Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Nutr ; 154(2): 381-394, 2024 02.
Article in English | MEDLINE | ID: mdl-38141772

ABSTRACT

BACKGROUND: Recent studies have demonstrated that copper (Cu) plays an important role in the progression of tumor diseases. Metastasis associated with colon cancer protein 1 (MACC1) promotes the transcription and expression of various tumor-related genes. Cytochrome c oxidase (COX) 19, present in the cytoplasm and intermembrane space of mitochondria, may transport Cu within the mitochondria. However, the mechanism through which MACC1 regulates the Cu homeostasis mediated by COX19 remains unclear. OBJECTIVES: The aim of this study was to elucidate the mechanism through which MACC1 initiates the transcription and expression of COX19, and promotes malignant behavior in tumor cells. METHODS: Immunohistochemistry, western blotting, and real-time polymerase chain reaction (PCR) analyses were conducted to analyze the expression of MACC1 and COX19 proteins and genes in tumor and normal tissues. RNA-chromatin immunoprecipitation was used to detect the transcriptional initiation of COX19 by MACC1. The effects of MACC1 and COX19 on mitochondrial activity were determined using an ATP assay kit and Cytochrome c Oxidase Assay Kit. A Cell Counting Kit-8 kit was used to detect the effect of high-dose Cu or overexpression of MACC1 and COX19 on tumor cell proliferation. A xenograft mouse model was used to analyze the effect of the COX19 overexpression on the malignant behavior of the tumors. RESULTS: Cu enhanced the proliferation, invasion, and migration and inhibited apoptosis of SW480 cells. MACC1 was highly expressed in colorectal cancer tissues and activated the expression of COX19 by binding to its promoter region of COX19. The overexpression of COX19 increased mitochondrial Cu content and enhanced the activity of mitochondrial COX and ATP content, and inhibited apoptosis, promoted tumor growth of mice. CONCLUSIONS: Our results indicate that COX19 functions as a target gene of MACC1 and regulates mitochondrial activity and promotes the progression of colorectal cancer. MACC1/COX19 may provide a novel therapeutic target for colorectal cancer.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Copper/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Expression Regulation, Neoplastic , Mitochondria/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
2.
J Mol Biol ; 435(23): 168317, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37858707

ABSTRACT

Ferredoxins (FDXs) are evolutionarily conserved iron-sulfur (Fe-S) proteins that function as electron transfer proteins in diverse metabolic pathways. Mammalian mitochondria contain two ferredoxins, FDX1 and FDX2, which share a high degree of structural similarity but exhibit different functionalities. Previous studies have established the unique role of FDX2 in the biogenesis of Fe-S clusters; however, FDX1 seems to have multiple targets in vivo, some of which are only recently emerging. Using CRISPR-Cas9-based loss-of-function studies in rat cardiomyocyte cell line, we demonstrate an essential requirement of FDX1 in mitochondrial respiration and energy production. We attribute reduced mitochondrial respiration to a specific decrease in the abundance and assembly of cytochrome c oxidase (CcO), a mitochondrial heme-copper oxidase and the terminal enzyme of the mitochondrial respiratory chain. FDX1 knockout cells have reduced levels of copper and heme a/a3, factors that are essential for the maturation of the CcO enzyme complex. Copper supplementation failed to rescue CcO biogenesis, but overexpression of heme a synthase, COX15, partially rescued COX1 abundance in FDX1 knockout cells. This finding links FDX1 function to heme a biosynthesis, and places it upstream of COX15 in CcO biogenesis like its ancestral yeast homolog. Taken together, our work has identified FDX1 as a critical CcO biogenesis factor in mammalian cells.


Subject(s)
Electron Transport Complex IV , Ferredoxins , Animals , Electron Transport Complex IV/biosynthesis , Electron Transport Complex IV/genetics , Ferredoxins/genetics , Ferredoxins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats , Cell Line , Myocytes, Cardiac , Copper/metabolism
3.
Genetics ; 221(4)2022 07 30.
Article in English | MEDLINE | ID: mdl-35666203

ABSTRACT

Cytochrome c oxidase (CcO) is a multimeric copper-containing enzyme of the mitochondrial respiratory chain that powers cellular energy production. The two core subunits of cytochrome c oxidase, Cox1 and Cox2, harbor the catalytic CuB and CuA sites, respectively. Biogenesis of each copper site occurs separately and requires multiple proteins that constitute the mitochondrial copper delivery pathway. Currently, the identity of all the members of the pathway is not known, though several evolutionarily conserved twin CX9C motif-containing proteins have been implicated in this process. Here, we performed a targeted yeast suppressor screen that placed Coa4, a twin CX9C motif-containing protein, in the copper delivery pathway to the Cox1 subunit. Specifically, we show that overexpression of Cox11, a copper metallochaperone required for the formation of CuB site, can restore Cox1 abundance, cytochrome c oxidase assembly, and mitochondrial respiration in coa4Δ cells. This rescue is dependent on the copper-coordinating cysteines of Cox11. The abundance of Coa4 and Cox11 in mitochondria is reciprocally regulated, further linking Coa4 to the CuB site biogenesis. Additionally, we find that coa4Δ cells have reduced levels of copper and exogenous copper supplementation can partially ameliorate its respiratory-deficient phenotype, a finding that connects Coa4 to cellular copper homeostasis. Finally, we demonstrate that human COA4 can replace the function of yeast Coa4 indicating its evolutionarily conserved role. Our work provides genetic evidences for the role of Coa4 in the copper delivery pathway to the CuB site of cytochrome c oxidase.


Subject(s)
Electron Transport Complex IV , Saccharomyces cerevisiae , Copper , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/metabolism
4.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35216443

ABSTRACT

Nuclear-encoded Atp23 was previously shown to have dual functions, including processing the yeast Atp6 precursor and assisting the assembly of yeast mitochondrial ATP synthase. However, it remains unknown whether there are genes functionally complementary to ATP23 to rescue atp23 null mutant. In the present paper, we screen and characterize three revertants of atp23 null mutant and reveal a T1121G point mutation in the mitochondrial gene COX1 coding sequence, which leads to Val374Gly mutation in Cox1, the suppressor in the revertants. This was verified further by the partial restoration of mitochondrial ATP synthase assembly in atp23 null mutant transformed with exogenous hybrid COX1 T1121G mutant plasmid. The predicted tertiary structure of the Cox1 p.Val374Gly mutation showed no obvious difference from wild-type Cox1. By further chase labeling with isotope [35S]-methionine, we found that the stability of Atp6 of ATP synthase increased in the revertants compared with the atp23 null mutant. Taking all the data together, we revealed that the T1121G point mutation of mitochondrial gene COX1 could partially restore the unassembly of mitochondrial ATP synthase in atp23 null mutant by increasing the stability of Atp6. Therefore, this study uncovers a gene that is partially functionally complementary to ATP23 to rescue ATP23 deficiency, broadening our understanding of the relationship between yeast the cytochrome c oxidase complex and mitochondrial ATP synthase complex.


Subject(s)
Electron Transport Complex IV/genetics , Genes, Mitochondrial/genetics , Metalloproteases/genetics , Mitochondria/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Point Mutation/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Adenosine Triphosphate/genetics , Amino Acid Sequence , DNA, Mitochondrial/genetics , Loss of Function Mutation/genetics
5.
PLoS One ; 17(1): e0262122, 2022.
Article in English | MEDLINE | ID: mdl-35025933

ABSTRACT

Due to the lack of visible barriers to gene flow, it was a long-standing assumption that marine coastal species are widely distributed, until molecular studies revealed geographically structured intraspecific genetic differentiation in many taxa. Historical events of sea level changes during glacial periods are known to have triggered sequential disjunctions and genetic divergences among populations, especially of coastal organisms. The Parasesarma bidens species complex so far includes three named plus potentially cryptic species of estuarine brachyuran crabs, distributed along East to Southeast Asia. The aim of the present study is to address phylogeography and uncover real and hidden biological diversity within this complex, by revealing the underlying genetic structure of populations and species throughout their distribution ranges from Japan to West Papua, with a comparison of mitochondrial COX1 and 16S rRNA gene sequences. Our results reveal that the P. bidens species complex consists of at least five distinct clades, resulting from four main cladogenesis events during the mid to late Pleistocene. Among those clades, P. cricotum and P. sanguimanus are recovered as monophyletic taxa. Geographically restricted endemic clades are encountered in southeastern Indonesia, Japan and China respectively, whereas the Philippines and Taiwan share two clades. As individuals of the Japanese clade can also be found in Taiwan, we provide evidence of a third lineage and the occurrence of a potential cryptic species on this island. Ocean level retreats during Pleistocene ice ages and present oceanic currents appear to be the main triggers for the divergences of the five clades that are here addressed as the P. bidens complex. Secondary range expansions converted Taiwan into the point of maximal overlap, sharing populations with Japan and the Philippines, but not with mainland China.


Subject(s)
Biodiversity , Brachyura/classification , Animals , Brachyura/genetics , China , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Fossils/history , Genetics, Population , History, Ancient , Indonesia , Japan , Philippines , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Taiwan
6.
PLoS One ; 16(9): e0257031, 2021.
Article in English | MEDLINE | ID: mdl-34550976

ABSTRACT

Psyllids, also known as jumping plant lice, are phloem feeding Hemiptera that often show a strict species-specific relationship with their host plants. When psyllid-plant associations involve economically important crops, this may lead to the recognition of a psyllid species as an agricultural or horticultural pest. The Australian endemic tea tree, Melaleuca alternifolia (Maiden & Betche) Cheel., has been used for more than a century to extract essential oils and, long before that, as a traditional medicine by Indigenous Australian people. Recently, a triozid species has been found to damage the new growth of tea trees both in Queensland and New South Wales, raising interest around this previously undocumented pest. Furthermore, adults of the same species were also collected from Citrus plantations, leading to potential false-positive records of the exotic pest Trioza erytreae (Del Guercio 1918), the African Citrus psyllid. Here we describe for the first time Trioza melaleucae Martoni sp. nov. providing information on its distribution, host plant associations and phylogenetic relationships to other Trioza species. This work enables both morphological and molecular identification of this new species, allowing it to be recognized and distinguished for the first time from exotic pests as well as other Australian native psyllids. Furthermore, the haplotype network analysis presented here suggests a close relationship between Trioza melaleucae and the other Myrtaceae-feeding Trioza spp. from Australia, New Zealand, and Taiwan.


Subject(s)
Hemiptera/anatomy & histology , Melaleuca/parasitology , Animals , DNA/genetics , Electron Transport Complex IV/genetics , Female , Haplotypes/genetics , Hemiptera/genetics , Host-Parasite Interactions , Larva/anatomy & histology , Male , Species Specificity , Wings, Animal/anatomy & histology
7.
Genes (Basel) ; 12(2)2021 02 11.
Article in English | MEDLINE | ID: mdl-33670341

ABSTRACT

Mitochondrial disorders, although heterogeneous, are traditionally described as conditions characterized by encephalomyopathy, hypotonia, and progressive postnatal organ failure. Here, we provide a systematic review of Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA), a rare, unconventional mitochondrial disorder which presents as a developmental disease; its main clinical features include microphthalmia with different degrees of severity, linear skin lesions, and central nervous system malformations. The molecular basis of this disorder has been elusive for several years. Mutations were eventually identified in three X-linked genes, i.e., HCCS, COX7B, and NDUFB11, which are all endowed with defined roles in the mitochondrial respiratory chain. A peculiar feature of this condition is its inheritance pattern: X-linked dominant male-lethal. Only female or XX male individuals can be observed, implying that nullisomy for these genes is incompatible with normal embryonic development in mammals. All three genes undergo X-inactivation that, according to our hypothesis, may contribute to the extreme variable expressivity observed in this condition. We propose that mitochondrial dysfunction should be considered as an underlying cause in developmental disorders. Moreover, LSDMCA should be taken into consideration by clinicians when dealing with patients with microphthalmia with or without associated skin phenotypes.


Subject(s)
Genetic Diseases, X-Linked/genetics , Microphthalmos/genetics , Mitochondrial Diseases/genetics , Skin Abnormalities/genetics , Chromosomes, Human, X/genetics , Electron Transport Complex I/genetics , Electron Transport Complex IV/genetics , Female , Genetic Diseases, X-Linked/pathology , Humans , Lyases/genetics , Male , Microphthalmos/pathology , Mitochondrial Diseases/pathology , Mutation/genetics , Skin/pathology , Skin Abnormalities/pathology
8.
Sci Rep ; 11(1): 6257, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33739020

ABSTRACT

We developed a method that can detect each animal species of origin for crude drugs derived from multiple animal species based on massively parallel sequencing analysis of mitochondrial genes. The crude drugs derived from animals investigated in this study were Cervi Parvum Cornu and Trogopterorum feces, which are derived from a mix of different animal species, two chopped cicada sloughs, and two commercial Kampo drugs. The mitochondrial 12S rRNA, 16S rRNA, and cytochrome oxidase subunit I gene regions were amplified and sequenced using MiSeq. The ratios of haplotype to total number of sequences reads were calculated after sequence extraction and trimming. Haplotypes that exceeded the threshold were defined as positive haplotypes, which were compared with all available sequences using BLAST. In the Cervi Parvum Cornu and Trogopterorum feces samples, the haplotype ratios corresponded roughly to the mixture ratios, although there was a slight difference from mixture ratios depending on the gene examined. This method could also roughly estimate the compositions of chopped cicada sloughs and Kampo drugs. This analysis, whereby the sequences of several genes are elucidated, is better for identifying the included animal species. This method should be useful for quality control of crude drugs and Kampo drugs.


Subject(s)
Biological Products/analysis , Drugs, Chinese Herbal/analysis , Guinea Pigs/genetics , High-Throughput Nucleotide Sequencing/methods , Medicine, Kampo , Ruminants/genetics , Sciuridae/genetics , Sequence Analysis, DNA/methods , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Feces/chemistry , Genes, Mitochondrial , Haplotypes , Hemiptera/chemistry , Hemiptera/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction/methods
9.
Nat Chem Biol ; 17(6): 703-710, 2021 06.
Article in English | MEDLINE | ID: mdl-33723432

ABSTRACT

The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III2+IV). The association of complexes I, III and IV into the respirasome is regulated by unknown mechanisms. Here, we designed a nanoluciferase complementation reporter for complex III and IV proximity to determine in vivo respirasome levels. In a chemical screen, we found that inhibitors of the de novo pyrimidine synthesis enzyme dihydroorotate dehydrogenase (DHODH) potently increased respirasome assembly and activity. By-passing DHODH inhibition via uridine supplementation decreases SC assembly by altering mitochondrial phospholipid composition, specifically elevated peroxisomal-derived ether phospholipids. Cell growth rates upon DHODH inhibition depend on ether lipid synthesis and SC assembly. These data reveal that nucleotide pools signal to peroxisomes to modulate synthesis and transport of ether phospholipids to mitochondria for SC assembly, which are necessary for optimal cell growth in conditions of nucleotide limitation.


Subject(s)
Electron Transport , Nucleotides/chemistry , Peroxisomes/chemistry , Phospholipids/chemistry , Dihydroorotate Dehydrogenase , Electron Transport/genetics , Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , High-Throughput Nucleotide Sequencing , Humans , Lipids/biosynthesis , Metabolomics , Mitochondria/metabolism , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxygen Consumption , Phospholipid Ethers , Uridine/metabolism
10.
J Biol Chem ; 296: 100485, 2021.
Article in English | MEDLINE | ID: mdl-33662401

ABSTRACT

Copper is essential for the activity and stability of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Loss-of-function mutations in genes required for copper transport to CcO result in fatal human disorders. Despite the fundamental importance of copper in mitochondrial and organismal physiology, systematic identification of genes that regulate mitochondrial copper homeostasis is lacking. To discover these genes, we performed a genome-wide screen using a library of DNA-barcoded yeast deletion mutants grown in copper-supplemented media. Our screen recovered a number of genes known to be involved in cellular copper homeostasis as well as genes previously not linked to mitochondrial copper biology. These newly identified genes include the subunits of the adaptor protein 3 complex (AP-3) and components of the cellular pH-sensing pathway Rim20 and Rim21, both of which are known to affect vacuolar function. We find that AP-3 and Rim mutants exhibit decreased vacuolar acidity, which in turn perturbs mitochondrial copper homeostasis and CcO function. CcO activity of these mutants could be rescued by either restoring vacuolar pH or supplementing growth media with additional copper. Consistent with these genetic data, pharmacological inhibition of the vacuolar proton pump leads to decreased mitochondrial copper content and a concomitant decrease in CcO abundance and activity. Taken together, our study uncovered novel genetic regulators of mitochondrial copper homeostasis and provided a mechanism by which vacuolar pH impacts mitochondrial respiration through copper homeostasis.


Subject(s)
Copper/metabolism , Electron Transport Complex IV/metabolism , Mitochondria/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Culture Media , Electron Transport Complex IV/genetics , Genome, Fungal , High-Throughput Nucleotide Sequencing/methods , Homeostasis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Sequence Deletion
11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 31(8): 335-345, 2020 12.
Article in English | MEDLINE | ID: mdl-32896188

ABSTRACT

Seahorses are a charismatic group of fish that have high economic value for their unique appearance and important medicinal values. They were heavily traded as traditional Chinese medicines. Authenticating the zoological origin of medicinal seahorses is very difficult because of their similar morphology. To study the identification characteristics of dried seahorse, and to provide a scientific basis for seahorse resource conservation and market supervision, 64 dried specimens from China's four major pharmaceutical markets were investigated based on morphology and COI sequences. Sixty-four COI sequences of 662 bp length revealed 43 unique haplotypes, which were divided into 12 main clades in both NJ and UPGMA phylogenetic trees. Eleven species including Hippocampus spinosissimus, H. barbouri, H. kuda, H. comes, H. histrix, H. trimaculatus, H. kelloggi, H. ingens, H. mohnikei, H. erectus and H. jayakari were clustered on different branches and showed respective monophyly. The results were confirmed by morphology and BLAST analysis. Hippocampus capensis and H. fuscus, which were clustered together in the phylogenetic tree, could be distinguished by different morphology. The morphological and molecular determination revealed 13 seahorse species in Chinese herbal markets. The method of DNA sequences analysis combined with morphological characteristics is conducive to accurately identify the zoological origin of commercial seahorses.


Subject(s)
Electron Transport Complex IV/genetics , Sequence Analysis, DNA/methods , Smegmamorpha/classification , Animals , Haplotypes , Medicine, Chinese Traditional , Phylogeny , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics
12.
J Clin Lipidol ; 14(5): 646-648, 2020.
Article in English | MEDLINE | ID: mdl-32800583

ABSTRACT

A 48-year-old man presented to our lipid clinic with statin intolerance and elevated serum creatine kinase levels, being affected by mitochondrial myopathy because of heteroplasmic mitochondrial DNA missense mutation in MTCO1 gene (m.7671T>A). He had just been treated with a coronary artery bypass 4 years before because of acute coronary syndrome, and he had consistently high levels of both low-density lipoprotein cholesterol and triglycerides. Dyslipidemia was successfully treated using 75 mg of alirocumab subcutaneously every 2 weeks, 10 mg of ezetimibe daily, 2 g of marine omega-3 fatty acids daily, and 145 mg of micronized fenofibrate every 2 days. Although muscle weakness persisted, myalgia did not reoccur and serum creatine kinase levels remained almost stable over the time.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Hyperlipidemias/drug therapy , Mitochondrial Myopathies/drug therapy , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Male , Middle Aged , Mitochondrial Myopathies/metabolism , Mitochondrial Myopathies/pathology , Mutation, Missense , Prognosis
13.
Neurotox Res ; 38(2): 461-477, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32394056

ABSTRACT

In this study, we aim to assess the phytomedicinal potential of perillyl alcohol (PA), a dietary monoterpenoid, in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). We observed that PA supplementation alleviated behavioural abnormalities such as loss of coordination, reduced rearing and motor asymmetry in lesioned animals. We also observed that PA-treated animals exhibited reduced oxidative stress, DNA fragmentation and caspase 3 activity indicating alleviation of apoptotic cell death. We found reduced mRNA levels of pro-apoptotic regulator BAX and pro-inflammatory mediators IL18 and TNFα in PA-treated animals. Further, PA treatment successfully increased mRNA and protein levels of Bcl2, mitochondrial biogenesis regulator PGC1α and tyrosine hydroxylase (TH) in lesioned animals. We observed that PA treatment blocked BAX and Drp1 translocation to mitochondria, an event often associated with the inception of apoptosis. Further, 6-OHDA exposure reduced expression of electron transport chain complexes I and IV, thereby disturbing energy metabolism. Conversely, expression levels of both complexes were upregulated with PA treatment in lesioned rats. Finally, we found that protein levels of Nrf2, the transcription factor responsible for antioxidant gene expression, were markedly reduced in cytosolic and nuclear fraction on 6-OHDA exposure, and PA increased expression of Nrf2 in both fractions. We believe that our data hints towards PA having the ability to provide cytoprotection in a hemiparkinsonian rat model through alleviation of motor deficits, oxidative stress, mitochondrial dysfunction and apoptosis.


Subject(s)
Enzyme Inhibitors/pharmacology , Mitochondria/drug effects , Monoterpenes/pharmacology , Movement/drug effects , Oxidative Stress/drug effects , Parkinsonian Disorders/metabolism , Animals , Behavior, Animal/drug effects , Caspase 3/drug effects , Caspase 3/metabolism , DNA Fragmentation/drug effects , Dynamins/drug effects , Dynamins/metabolism , Electron Transport Complex I/drug effects , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex IV/drug effects , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Mitochondria/metabolism , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Oxidopamine/toxicity , Parkinsonian Disorders/physiopathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Proto-Oncogene Proteins c-bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Rats , Sympatholytics/toxicity , Tyrosine 3-Monooxygenase/drug effects , Tyrosine 3-Monooxygenase/genetics , bcl-2-Associated X Protein/drug effects , bcl-2-Associated X Protein/metabolism
14.
Article in English | MEDLINE | ID: mdl-32148145

ABSTRACT

The Cicadellidae (Auchenorrhyncha: Hemiptera) are important agricultural, horticultural and ornamental pests. But it is very difficult to define nymphs and female adults using morphological characteristics. This research was aimed at understanding the variety of leafhoppers species and defining the prospective cause of the aster-yellow disease in China Aster, Marigold and Chrysanthemum. Two surveys were conducted in and around Pune, Maharashtra and Bengaluru, Karnataka between November 2016 and February 2017. The mitochondrial cytochrome oxidase subunit I (mtCOI) region marker was used in the species diagnosis and genetic diversity research. Through the use of mtCOI molecular marker eight different leafhoppers species were identified as Sogatella furcifera, Homalodisca insolita, Amrasca biguttula, Balclutha incise and Balclutha abdominalis and Japanagallia trifurcate. Whereas at genus level identified as Toya, Empoasca, Perkinsiella, Hishimonus, Tambocerus, Phaconeura, Curena, Psammotettix and Graphocophala species. These results are strongly corroborated with morphological identification. On the basis of multiple sequence alignment of the mtCOI gene, a species phylogenetic tree with the highest likelihood was drawn. All the leafhopper species clustered together in accordance with the species data collected from the database of the different geographic regions from the NCBI GenBank and Barcode of Life (BOLD). Such results suggest that it is important to use both molecular and morphological methods to ensure accurate identification of organisms. To conclude, this research contributes valuable knowledge to molecular biology and recognizes leafhopper species that serve as major phytoplasma vectors.


Subject(s)
Calendula/genetics , Chrysanthemum/genetics , DNA Barcoding, Taxonomic , Hemiptera/genetics , Plant Diseases/genetics , Animals , China , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Genome, Mitochondrial/genetics , Phylogeny
15.
Sci Rep ; 10(1): 2974, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076084

ABSTRACT

The Chinese cordyceps, a complex of the fungus Ophiocordyceps sinensis and its species-specific host insects, is also called "DongChongXiaCao" in Chinese. Habitat degradation in recent decades and excessive harvesting by humans has intensified its scarcity and increased the prices of natural populations. Some counterfeits are traded as natural Chinese cordyceps for profit, causing confusion in the marketplace. To promote the safe use of Chinese cordyceps and related products, a duplex PCR method for specifically identifying raw Chinese cordyceps and its primary products was successfully established. Chinese cordyceps could be precisely identified by detecting an internal transcribed spacer amplicon from O. sinensis and a cytochrome oxidase c subunit 1 amplicon from the host species, at a limit of detection as low as 32 pg. Eleven commercial samples were purchased and successfully tested to further verify that the developed duplex PCR method could be reliably used to identify Chinese cordyceps. It provides a new simple way to discern true commercial Chinese cordyceps from counterfeits in the marketplace. This is an important step toward achieving an authentication method for this Chinese medicine. The methodology and the developmental strategy can be used to authenticate other traditional Chinese medicinal materials.


Subject(s)
Cordyceps/genetics , Counterfeit Drugs/analysis , Drugs, Chinese Herbal/analysis , Fraud/prevention & control , Polymerase Chain Reaction , Animals , Cordyceps/chemistry , Counterfeit Drugs/chemistry , Counterfeit Drugs/economics , DNA, Fungal/isolation & purification , Drugs, Chinese Herbal/economics , Drugs, Chinese Herbal/standards , Electron Transport Complex IV/genetics , Fraud/economics , Genes, Fungal/genetics , Genes, Insect/genetics , Insect Proteins/genetics , Insecta/genetics , Insecta/microbiology
16.
J Nat Med ; 74(1): 275-281, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31493218

ABSTRACT

We evaluated whether the origins of crude drugs derived from arthropods and annelids could be identified using molecular biological techniques. DNA was extracted from 20 crude drugs prepared from different animals using a commercial kit with added phenol treatment. The target regions used to identify origin were the mitochondrial 16S ribosomal RNA (rRNA), 12S rRNA, and cytochrome oxidase subunit I (COI) gene regions. Extracted DNA was amplified by polymerase chain reaction, and then sequenced by the Sanger method. The aligned sequences were compared with all available sequences using BLAST to estimate the origins of the crude drugs. The origin of crude drugs used in this study could be estimated using this method. The COI region was the best for identifying origin among three regions examined, based on the success rate of PCR amplification and analysis. Moreover, the 12S rRNA region was also useful for origin identification, with the exception of the earthworm. However, the origin of some crude drugs could not be strictly identified due to matches to various species in all three regions. One likely cause was that the species of origin of a crude drug has not been registered in DNA databases. We found that even the same crude drug from the same pharmaceutical company had different origins by production lot or import source country. Therefore, this method is useful not only for DNA-based origin identification but also quality control of production lots.


Subject(s)
Annelida/chemistry , Arthropods/chemistry , Cell Extracts/chemistry , Electron Transport Complex IV/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal/genetics , Animals , Base Sequence , Cell Extracts/analysis , DNA/genetics , Phylogeny , Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA
17.
Cell Mol Life Sci ; 77(14): 2815-2838, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31583425

ABSTRACT

Biological effects of high fluence low-power (HFLP) lasers have been reported for some time, yet the molecular mechanisms procuring cellular responses remain obscure. A better understanding of the effects of HFLP lasers on living cells will be instrumental for the development of new experimental and therapeutic strategies. Therefore, we investigated sub-cellular mechanisms involved in the laser interaction with human hepatic cell lines. We show that mitochondria serve as sub-cellular "sensor" and "effector" of laser light non-specific interactions with cells. We demonstrated that despite blue and red laser irradiation results in similar apoptotic death, cellular signaling and kinetic of biochemical responses are distinct. Based on our data, we concluded that blue laser irradiation inhibited cytochrome c oxidase activity in electron transport chain of mitochondria. Contrary, red laser triggered cytochrome c oxidase excessive activation. Moreover, we showed that Bcl-2 protein inhibited laser-induced toxicity by stabilizing mitochondria membrane potential. Thus, cells that either overexpress or have elevated levels of Bcl-2 are protected from laser-induced cytotoxicity. Our findings reveal the mechanism how HFLP laser irradiation interfere with cell homeostasis and underscore that such laser irradiation permits remote control of mitochondrial function in the absence of chemical or biological agents.


Subject(s)
Electron Transport Complex IV/genetics , Electron Transport/radiation effects , Low-Level Light Therapy , Phototherapy , Apoptosis/radiation effects , Cell Survival/genetics , Cell Survival/radiation effects , Electron Transport/genetics , Gene Expression Regulation/radiation effects , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/radiation effects , Mitochondria/genetics , Mitochondria/radiation effects , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/radiation effects , Oxidation-Reduction/radiation effects , Reactive Oxygen Species/metabolism
18.
PLoS One ; 14(11): e0225513, 2019.
Article in English | MEDLINE | ID: mdl-31751435

ABSTRACT

Outbreaks of moon jellyfish Aurelia spp. are frequently reported from many parts of the world's coastal areas. Aurelia spp. canonically show a metagenetic life cycle in which planulae transform into sessile polyps, which can drastically increase in number through asexual reproduction. Therefore, their asexual reproduction has been recognized as one of the major causes of the outbreaks. Aurelia spp. also show direct development that lacks asexual reproduction during the polyp stage, which prevents us from understanding the mechanisms of its outbreaks. To clarify the seasonality of the metagenetic and direct-development life cycles of Aurelia sp. in Maizuru Bay, Japan, we conducted field observations and laboratory experiments throughout the year. Additionally, the two life cycle types were genetically analyzed to confirm that they belong to the single species Aurelia coerulea, which dominates in coastal waters in Japan. From July until October, Aurelia coerulea produced smaller eggs and planulae all of which developed into polyps. However, from December until May, larger eggs and planulae were produced and 90% of the planulae developed into planktonic ephyrae bypassing the sessile polyp stage. Our results demonstrated that a single species, A. coerulea, seasonally shifts between their two life cycle types at a water temperature threshold of 20°C in Maizuru Bay. The higher energy storage of larger planulae was suggested to enable the planulae to develop into ephyrae without external energy input through feeding during the polyp stage. The adaptive significances of the two life cycle types were also discussed.


Subject(s)
Electron Transport Complex IV/genetics , Scyphozoa/growth & development , Sequence Analysis, DNA/methods , Animals , Bays , Evolution, Molecular , Female , Japan , Life Cycle Stages , Phylogeny , Scyphozoa/genetics , Seasons
19.
J Parasitol ; 105(4): 587-597, 2019 08.
Article in English | MEDLINE | ID: mdl-31414949

ABSTRACT

A new species of medicinal leech, Macrobdella mimicus n. sp., is described from specimens collected in Maryland; this is the first description of a North American macrobdellid since 1975. Superficially, the new species resembles the well-known Macrobdella decora, as both species possess 4 accessory pores arranged symmetrically on the ventral surface, yet the new species is distinguished from M. decora in possessing 4-4½ annuli (rather than 3½) between the gonopores and 4 annuli (rather than 5 annuli) between the female gonopore and the first pair of accessory pores. Phylogenetic analyses, based on 2 mitochondrial and 2 nuclear loci for a set of closely related taxa, confirms the placement of the new species within the family Macrobdellidae and places it as the sister taxon to M. decora and M. diplotertia.


Subject(s)
Leeches/classification , Phylogeny , Animals , Electron Transport Complex IV/genetics , Georgia , Leeches/genetics , Leeches/ultrastructure , Maryland , Microscopy, Electron, Scanning , NAD/genetics , North Carolina , South Carolina , Wetlands
20.
Phytopathology ; 109(11): 1900-1907, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31369362

ABSTRACT

Floricolous downy mildews (Peronospora, oomycetes) are a small, monophyletic group of mostly inconspicuous plant pathogens that induce symptoms exclusively on flowers. Characterization of this group of pathogens, and information about their biology, is particularly sparse. The recurrent presence of a disease causing flower malformation which, in turn, leads to high production losses of the medicinal herb Matricaria chamomilla in Serbia has enabled continuous experiments focusing on the pathogen and its biology. Peronospora radii was identified as the causal agent of the disease, and morphologically and molecularly characterized. Diseased chamomile flowers showed severe malformations of the disc and ray florets, including phyllody and secondary inflorescence formation, followed by the onset of downy mildew. Phylogeny, based on internal transcribed spacer and cox2, indicates clustering of the Serbian P. radii with other P. radii from chamomile although, in cox2 analyses, they formed a separate subcluster. Evidence pointing to systemic infection was provided through histological and molecular analyses, with related experiments validating the impact of soilborne and blossom infections. This study provides new findings in the biology of P. radii on chamomile, thus enabling the reconstruction of this floricolous Peronospora species' life cycle.


Subject(s)
Chamomile , Peronospora , Chamomile/microbiology , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Genes, Fungal/genetics , Peronospora/classification , Peronospora/genetics , Peronospora/physiology , Phylogeny , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL