPA-induced dyskinesia in patients with PD.


Subject(s)
Anacardic Acids/therapeutic use , Antiparkinson Agents/toxicity , Curcumin/therapeutic use , Dyskinesia, Drug-Induced/drug therapy , Enzyme Inhibitors/therapeutic use , Histone Acetyltransferases/antagonists & inhibitors , Levodopa/toxicity , Parkinsonian Disorders/drug therapy , Terpenes/therapeutic use , Anacardic Acids/pharmacology , Animals , Curcumin/pharmacology , Cytoskeletal Proteins/biosynthesis , Cytoskeletal Proteins/genetics , Drug Evaluation, Preclinical , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/genetics , Enzyme Inhibitors/pharmacology , Fos-Related Antigen-2/biosynthesis , Fos-Related Antigen-2/genetics , Gene Expression Regulation/drug effects , Histone Code/drug effects , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Oxidopamine/toxicity , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins c-fos/genetics , Specific Pathogen-Free Organisms , Substantia Nigra/drug effects , Substantia Nigra/pathology , Terpenes/pharmacology
11.
Cochrane Database Syst Rev ; 3: CD000208, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29552749

ABSTRACT

BACKGROUND: Antipsychotic (neuroleptic) medication is used extensively to treat people with chronic mental illnesses. Its use, however, is associated with adverse effects, including movement disorders such as tardive dyskinesia (TD) - a problem often seen as repetitive involuntary movements around the mouth and face. This review, one in a series examining the treatment of TD, covers miscellaneous treatments not covered elsewhere. OBJECTIVES: To determine whether drugs, hormone-, dietary-, or herb-supplements not covered in other Cochrane reviews on TD treatments, surgical interventions, electroconvulsive therapy, and mind-body therapies were effective and safe for people with antipsychotic-induced TD. SEARCH METHODS: We searched the Cochrane Schizophrenia Group's Study-Based Register of Trials including trial registers (16 July 2015 and 26 April 2017), inspected references of all identified studies for further trials and contacted authors of trials for additional information. SELECTION CRITERIA: We included reports if they were randomised controlled trials (RCTs) dealing with people with antipsychotic-induced TD and schizophrenia or other chronic mental illnesses who remained on their antipsychotic medication and had been randomly allocated to the interventions listed above versus placebo, no intervention, or any other intervention. DATA COLLECTION AND ANALYSIS: We independently extracted data from these trials and we estimated risk ratios (RR) or mean differences (MD), with 95% confidence intervals (CIs). We assumed that people who left early had no improvement. We assessed risk of bias and created 'Summary of findings' tables using GRADE. MAIN RESULTS: We included 31 RCTs of 24 interventions with 1278 participants; 22 of these trials were newly included in this 2017 update. Five trials are awaiting classification and seven trials are ongoing. All participants were adults with chronic psychiatric disorders, mostly schizophrenia, and antipsychotic-induced TD. Studies were primarily of short (three to six6 weeks) duration with small samples size (10 to 157 participants), and most (61%) were published more than 20 years ago. The overall risk of bias in these studies was unclear, mainly due to poor reporting of allocation concealment, generation of the sequence, and blinding.Nineteen of the 31 included studies reported on the primary outcome 'No clinically important improvement in TD symptoms'. Two studies found moderate-quality evidence of a benefit of the intervention compared with placebo: valbenazine (RR 0.63, 95% CI 0.46 to 0.86, 1 RCT, n = 92) and extract of Ginkgo biloba (RR 0.88, 95% CI 0.81 to 0.96, 1 RCT, n = 157), respectively. However, due to small sample sizes we cannot be certain of these effects.We consider the results for the remaining interventions to be inconclusive: Low- to very low-quality evidence of a benefit was found for buspirone (RR 0.53, 95% CI 0.33 to 0.84, 1 RCT, n = 42), dihydrogenated ergot alkaloids (RR 0.45, 95% CI 0.21 to 0.97, 1 RCT, n = 28), hypnosis or relaxation, (RR 0.45, 95% CI 0.21 to 0.94, 1 study, n = 15), pemoline (RR 0.48, 95% CI 0.29 to 0.77, 1 RCT, n = 46), promethazine (RR 0.24, 95% CI 0.11 to 0.55, 1 RCT, n = 34), insulin (RR 0.52, 95% CI 0.29 to 0.96, 1 RCT, n = 20), branched chain amino acids (RR 0.79, 95% CI 0.63 to 1.00, 1 RCT, n = 52), and isocarboxazid (RR 0.24, 95% CI 0.08 to 0.71, 1 RCT, n = 20). There was low- to very low-certainty evidence of no difference between intervention and placebo or no treatment for the following interventions: melatonin (RR 0.89, 95% CI 0.71 to 1.12, 2 RCTs, n = 32), lithium (RR 1.59, 95% CI 0.79 to 3.23, 1 RCT, n = 11), ritanserin (RR 1.00, 95% CI 0.70 to 1.43, 1 RCT, n = 10), selegiline (RR 1.37, 95% CI 0.96 to 1.94, 1 RCT, n = 33), oestrogen (RR 1.18, 95% CI 0.76 to 1.83, 1 RCT, n = 12), and gamma-linolenic acid (RR 1.00, 95% CI 0.69 to 1.45, 1 RCT, n = 16).None of the included studies reported on the other primary outcome, 'no clinically significant extrapyramidal adverse effects'. AUTHORS' CONCLUSIONS: This review has found that the use of valbenazine or extract of Ginkgo biloba may be effective in relieving the symptoms of tardive dyskinesia. However, since only one RCT has investigated each one of these compounds, we are awaiting results from ongoing trials to confirm these results. Results for the remaining interventions covered in this review must be considered inconclusive and these compounds probably should only be used within the context of a well-designed evaluative study.


Subject(s)
Dyskinesia, Drug-Induced/therapy , Adrenergic Uptake Inhibitors/therapeutic use , Adult , Anti-Anxiety Agents/therapeutic use , Antipsychotic Agents/adverse effects , Dihydroergotoxine/therapeutic use , Dyskinesia, Drug-Induced/etiology , Ginkgo biloba , Humans , Hypnosis , Plant Extracts , Randomized Controlled Trials as Topic , Relaxation Therapy , Tetrabenazine/analogs & derivatives , Tetrabenazine/therapeutic use , Valine/analogs & derivatives , Valine/therapeutic use
13.
PLoS One ; 12(8): e0182887, 2017.
Article in English | MEDLINE | ID: mdl-28854243

ABSTRACT

OBJECTIVE: Investigate a combination of two clinically tested drugs, the NR2B antagonist Radiprodil and the A2A antagonist Tozadenant in the MPTP-treated marmoset model of Parkinson's Disease (PD). BACKGROUND: In PD, there remains a need for the development of non-dopaminergic drugs to effectively treat the motor symptoms without the induction of L-Dopa-induced motor complications. METHODS: Clinically relevant doses of Radiprodil and Tozadenant were given both alone and in combination without the addition of L-Dopa, and the antiparkinsonian efficacy of the treatments was assessed in a primate model of PD. RESULTS: When compared to the drugs tested alone, the drug combination led to a significant increase of motor activity and an improvement of motor disability in MPTP-treated marmosets. In addition, the motor restoration brought about by the combination was almost completely devoid of dyskinesia. Interestingly, treated primates were not overstimulated, but were able to move normally when motivated by the exploration of novel objects. CONCLUSION: We have demonstrated in a primate model that, the "Radiprodil/Tozadenant" combination significantly improves motor activity, extending previous results obtained in unilaterally lesioned 6-OHDA-rats. The strength of the preclinical data accumulated so far suggests that the use of such an A2A and NR2B antagonist combination could bring significant motor improvement to PD patients, without inducing the motor complications induced by L-Dopa therapy. Although encouraging, these preclinical data need to be confirmed in the clinic.


Subject(s)
Antiparkinson Agents/pharmacology , Benzothiazoles/pharmacology , MPTP Poisoning/drug therapy , Motor Activity/drug effects , Receptors, Adenosine A2/genetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Callithrix , Drug Administration Schedule , Drug Combinations , Drug Evaluation, Preclinical , Drug Synergism , Dyskinesia, Drug-Induced/prevention & control , Female , Gene Expression , MPTP Poisoning/genetics , MPTP Poisoning/metabolism , MPTP Poisoning/physiopathology , Male , Motor Activity/physiology , Receptors, Adenosine A2/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Treatment Outcome
14.
Neurology ; 89(5): 432-438, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28679598

ABSTRACT

OBJECTIVE: To investigate whether Mucuna pruriens (MP), a levodopa-containing leguminous plant growing in all tropical areas worldwide, may be used as alternative source of levodopa for indigent individuals with Parkinson disease (PD) who cannot afford long-term therapy with marketed levodopa preparations. METHODS: We investigated efficacy and safety of single-dose intake of MP powder from roasted seeds obtained without any pharmacologic processing. Eighteen patients with advanced PD received the following treatments, whose sequence was randomized: (1) dispersible levodopa at 3.5 mg/kg combined with the dopa-decarboxylase inhibitor benserazide (LD+DDCI; the reference treatment); (2) high-dose MP (MP-Hd; 17.5 mg/kg); (3) low-dose MP (MP-Ld; 12.5 mg/kg); (4) pharmaceutical preparation of LD without DDCI (LD-DDCI; 17.5 mg/kg); (5) MP plus benserazide (MP+DDCI; 3.5 mg/kg); (6) placebo. Efficacy outcomes were the change in motor response at 90 and 180 minutes and the duration of on state. Safety measures included any adverse event (AE), changes in blood pressure and heart rate, and the severity of dyskinesias. RESULTS: When compared to LD+DDCI, MP-Ld showed similar motor response with fewer dyskinesias and AEs, while MP-Hd induced greater motor improvement at 90 and 180 minutes, longer ON duration, and fewer dyskinesias. MP-Hd induced less AEs than LD+DDCI and LD-DDCI. No differences in cardiovascular response were recorded. CONCLUSION: Single-dose MP intake met all noninferiority efficacy and safety outcome measures in comparison to dispersible levodopa/benserazide. Clinical effects of high-dose MP were similar to levodopa alone at the same dose, with a more favorable tolerability profile. CLINICALTRIALSGOV IDENTIFIER: NCT02680977.


Subject(s)
Antiparkinson Agents/therapeutic use , Mucuna , Parkinson Disease/drug therapy , Phytotherapy , Antiparkinson Agents/adverse effects , Antiparkinson Agents/pharmacokinetics , Benserazide/adverse effects , Benserazide/therapeutic use , Blood Pressure/drug effects , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Dyskinesia, Drug-Induced , Female , Heart Rate/drug effects , Humans , Levodopa/adverse effects , Levodopa/pharmacokinetics , Levodopa/therapeutic use , Male , Middle Aged , Motor Activity/drug effects , Phytotherapy/adverse effects , Powders , Seeds , Treatment Outcome
15.
Cochrane Database Syst Rev ; 6: CD012217, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28657646

ABSTRACT

BACKGROUND: Wendan decoction (WDD) is one of the classical Chinese herb formulas used for psychotic symptoms. It is thought to be safe, accessible and inexpensive. OBJECTIVES: To investigate the effects of WDD for treatment of people with schizophrenia or schizophrenia-like illness compared with placebo, antipsychotic drugs and other interventions for outcomes of clinical importance. SEARCH METHODS: We searched the Cochrane Schizophrenia Group's Trials Register (February 2016), which is based on regular searches of CINAHL, BIOSIS, AMED, Embase, PubMed, MEDLINE, PsycINFO, China biomedical databases group (SinoMed, CNKI, VIP, Wanfang) and clinical trials registries. There are no language, date, document type, or publication status limitations for inclusion of records in the register. We also inspected references of identified studies and contacted relevant authors for additional information. SELECTION CRITERIA: Randomised controlled trials with useable data comparing WDD with antipsychotics, placebo or other interventions for people with schizophrenia. DATA COLLECTION AND ANALYSIS: We extracted data independently. For binary outcomes, we calculated risk ratios (RR) and 95% confidence intervals (CIs), on an intention-to-treat basis. For continuous data, we estimated mean differences (MD) between groups and their 95% CIs. We employed a random-effect model for analyses. We assessed risk of bias for included studies and created 'Summary of findings' tables using GRADE. MAIN RESULTS: We included 15 randomised trials (1437 participants) of WDD for schizophrenia. There was a high risk of performance bias within the trials but overall, risk for selection, attrition and reporting bias was low or unclear.Data showed WDD improved the short-term global state of participants compared with placebo or no treatment (1 RCT n = 72, RR 0.53, 95% CI 0.39 to 0.73, low-quality evidence).When WDD was compared with antipsychotic drugs, such as chlorpromazine or risperidone, no difference in short-term global state of participants was observed (2 RCTs n = 140, RR 1.18 95% CI 0.98 to 1.43, moderate-quality evidence) and mental state (total endpoint Positive and Negative Syndrome Scale (PANSS): 2 RCTs, n = 140, MD 0.84, 95% CI -4.17 to 5.84, low-quality evidence). However, WDD was associated with fewer people experiencing extrapyramidal effects (EPS) compared with other treatments (2 RCTs 0/70 versus 47/70, n = 140, RR 0.02, 95% CI 0.00 to 0.15, moderate-quality evidence).WDD is often used as an add-on intervention alongside antipsychotics. When WDD + antipsychotic was compared to antipsychotic alone, the combination group had better global state (short-term results, 6 RCTs, n = 684, RR 0.60, 95% CI 0.50 to 0.72, moderate-quality evidence) and mental state (short-term total endpoint PANSS: 5 RCTs, n = 580, MD -11.64, 95% CI -13.33 to - 9.94, low-quality evidence), fewer people with EPS (2 RCTs n = 308, RR 0.46, 95% CI 0.30 to 0.70, moderate-quality evidence) and reduction of the mean use of risperidone (1 RCT n = 107, MD -0.70, 95% CI -0.87 to -0.53, low-quality evidence). But, there was no effect on weight gain (1 RCT n = 108, RR 0.50, 95% CI 0.20 to 1.24, low-quality evidence).When WDD + low-dose antipsychotic was compared with normal-dose antipsychotic alone, the combination again showed benefits for short-term global state (7 RCTs n = 522, RR 0.69, 95% CI 0.51 to 0.93, moderate-quality evidence), mental state (total endpoint PANSS: 4 RCTs n = 250, MD -9.53, 95% CI -17.82 to -1.24, low-quality evidence), and fewer participants with EPS (3 RCTS n = 280, RR 0.29, 95% CI 0.16 to 0.51, moderate-quality evidence).Across all comparisons, we found no data on outcomes directly reporting quality of life, hospital service use and economics. AUTHORS' CONCLUSIONS: Limited evidence suggests that WDD may have some positive short-term antipsychotic global effects compared to placebo or no treatment. However when WDD was compared with other antipsychotics there was no effect on global or mental state, but WDD was associated with fewer adverse effects. When WDD was combined with an antipsychotic, positive effects were found for global and mental state and the combination caused fewer adverse effects. The available evidence is not high quality. Better designed large studies are needed to fully and fairly test the effects of WDD for people with schizophrenia.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Schizophrenia/drug therapy , Antipsychotic Agents/therapeutic use , Chlorpromazine/therapeutic use , Drug Therapy, Combination , Drugs, Chinese Herbal/adverse effects , Dyskinesia, Drug-Induced/etiology , Humans , Patient Satisfaction , Quality of Life , Randomized Controlled Trials as Topic , Risperidone/therapeutic use
16.
BMC Complement Altern Med ; 17(1): 220, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28424060

ABSTRACT

BACKGROUND: Although the dopamine precursor L-3, 4-dihydroxyphenylalanine ( l -dopa) remains the gold standard pharmacological therapy for patients with Parkinson's disease (PD), long-term treatment with this drug has been known to result in several adverse effects, including l -dopa-induced dyskinesia (LID). Recently, our group reported that KD5040, a modified herbal remedy, had neuroprotective effects in both in vitro and in vivo models of PD. Thus, the present study investigated whether KD5040 would have synergistic effects with l -dopa and antidyskinetic effects caused by l -dopa as well. METHODS: The effects of KD5040 and l -dopa on motor function, expression levels of substance P (SP) and enkephalin (ENK) in the basal ganglia, and glutamate content in the motor cortex were assessed using behavioral assays, immunohistochemistry, Western blot analyses, and liquid chromatography tandem mass spectrometry in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In addition, the antidyskinetic effects of KD5040 on pathological movements triggered by l -dopa were investigated by testing abnormal involuntary movements (AIMs) and measuring the activations of FosB, cAMP-dependent phosphor protein of 32 kDa (DARPP-32), extracellular signal-regulated kinases (ERK), and cAMP response element-binding (CREB) protein in the striatum. RESULTS: KD5040 synergistically improved the motor function when low-dose l -dopa (LL) was co-administered. In addition, it significantly reversed MPTP-induced lowering of SP, improved ENK levels in the basal ganglia, and ameliorated abnormal reduction in glutamate content in the motor cortex. Furthermore, KD5040 significantly lowered AIMs and controlled abnormal levels of striatal FosB, pDARPP-32, pERK, and pCREB induced by high-dose l -dopa. CONCLUSIONS: KD5040 lowered the effective dose of l -dopa and alleviated LID. These findings suggest that KD5040 may be used as an adjunct therapy to enhance the efficacy of l -dopa and alleviate its adverse effects in patients with PD.


Subject(s)
Brain/drug effects , Dyskinesia, Drug-Induced/prevention & control , Levodopa/therapeutic use , Magnoliopsida , Parkinson Disease/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Brain/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Dyskinesia, Drug-Induced/etiology , Enkephalins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Levodopa/administration & dosage , Levodopa/adverse effects , Levodopa/pharmacology , Male , Mice, Inbred C57BL , Movement , Parkinson Disease/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Substance P/metabolism
17.
Phytomedicine ; 23(13): 1653-1660, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27823630

ABSTRACT

BACKGROUND: Tardive dyskinesia (TD) is a serious side effect of long-term administration of typical neuroleptics, such as haloperidol. The pathophysiology of TD remains unclear, but the experimental evidence suggests that free radical-induced neuronal apoptosis in the basal ganglia may play an important role. PURPOSE: This study was to investigate changes in Bax and Bcl-2 expression levels in TD-associated brain regions and the effects of the antioxidant EGb761 on Bax and Bcl-2 levels in an animal model of TD. METHODS: Thirty-two rats were randomly divided into four study groups: saline control (saline), haloperidol-alone (haloperidol), EGb761-haloperidol (EGb), and alpha-tocopherol-haloperidol (vitamin E). Rats were treated with daily intraperitoneal haloperidol injections (2 mg/kg/day) for 5 weeks. EGb761 (50 mg/kg/day) and alpha-tocopherol (20 mg/kg/day) were then administered for another 5 weeks during the withdrawal period. Behavioral assessments were performed, and Bax and Bcl-2 protein expression levels were immunohistochemically analyzed in four brain regions, including the prefrontal cortex, striatum, substantia nigra, and globus pallidum. RESULTS: We found that increased vacuous chewing movements (VCMs) were associated with increased proapoptotic Bax protein expression, decreased antiapoptotic Bcl-2 protein expression, and an increased Bax/Bcl-2 ratio. EGb761 and alpha-tocopherol treatment reversed the increase in VCMs, decreased Bax expression, increased Bcl-2 expression, and decreased the Bax/Bcl-2 ratio. CONCLUSIONS: These results demonstrate that long-term haloperidol administration may affect Bcl-2 protein family expression and promote neuronal apoptosis in the basal ganglia. In combination with their antioxidant capacity, EGb761 and alpha-tocopherol's antiapoptotic effects through Bcl-2 might account for the symptom improvement observed in haloperidol-induced TD rats.


Subject(s)
Brain/drug effects , Dyskinesia, Drug-Induced/drug therapy , Haloperidol/adverse effects , Plant Extracts/pharmacology , alpha-Tocopherol/pharmacology , Animals , Antioxidants/pharmacology , Antipsychotic Agents/adverse effects , Brain/metabolism , Disease Models, Animal , Dyskinesia, Drug-Induced/metabolism , Ginkgo biloba , Injections, Intraperitoneal , Male , Mastication/drug effects , Plant Extracts/administration & dosage , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism
18.
J Clin Psychopharmacol ; 36(6): 572-579, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27755159

ABSTRACT

OBJECTIVES: An herbal preparation called peony-glycyrrhiza decoction (PGD) may have the potential in reducing antipsychotic-related hyperprolactinemia (hyperPRL). This double-blind, randomized placebo-controlled study aimed to reevaluate the efficacy of PGD against antipsychotic-related hyperPRL. METHODS: Ninety-nine schizophrenic women who were under antipsychotic therapy and had symptomatic hyperPRL were randomly assigned to additional treatment with placebo (n = 50) or PGD (n = 49, 45 g/d) for 16 weeks. The severity of hyperPRL, psychosis, and abnormal involuntary movements was assessed at baseline and weeks 8 and 16 using standard instruments including the Prolactin Related Adverse Event Questionnaire. Blood levels of prolactin (PRL) and related pituitary and sex hormones were measured at the same time points. RESULTS: Peony-glycyrrhiza decoction treatment produced a significantly greater reduction of the Prolactin Related Adverse Event Questionnaire score at weeks 8 and 16 and a greater improvement on abnormal involuntary movements at end point compared with placebo, without altering the severity of psychosis. The group treated with PGD showed significantly higher proportion of having overall improvement on hyperPRL symptoms (χ = 4.010, P = 0.045) and menstrual resumption (χ = 4.549, P = 0.033) at week 8 than placebo. Serum PRL levels were similar in the 2 groups. CONCLUSIONS: Peony-glycyrrhiza decoction is effective in reducing antipsychotic-related hyperPRL and abnormal involuntary movement symptoms, but no reduction in blood PRL concentrations was observed. The underlying mechanisms of PGD's effects need further investigation (trial registration of NCT01852331 at www.clinicaltrials.gov).


Subject(s)
Antipsychotic Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Glycyrrhiza , Hyperprolactinemia/drug therapy , Outcome Assessment, Health Care , Paeonia , Plant Extracts/pharmacology , Schizophrenia/drug therapy , Adult , Double-Blind Method , Female , Humans , Hyperprolactinemia/blood , Hyperprolactinemia/chemically induced , Plant Extracts/administration & dosage , Schizophrenia/blood , Treatment Outcome
19.
Neurochem Res ; 41(12): 3386-3398, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27752803

ABSTRACT

The symptoms of Parkinsonism and oral dyskinesia have been showing to be induced by neuroleptics that significantly affect its clinical use. In this study, we investigate whether Nigella sativa-oil (NS) (black cumin seeds)-a traditional medicine used for the seizure treatment in eastern country-may reduce the haloperidol (HAL)-induced extrapyramidal symptoms (EPS)-like behavior in rats. After combine treatment with HAL (1 mg/kg) on NS (0.2 ml/rat), rats displayed a significant decreased EPS-like behavior including movement disorders and oral dyskinesia as compared to controls. Immunohistochemical analysis indicates that NS reduced astrogliosis in caudate and accumbens nuclei. These results suggest that NS may consider as an adjunct to antipsychotics to reduce the EPS-like side effect.


Subject(s)
Antipsychotic Agents/adverse effects , Basal Ganglia Diseases/drug therapy , Dyskinesia, Drug-Induced/drug therapy , Haloperidol/adverse effects , Nigella sativa/chemistry , Plant Oils/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Basal Ganglia Diseases/chemically induced , Basal Ganglia Diseases/pathology , Caudate Nucleus/drug effects , Caudate Nucleus/pathology , Dyskinesia, Drug-Induced/pathology , Gliosis/chemically induced , Gliosis/drug therapy , Gliosis/pathology , Male , Motor Activity/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/pathology , Rats, Wistar , Tardive Dyskinesia/drug therapy , Tardive Dyskinesia/pathology
20.
Neuropharmacology ; 110(Pt A): 48-58, 2016 11.
Article in English | MEDLINE | ID: mdl-27424102

ABSTRACT

Istradefylline (KW-6002), an adenosine A2A receptor antagonist, is used adjunct with optimal doses of L-3,4-dihydroxyphenylalanine (l-DOPA) to extend on-time in Parkinson's disease (PD) patients experiencing motor fluctuations. Clinical application of istradefylline for the management of other l-DOPA-induced complications, both motor and non-motor related (i.e. dyskinesia and cognitive impairments), remains to be determined. In this study, acute effects of istradefylline (60-100 mg/kg) alone, or with optimal and sub-optimal doses of l-DOPA, were evaluated in two monkey models of PD (i) the gold-standard 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaque model of parkinsonian and dyskinetic motor symptoms and (ii) the chronic low dose (CLD) MPTP-treated macaque model of cognitive (working memory and attentional) deficits. Behavioural analyses in l-DOPA-primed MPTP-treated macaques showed that istradefylline alone specifically alleviated postural deficits. When combined with an optimal l-DOPA treatment dose, istradefylline increased on-time, enhanced therapeutic effects on bradykinesia and locomotion, but exacerbated dyskinesia. Istradefylline treatment at specific doses with sub-optimal l-DOPA specifically alleviated bradykinesia. Cognitive assessments in CLD MPTP-treated macaques showed that the attentional and working memory deficits caused by l-DOPA were lowered after istradefylline administration. Taken together, these data support a broader clinical use of istradefylline as an adjunct treatment in PD, where specific treatment combinations can be utilised to manage various l-DOPA-induced complications, which importantly, maintain a desired anti-parkinsonian response.


Subject(s)
Cognition Disorders/drug therapy , Dyskinesia, Drug-Induced/drug therapy , Levodopa/administration & dosage , MPTP Poisoning/drug therapy , Purines/administration & dosage , Adenosine A2 Receptor Antagonists/administration & dosage , Animals , Cognition Disorders/physiopathology , Cognition Disorders/psychology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drug Therapy, Combination , Dyskinesia, Drug-Induced/physiopathology , Dyskinesia, Drug-Induced/psychology , Female , Hypokinesia/drug therapy , Hypokinesia/physiopathology , Hypokinesia/psychology , Levodopa/toxicity , MPTP Poisoning/physiopathology , MPTP Poisoning/psychology , Macaca fascicularis , Motor Skills Disorders/drug therapy , Motor Skills Disorders/physiopathology , Motor Skills Disorders/psychology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL