Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Environ Manage ; 357: 120725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554454

ABSTRACT

Since the electroplating industry is springing up, effective control of phosphate has attracted global concerns. In this study, a novel biosorbent (MIL-88@CS-HDG) was synthesized by loading a kind of Fe-based metal organic framework called MIL-88 into chitosan hydrogel beads and applied in deep treatment of phosphate removal in electroplating wastewater. The adsorption capacities of H2PO4- on MIL-88@CS-HDG could reach 1.1 mmol/g (corresponding to 34.1 mg P/g and 106.7 mg H2PO4-/g), which was 2.65% higher than that on single MOF powders and chitosan hydrogel beads. The H2PO4- adsorption was well described by the Freundlich isotherm model. Over 90% H2PO4- could be adsorbed at contact time of 3 h. It could keep high adsorption capacity in the pH range from 2 to 7, which had a wider pH range of application compared with pure MIL-88. Only NO3- and SO42- limited the adsorption with the reduction rate of 11.42% and 23.23%, proving it tolerated most common co-existing ions. More than 92% of phosphorus could be recovered using NaOH and NaNO3. Electrostatic attraction between Fe core and phosphorus in MIL-88@CS-HDG and ion exchange played the dominant role. The recovered MIL-88@CS-HDG remained stable and applicable in the treatment process of real electroplating wastewater even after six adsorption-regeneration cycles. Based on the removal properties and superb regenerability, MIL-88@CS-HDG is potentially applicable to practical production.


Subject(s)
Chitosan , Water Pollutants, Chemical , Phosphates , Hydrogels , Chitosan/chemistry , Wastewater , Electroplating , Phosphorus , Adsorption , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Kinetics
2.
Environ Pollut ; 337: 122562, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37717896

ABSTRACT

The electroplating industry encompasses various processes and plating types that contribute to environmental pollution, which has led to growing public concern. To investigate related soil pollution in China, the study selected 10 sites with diverse industrial characteristics distributed across China and collected 1052 soil samples to determine the presence of industrial priority pollutants (PP) based on production process and pollutant toxicity. The factors influencing site pollution as well as proposed pollution prevention and control approaches were then evaluated. The results indicate the presence of significant pollution in the electroplating industry, with ten constituents surpassing the risk screening values (RSV). The identified PP consist of Cr(VI), zinc (Zn), nickel (Ni), total chromium (Cr), and petroleum hydrocarbons (C10-C40). PP contamination was primarily observed in production areas, liquid storage facilities, and solid zones. The vertical distribution of metal pollutants decreased with soil depth, whereas the reverse was true for petroleum hydrocarbons (C10-C40). Increase in site production time was strongly correlated with soil pollution, but strengthening anti-seepage measures in key areas can effectively reduce the soil exceedance standard ratio. This study serves as a foundation for conceptualizing site repair technology in the electroplating industry and offers a reference and methodology for pollution and source control in this and related sectors.


Subject(s)
Environmental Pollutants , Metals, Heavy , Petroleum , Soil Pollutants , Metals, Heavy/analysis , Electroplating , Soil Pollutants/analysis , Risk Assessment , Environmental Monitoring/methods , Environmental Pollution/analysis , Environmental Pollutants/analysis , Chromium/analysis , Soil , China , Hydrocarbons/analysis , Petroleum/analysis
3.
Environ Sci Pollut Res Int ; 30(24): 64827-64844, 2023 May.
Article in English | MEDLINE | ID: mdl-37093385

ABSTRACT

As the end product of the electroplating industry, electroplating sludge (ES) has a huge annual output and an abundant heavy metal (HM). The effective disposal of ES is attracting increasing attention. Currently, the widely used ES disposal methods (e.g. landfill and incineration) make it difficult to effectively control of HMs and synchronously utilise metal resources, leading to a waste of metal resources, HMs migration, and potential harm to the environment and human health. Therefore, techniques to limit HMs release into the environment and promote the efficient utilisation of metal resources contained within ES are of great interest. Based on these requirements, material reuse is a great potential means of ES management. This review presents an overview of the process flows, principles and feasibilities of the methods employed for the material reuse of ES. Several approaches have been investigated to date, including (1) additions in building materials, (2) application in pigment production, and (3) production of special functional materials. However, these three methods vary in their treatment scales, property requirements, ability to control HMs, and degree of utilisation of metal resources in ES. Currently, the safety of products and costs are not paid enough attention, and the large-scale disposal of HMs is not concordant with the effective management of HMs. Accordingly, this study proposes a holistic sustainable materialised reuse pattern of ES, which combines the scale and efficiency of sludge disposal and pays attention to the safety of products and the cost of transformation process for commercial application.


Subject(s)
Metals, Heavy , Sewage , Humans , Electroplating , Incineration , Construction Materials
4.
J Mol Recognit ; 36(6): e3013, 2023 06.
Article in English | MEDLINE | ID: mdl-36999889

ABSTRACT

This paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3'-{(1E,1' E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions. The MSNs provide several accessible exhibited sites for uniform anchoring of CPAMHP probe molecules, making it a viable chemical sensor even with the use of naked-eye sensing. The surface characters and structural analysis of the MSNs and CPAMHP sensor samples were examined using various techniques. The CPAMHP probe-anchored MSNs exhibit a clear and vivid color shift from pale yellow to green upon exposure to various concentrations of Ni(II) ions, with a reaction time down to approximately 1 minute. Furthermore, the MSNs can serve as a base to retrieve extremely trace amounts of Ni(II) ions, making the CPAMHP sensor a dual-functional device. The calculated limit of recognition for Ni(II) ions using the fabricated CPAMHP sensor samples is 0.318 ppb (5.43 × 10-9 M). The results suggest that the proposed sensor is a promising tool for the sensitive and reliable detection of Ni(II) ions in petroleum products and for removing Ni(II) ions in electroplating wastewater; the data indicate an excellent removal of Ni (II) up to 96.8%, highlighting the high accuracy and precision of our CPAMHP sensor.


Subject(s)
Nanospheres , Petroleum , Silicon Dioxide/chemistry , Electroplating , Wastewater , Nanospheres/chemistry , Ions/chemistry , Petroleum/analysis
5.
Environ Sci Pollut Res Int ; 30(11): 31905-31915, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36459323

ABSTRACT

A cross-sectional study was conducted in 2016 in Zhejiang Province, China, to evaluate the body burdens of metals and metalloids associated with renal dysfunction in populations living near electroplating industries. We recruited 236 subjects and performed physical examinations, determined the blood and urinary levels of arsenic (As), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and selenium (Se) by an inductively coupled plasma mass spectrometer (ICP-MS), and measured three renal impairment biomarkers, namely nacetyl-ß-D-glucosaminidase (NAG), retinol-binding protein (RBP), and ß2-microglobulin (BMG). The proportion of abnormal nasal symptoms in the exposure group (10.1%) was much higher than in the control group (0; p < 0.05). The blood and urinary levels of As, Cd, and Se in the exposure group were significantly higher than those in the control group (p < 0.05). The blood levels of Mn and Pb, as well as the urinary levels of Cr and Ni, were significantly higher in the exposure group than in the control group (p < 0.05). The exposure group demonstrated higher levels of NAG, RBP, and BMG than the control group (0.51 vs. 0.14 mg/g creatinine, 12.79 vs. 9.26 IU/g creatinine, and 1.39 vs. 0.78 mg/g creatinine, respectively; p < 0.05). Urinary BMG was positively correlated with urinary Cd levels (r = 0.223, p < 0.05), while urinary RBP was correlated with blood Cd levels (r = 0.151, p < 0.05) and urinary Cd, Cr, Ni, and Se levels (r = 0.220, 0.303, 0.162, and 0.306, respectively; p < 0.05). In conclusion, our study indicated that a population living in the vicinity of electroplating industries had high body burdens of certain metals and metalloids associated with non-negligible renal dysfunction.


Subject(s)
Kidney Diseases , Metalloids , Selenium , Humans , Cadmium/analysis , Cross-Sectional Studies , Creatinine/urine , Electroplating , Lead , Chromium , Nickel , Manganese , Kidney Diseases/chemically induced , Kidney Diseases/epidemiology , Health Status , Environmental Exposure , Acetylglucosaminidase/urine
6.
J Environ Manage ; 329: 117101, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36566727

ABSTRACT

Electroplating sludge was a hazardous waste comprised of heavy metals and other Fe/Al/Ca/Si impurities, and produced massively in surface treatment industry. In the past, it was commonly purified via hydrometallurgy, chlorination and reduction calcination routes, but also blended as additive in rotary kiln, to stabilize the heavy metals in geopolymer. Herein, an alternative strategy was developed to treat a real electroplating sludge for recycling magnetic Zn-rich spinel and stabilizing Zn in calcium metasilicate glass via a facile pyrometallurgy route with the blending of emulsion mud and coal ash. The sludge contained 35.6% Zn and 0.54% Cr and then was blended with 50% emulsion mud. After calcination at 1200 °C, the product was highly dispersed, whilst octahedral ZnAlFeO4 spinel with Zn content of 40.0% were formed and separated by using magnet, in accordance with the recycling efficiency of 51.2% Zn from the electroplating sludge. But after calcination at 1400 °C, the gypsum in emulsion mud was decomposed as CaO and accelerated the dissolution of Si-bearing substance as calcium metasilicate glass for covering ZnAlFeO4 spinel, resulting in the Zn leaching of 1568 mg/L. By adding 50% Si-rich coal ash in the calcination system, more calcium metasilicate glass were generated, and then the Zn concentration in the toxic leaching test was only 12.09 mg/L. During the calcination, Cr showed similar performance to Al/Fe and involved in the spinel formation. This provided a new route to recycle Zn from Zn-rich electroplating sludge and to solidify heavy metals via calcium metasilicate glass route.


Subject(s)
Metals, Heavy , Sewage , Sewage/analysis , Coal Ash , Calcium , Electroplating , Emulsions
7.
Chemosphere ; 313: 137626, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566795

ABSTRACT

The unprocessed dumping of aluminium wastes in the landscape leads to generation of heat and toxic gases, which are detrimental to the ecosystem. Motivated by the waste-to-wealth notion, we demonstrated the recovery of aluminium oxide nanoparticles (Al2O3NPs) from domestic aluminium wastes via a sonochemical approach and synthesis of nickel/aluminium oxide (Ni/Al2O3) coating via ultrasonic-coupled supercritical carbon dioxide (US-SC-CO2) electrodeposition method for higher corrosion resistance performance. The physical characterization and material confirmation of prepared films were examined by microscopic and various spectroscopic techniques. The electrochemical corrosion resistance studies were explored via potentiodynamic polarization and electrochemical impedance spectroscopy techniques. Based on the results, the US-SC-CO2 strategy exposed an improved distribution of Al2O3 NPs assimilation in Ni matrix, higher corrosion resistance, and microhardness. The integration of ultrasonic irradiation into the SC-CO2 process promises an enhanced coating quality. Thereby, the novel US-SC-CO2 approach for Ni/Al2O3 synthesis is expected to achieve a sustainable green impact in real-world applications.


Subject(s)
Aluminum , Carbon Dioxide , Carbon Dioxide/chemistry , Corrosion , Electroplating , Ultrasonics , Ecosystem , Aluminum Oxide
8.
Sci Total Environ ; 804: 150101, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34517320

ABSTRACT

Adding magnesium ions (Mg2+) to produce struvite is an important method to recover nitrogen and phosphorus from wastewater. Both the Mg2+ source and subsequent separation of struvite are key factors for the utilization of struvite. In this study, we developed an efficient method to recover nutrient salts from wastewater using sacrificial Mg anodes to generate struvite, with its simultaneous separation through cathode electrodeposition. The anode-released Mg2+ reacted with NH4+-N and PO43--P in bulk solution to form struvite, which was more intense on the cathode surface due to the relatively higher pH environment from hydrogen evolution, resulting in most of the struvite being deposited on the cathode surface and simultaneously separated out of the bulk solution. Using a cathode with a higher solution-cathode interface area and relatively low current density facilitated struvite deposition. Results showed that under optimal electrolysis condition (5.76 A/m2, pH 8.5, 180 min, and 1.2:1.0 Mg:P), 91% of the undissolved substances as the phosphate precipitation were deposited on the graphite cathode surface, and the proportion of struvite in the deposition reached 41.52%. This study provides a novel electrochemical method for struvite synthesis and separation for the recovery of nitrogen and phosphorus from wastewater.


Subject(s)
Electroplating , Magnesium , Electrodes , Phosphorus , Struvite
9.
Waste Manag ; 131: 286-293, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34198182

ABSTRACT

Nickel-laden electroplating sludge (Ni sludge) has always been a critical concern due to its potential hazards to the environment. This study proposed a strategy to stabilize nickel (Ni) via phase transformation into stable crystal structures through ceramic sintering. The Ni sludge was collected, and then fired with two ceramic precursors (α-Fe2O3 and γ-Al2O3) within a temperature range of 700-1400 °C for 5 h. After sintering scheme, phase identification was performed on the products, showing the NiFe2O4 and NiAl2O4 spinels as predominant Ni-hosting phases respectively in α-Fe2O3 and γ-Al2O3 series. Then, the Rietveld refinement was applied to quantify weight fractions of all phases (including crystal and amorphous phases), and the quantification results showed that the weight fractions of NiFe2O4 or NiAl2O4 spinels can reach around 87.7% and 83.1%, respectively in 1200 °C sintered products of both series. The transformation ratio (TR) of Ni was calculated as 99.9% and 99.7% accordingly, showing almost complete incorporation of Ni into the spinel structures. With a prolonged leaching procedure, the Ni stabilization effect after sintering was evaluated. The Ni leachability was dramatically decreased with the development of spinel structure under sintering processes, and the Ni leached ratio from the sintered products can reach lower than 0.06% even after 20-d prolonged leaching. Through this study, a promising and quantitative method was proposed for controllable Ni stabilization of the hazardous industrial sludge via developing spinel structures in the sintered products, which may provide a feasible strategy for the treatment and beneficial utilization of heavy metal-laden solid wastes.


Subject(s)
Metals, Heavy , Sewage , Aluminum Oxide , Electroplating , Magnesium Oxide , Nickel
10.
Environ Sci Technol ; 55(15): 10724-10733, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34269567

ABSTRACT

While CIGS solar cell has been experiencing an expanded photovoltaic market and increasing research interest in cell design, its treatment after obsoletion remains an upcoming issue. The heavy metals involved, such as Cd, can threat the environment, while strategic resources, such as rare metals In and Ga, offer a great recycling oppotunity. However, due to its multimetal feature, traditional recycling methodology shows poor separation-extraction efficiency and additional environmental burdens with intense reagent consumption and waste generation. Here, we report a sequential electrodeposition method for pure metal recycling from this Cu-In-Cd-Ga quaternary system in a more environmentally friendly and efficient manner. Stability constant-corrected redox potential supplemented with metal electroreduction tests predicts well the potential window for sequential electrodeposition. Cu and In electrodeposition shows 100% separation with high Coulombic efficiency (>80%), whereas Ga electrodeposition presents slower kinetics and performs better at a pH of 2.5. Environmental impact assessment indicates that the proposed recycling route allows remarkable reduction of global warming and toxicity impacts compared with metal production from virgin mining and reference processes. We further unveiled the applicability of the electrodeposition technique in the context of anthropogenic mineral recycling, emphasizing resource sustainability and cleaner production.


Subject(s)
Electronic Waste , Metals, Heavy , Cadmium , Electronic Waste/analysis , Electroplating , Environment , Metals, Heavy/analysis , Recycling
11.
Water Sci Technol ; 82(10): 2148-2158, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33263591

ABSTRACT

The study demonstrates the efficiency of the soil aquifer treatment (SAT) towards removal of heavy metals within electroplating wastewater thereby rendering it suitable for ground water discharge. The unique proposition of this research is to use a combination of soil and adsorbent properties to enhance the remediation of heavy metals such as nickel, copper and zinc. A comparative study through statistical analysis is employed to illustrate the effectiveness of the various SAT systems build using various combinations of SM and SC soil types along with bioadsorbents such as eucalyptus leaves, sawdust and Mosambi peel. Further, the mass balance analysis of heavy metals is carried out to comprehend the course of expulsion. The study, through a statistical approach, endorses that the SAT in conjunction with adsorbent gives much better removal efficiency than the SAT without adsorbent. Additional removal efficiency of 14% to 30% can be achieved with introduction of adsorbents within the SAT system. The optimal removal efficiency of nickel, copper and zinc was observed to be at 87, 98 and 93% respectively when passed through the combination of SM soil with sawdust.


Subject(s)
Groundwater , Metals, Heavy , Water Pollutants, Chemical , Electroplating , Metals, Heavy/analysis , Soil , Wastewater , Water Pollutants, Chemical/analysis
12.
Molecules ; 25(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212989

ABSTRACT

Nickel nanopillar arrays were electrodeposited onto silicon substrates using porous alumina membranes as a template. The characterization of the samples was done by scanning electron microscopy, X-ray diffraction, and alternating force gradient magnetometry. Ni nanostructures were directly grown on Si by galvanostatic and potentiostatic electrodeposition techniques in three remarkable charge transfer configurations. Differences in the growth mechanisms of the nanopillars were observed, depending on the deposition method. A high correlation between the height of the nanopillars and the charge synthesis was observed irrespective of the electrochemical technique. The magnetization measurements demonstrated a main dependence with the height of the nanopillars. The synthesis of Ni nanosystems with a controllable aspect ratio provides an effective way to produce well-ordered networks for wide scientific applications.


Subject(s)
Aluminum Oxide/chemistry , Electroplating , Nickel/chemistry , Silicon/chemistry , Magnetic Fields , Porosity , X-Ray Diffraction
13.
J Am Chem Soc ; 141(47): 18658-18661, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31697074

ABSTRACT

Photoelectrochemical deposition of Se-Te on isolated Au islands using an unstructured, incoherent beam of light produces growth of Se-Te alloy toward the direction of the incident light beam. Full-wave electromagnetic simulations of light absorption indicated that the induced spatial growth anisotropy was a function of asymmetric absorption in the evolving deposit. Inorganic phototropic growth is analogous to biological systems such as palm trees that exhibit phototropic growth wherein physical extension of the plant guides the crown toward the time-averaged position of the sun, to maximize solar harvesting.


Subject(s)
Electroplating , Selenium/chemistry , Tellurium/chemistry , Electrochemistry , Photochemical Processes
14.
Biosens Bioelectron ; 146: 111741, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31586765

ABSTRACT

The design and fabrication of high visible-light activated photoelectrode are essential to precisely detect biomolecule in biological system. Herein, an ultrasensitive photoelectrochemical (PEC) aptasensor for specific recognition of adenosine is established based on carbon dots sensitized-amorphous molybdenum sulfide (a-MoSx/CDs) photoanode and dual amplification strategy. The heterostructured photoanode achieved by sequential electrodeposition reveals significantly boosted photocurrent with good stability and repeatability under visible light illumination, giving the credit to highly activated visible light absorption, uniform coverage and good electric contact to the underlying substrate, as well as the energy-band alignment between the two components. By stepwisely immobilizing complementary DNA probe (NH2-DNA) and adenosine aptamer (Apt), followed by methylene blue (MB) binding with the guanine base on Apt, a dual amplified self-powered PEC aptasensor for adenosine detection is constructed. Based on the co-sensitization effect of CDs and MB, ultrasensitive and high-affinitive determination of adenosine is realized over the concentration range of 0.01 nM-1000 nM at 0 V (vs. SCE), with satisfactory stability and reproducibility. The detection limit is as low as 3.3 pM, demonstrating a performance even surpassing most of the sensors reported so far. The prospective application of the co-sensitized a-MoSx photoanode for ultrasensitive aptasensing is highlighted in this work.


Subject(s)
Adenosine/blood , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Disulfides/chemistry , Molybdenum/chemistry , Quantum Dots/chemistry , Adenosine/analysis , Electrochemical Techniques/methods , Electroplating/methods , Humans , Light , Limit of Detection
15.
Mikrochim Acta ; 186(9): 602, 2019 08 04.
Article in English | MEDLINE | ID: mdl-31377866

ABSTRACT

Considering the importance of dopamine (DA) detection for neuroscience and disease diagnosis, herein, an electrochemical sensor for dopamine is described. It is based on the use of a Ni-Co-P nanostructure fabricated on nickel foam via electrode position from cobalt chloride and ammonium phosphate for 10 min. Time-dependent experiments show the transformation of Ni-Co-P nanoparticles to spheres. The resulting electrode display excellent electrochemical response to DA. Figures of merit include (a) a working potential of 0.55 V (vs. Ag/AgCl); (b) an electrochemical sensitivity of 5262 µA mM-1 cm-2; (c) a wide linear range (from 0.5 to 2350 µM), and (d) a 1 µM detection limit. The outstanding electrochemical performance is explained by the synergistic effects of large surface area, improved electron transfer, presence of free binders, and the presence of three active components (nickel, cobalt and phosphonium ion). Graphical abstract A Ni-Co-P nanostructure was electrodeposited on nickel foam to obtain an electrochemical sensor for amperometric determination of dopamine with outstanding performance.


Subject(s)
Cobalt/chemistry , Dopamine/analysis , Electroplating , Nickel/chemistry , Phosphorus/chemistry , Electrodes , Nanostructures/chemistry , Particle Size , Surface Properties
16.
Environ Sci Pollut Res Int ; 26(29): 29736-29747, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31402438

ABSTRACT

Developing low cost and efficient method for the treatment of electroplating wastewater containing heavy metals complexed with chelating agent has attracted increasing attention in industrial wastewater treatment. This study involved a system combining Fenton oxidation (FO) and recycled ferrite (RF) process for treating synthetic solution containing Ni(II)-EDTA at ambient temperature. In this system, the FO reaction can produce hydroxyl radicals with high redox potential to decomplex the metal-organic complexes and degrade the organics, thereby enhancing the removal efficiency of heavy metals. The RF process is to incorporate the non-iron metal into the spinel ferrites at room temperature, and stabilize the sludge. As a result, the toxicity characteristic leaching procedure can fulfill the relevant standards. Furthermore, the ferrous ions in Fenton reaction could be used as the source of irons in RF process. After treatment by the combined process, the effluent water fulfills the relevant standard in China. In comparison with conventional alkaline precipitation, the sludge sedimentation velocity of FO-RF is 2.16 times faster than that of conventional alkaline precipitation and the volume of sludge is reduced by half, which strongly demonstrated the advantages of the presented FO-RF system and indicated the huge potential for the treatment of EDTA-chelated nickel.


Subject(s)
Edetic Acid/chemistry , Electroplating , Ferric Compounds/chemistry , Nickel/chemistry , Waste Disposal, Fluid/methods , Aluminum Oxide/chemistry , Chelating Agents/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Magnesium Oxide/chemistry , Metals, Heavy/chemistry , Oxidation-Reduction , Recycling , Sewage , Temperature , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
17.
Chem Pharm Bull (Tokyo) ; 67(5): 445-451, 2019.
Article in English | MEDLINE | ID: mdl-31061369

ABSTRACT

Electrodeposition is commonly used to deposit ceramic or metal coating on metallic implants. Its utilization in depositing polymer microcapsule coating is currently being explored. However, there is no encapsulation of drug within polymer microcapsules that will enhance its chemical and biological properties. Therefore, in this study, ginseng which is known for its multiple therapeutic effects was encapsulated inside biodegradable poly(lactic-co-glycolic acid) (PLGA) microcapsules to be coated on pre-treated medical grade stainless steel 316L (SS316L) using an electrodeposition technique. Polyaniline (PANI) was incorporated within the microcapsules to drive the formation of microcapsule coating. The electrodeposition was performed at different current densities (1-3 mA) and different deposition times (20-60 s). The chemical composition, morphology and wettability of the microcapsule coatings were characterized through attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses. The changes of electrolyte colors, before and after the electrodeposition were also observed. The addition of PANI has formed low wettability and uniform microcapsule coatings at 2 mA current density and 40 s deposition time. Reduction in the current density or deposition time caused less attachment of microcapsule coatings with high wettability records. While prolonging either one parameter has led to debris formation and melted microcapsules with non-uniform wettability measurements. The color of electrolytes was also changed from milky white to dark yellow when the current density and deposition time increased. The application of tolerable current density and deposition time is crucial to obtain a uniform microcapsule coating, projecting a controlled release of encapsulated drug.


Subject(s)
Aniline Compounds/chemistry , Coated Materials, Biocompatible/chemistry , Electroplating/methods , Panax/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Stainless Steel/chemistry , Capsules , Drug Compounding/instrumentation , Drug Compounding/methods , Electroplating/instrumentation , Equipment Design , Prostheses and Implants
18.
Environ Sci Pollut Res Int ; 26(11): 11100-11112, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30788702

ABSTRACT

In this study, the alginate-based biosorbent produced from seaweed Sargassum sp. was used in biosorption of Ni2+ and Cu2+ ions from synthetic solutions and real electroplating effluents. Biosorption kinetics, isotherms, pH effect, thermodynamic parameters, and sorption/desorption cycles were also evaluated. Kinetic studies show the sorption equilibrium can be obtained within 180 min for Ni2+ ions and 360 min for Cu2+ ions, and the adsorption kinetics data are well described by the pseudo-second order and diffusion in spherical adsorbents. Langmuir model can be well used to describe the biosorption isotherm data. The maximum sorption capacity (qmax) and Langmuir constant (b) were up to 1.147 mmol g-1 and 1.139 L mmol-1 for Ni2+ ions and 1.640 mmol g-1 and 4.645 L mmol-1 for Cu2+ ions. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) showed that the biosorption of Ni2+ and Cu2+ ions are predominantly a chemical phenomenon of endothermic nature, favorable, and spontaneous at the temperature ranges of 293-313 K. Partial desorption of the Ni2+ and Cu2+ ions on the biosorbent was achieved using acidic and saline eluents, allowing the biosorbent to be used in new sorption/desorption cycles. EDX analysis suggests an ion exchange mechanism between calcium ions on the biosorbent and target metals. Biosorption of Ni2+ and Cu2+ from real electroplating effluents with high concentrations of light metals becomes highly competitive, decreasing the amount of Ni2+ and Cu2+ ions biosorbed due to the ionic strength effect.


Subject(s)
Alginates/chemistry , Copper/chemistry , Nickel/chemistry , Plant Extracts/chemistry , Sargassum/chemistry , Seaweed/chemistry , Adsorption , Diffusion , Electroplating , Hydrogen-Ion Concentration , Kinetics , Temperature , Thermodynamics
19.
Chemosphere ; 221: 563-572, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30677726

ABSTRACT

Nickel (Ⅱ)-ethylenediaminetetraacetic acid (Ni-EDTA) complexes are widely present in electroplating effluents. Owing to its chemical stability, Ni-EDTA is hardly removed in traditional Fenton/Fenton-like processes with conventional iron (Fe)-based catalyst. In this study, oxygen vacancies were introduced into our highly efficient and novel Fe3O4@γ-Al2O3 catalysts using Cu doping for Ni-EDTA decomposition in Fenton-like system. Without noble-metal cocatalyst, the introduction of oxygen vacancies in Cu-doped Fe3O4@γ-Al2O3 catalysts exhibit excellent Fenton-like activity even in neutral or alkaline conditions. Experimental results revealed that, without the aid of extra energy, Ni-EDTA complexes could be effectively decomposed over oxygen vacancies-based catalyst. Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), oxygen temperature-programmed desorption (O2-TPD), and hydrogen temperature-programmed reduction (H2-TPR) were used to get a deep insight into the decomposition mechanism. Additionally, by employing the Al-containing support, stable layered double-hydroxide phases of NiAl could be formed, indicating that a synergy of oxidation and adsorption could simultaneously take place, which led to the recovery of released Ni2+ ions and also reduction in secondary pollution. To investigate the decomposition process of Ni-EDTA over oxygen vacancies-based catalyst, liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (LC-MS/MS) was employed to identify the generated intermediates, and thus, a plausible decomposition pathway was successfully conceived.


Subject(s)
Edetic Acid/chemistry , Electroplating , Environmental Restoration and Remediation/methods , Nickel/chemistry , Adsorption , Aluminum Oxide/chemistry , Catalysis , Copper , Ferric Compounds , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Oxygen/chemistry
20.
Experimental Neurobiology ; : 593-604, 2018.
Article in English | WPRIM | ID: wpr-719132

ABSTRACT

Tetrodes, consisting of four twisted micro-wires can simultaneously record the number of neurons in the brain. To improve the quality of neuronal activity detection, the tetrode tips should be modified to increase the surface area and lower the impedance properties. In this study, tetrode tips were modified by the electrodeposition of Au nanoparticles (AuNPs) and dextran (Dex) doped poly (3,4-ethylenedioxythiophene) (PEDOT). The electrochemical properties were measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A decrease in the impedance value from 4.3 MΩ to 13 kΩ at 1 kHz was achieved by the modified tetrodes. The cathodic charge storage capacity (CSC(C)) of AuNPs-PEDOT deposited tetrodes was 4.5 mC/cm², as determined by CV measurements. The tetrodes that were electroplated with AuNPs and PEDOT exhibited an increased surface area, which reduced the tetrode impedance. In vivo recording in the ventral posterior medial (VPM) nucleus of the thalamus was performed to investigate the single-unit activity in normal rats. To evaluate the recording performance of modified tetrodes, spontaneous spike signals were recorded. The values of the L-ratio, isolation distance and signal-to-noise (SNR) confirmed that electroplating the tetrode surface with AuNPs and PEDOT improved the recording performance, and these parameters could be used to effectively quantify the spikes of each cluster.


Subject(s)
Animals , Rats , Brain , Dextrans , Dielectric Spectroscopy , Electric Impedance , Electrodes , Electroplating , Microelectrodes , Nanoparticles , Neurons , Thalamus
SELECTION OF CITATIONS
SEARCH DETAIL