Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Neuroinflammation ; 21(1): 12, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178091

ABSTRACT

The hypothalamus is a brain structure that is deputed to maintain organism homeostasis by regulating autonomic function and hormonal production as part of the neuroendocrine system. Dysfunction in hypothalamic activity results in behavioral alterations, depression, metabolic syndromes, fatigue, and infertility. Remarkably, many of these symptoms are associated with multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS) characterized by focal demyelination, immune cell infiltration into the brain parenchyma, and neurodegeneration. Furthermore, altered hormonal levels have been documented in MS patients, suggesting the putative involvement of hypothalamic deficits in MS clinical manifestations. Yet, a systematic analysis of hypothalamic function in response to neuroinflammatory stress is still lacking. To fill this gap, here we performed a longitudinal profiling of the hypothalamic transcriptome upon experimental autoimmune encephalomyelitis (EAE)-a murine disease model recapitulating key MS phenotypes at both histopathological and molecular levels. We show that changes in gene expression connected with an anti-inflammatory response start already at pre-onset and persist along EAE progression. Altered levels of hypothalamic neuropeptides were also detected, which possibly underlie homeostatic responses to stress and aberrant feeding behaviors. Last, a thorough investigation of the principal endocrine glands highlighted defects in the main steroidogenic pathways upon disease. Collectively, our findings corroborate the central role of hypothalamic dysfunction in CNS autoimmunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Mice , Animals , Transcriptome , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/pathology , Central Nervous System/pathology , Hypothalamus/metabolism , Mice, Inbred C57BL
2.
Cells ; 12(4)2023 02 09.
Article in English | MEDLINE | ID: mdl-36831228

ABSTRACT

Lipid membrane turnover and myelin repair play a central role in diseases and lesions of the central nervous system (CNS). The aim of the present study was to analyze lipid composition changes due to inflammatory conditions. We measured the fatty acid (FA) composition in erythrocytes (RBCs) and spinal cord tissue (gas chromatography) derived from mice affected by experimental allergic encephalomyelitis (EAE) in acute and remission phases; cholesterol membrane content (Filipin) and GM1 membrane assembly (CT-B) in EAE mouse RBCs, and in cultured neurons, oligodendroglial cells and macrophages exposed to inflammatory challenges. During the EAE acute phase, the RBC membrane showed a reduction in polyunsaturated FAs (PUFAs) and an increase in saturated FAs (SFAs) and the omega-6/omega-3 ratios, followed by a restoration to control levels in the remission phase in parallel with an increase in monounsaturated fatty acid residues. A decrease in PUFAs was also shown in the spinal cord. CT-B staining decreased and Filipin staining increased in RBCs during acute EAE, as well as in cultured macrophages, neurons and oligodendrocyte precursor cells exposed to inflammatory challenges. This regulation in lipid content suggests an increased cell membrane rigidity during the inflammatory phase of EAE and supports the investigation of peripheral cell membrane lipids as possible biomarkers for CNS lipid membrane concentration and assembly.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Fatty Acids, Omega-3 , Mice , Animals , Filipin/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Fatty Acids, Unsaturated/metabolism , Inflammation/metabolism , Erythrocytes/metabolism , Cell Membrane/metabolism , Membrane Lipids/metabolism , Myelin Sheath/metabolism
3.
Chin J Integr Med ; 29(5): 394-404, 2023 May.
Article in English | MEDLINE | ID: mdl-36607588

ABSTRACT

OBJECTIVE: To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action. METHODS: This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 ß (IL-1 ß), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively. RESULTS: GSE reduced the secretion of TNF-α, IL-1 ß and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 ß, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05). CONCLUSION: GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Grape Seed Extract , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Grape Seed Extract/pharmacology , Grape Seed Extract/therapeutic use , Interleukin-17 , Interleukin-1beta , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Th1 Cells , Mice, Inbred C57BL , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/therapeutic use , Th17 Cells/metabolism , Interleukin-12/pharmacology , Interleukin-12/therapeutic use , Cytokines/metabolism
4.
Article in English | WPRIM | ID: wpr-982292

ABSTRACT

OBJECTIVE@#To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action.@*METHODS@#This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively.@*RESULTS@#GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05).@*CONCLUSION@#GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.


Subject(s)
Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Grape Seed Extract/therapeutic use , Interleukin-17 , Interleukin-1beta , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Th1 Cells , Mice, Inbred C57BL , Interferon-gamma/therapeutic use , Th17 Cells/metabolism , Interleukin-12/therapeutic use , Cytokines/metabolism
5.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35807462

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model of multiple sclerosis (MS). Oxidative stress and chronic inflammation play a major role in the pathogenesis of MS and EAE. Melatonin, a neurohormone, has potent anti-inflammatory properties. The aim of our study was to assess the therapeutic properties of melatonin alone or in combination with interferon ß-1b (IFNß-1b) or glatiramer acetate (GA) on EAE. EAE was induced in male Sprague-Dawley rats with an intraperitoneal injection of a homogenate of spinal cord and pig brain. At day 10 post immunization, rats were euthanized, and their brains were immediately excised and processed to measure oxidative stress markers and membrane fluidity. In addition, proinflammatory cytokines were quantified in plasma. Melatonin alone or in combination with GA and IFNß-1b inhibited the disease process of EAE and the synthesis of proinflammatory cytokines, caused a significant decrement in oxidative stress markers, and preserved the membrane fluidity in the motor cortex, midbrain, and spinal cord. The cumulative index score was significantly reduced in EAE rats treated with melatonin alone or in combination with GA and IFNß-1b. In conclusion, our findings provide preclinical evidence for the use of melatonin as an adjuvant therapeutic treatment for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Melatonin , Multiple Sclerosis , Animals , Biomarkers , Cytokines , Encephalomyelitis, Autoimmune, Experimental/pathology , Glatiramer Acetate/pharmacology , Glatiramer Acetate/therapeutic use , Interferon beta-1b/therapeutic use , Interferon-beta , Male , Melatonin/pharmacology , Melatonin/therapeutic use , Multiple Sclerosis/drug therapy , Rats , Rats, Sprague-Dawley , Swine
6.
J Neuroinflammation ; 19(1): 69, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35313917

ABSTRACT

BACKGROUND: Nod-like receptors (NLRs) are critical to innate immune activation and induction of adaptive T cell responses. Yet, their role in autoinflammatory diseases of the central nervous system (CNS) remains incompletely defined. The NLR, Nlrp12, has been reported to both inhibit and promote neuroinflammation in an animal model of multiple sclerosis (experimental autoimmune encephalomyelitis, EAE), where its T cell-specific role has been investigated. Uveitis resulting from autoimmunity of the neuroretina, an extension of the CNS, involves a breach in immune privilege and entry of T cells into the eye. Here, we examined the contribution of Nlrp12 in a T cell-mediated model of uveitis, experimental autoimmune uveitis (EAU). METHODS: Mice were immunized with interphotoreceptor retinoid-binding protein peptide 1-20 (IRBP1-20) emulsified in Complete Freund's adjuvant, CFA. Uveitis was evaluated by clinical and histopathological scoring, and comparisons were made in WT vs. Nlrp12-/- mice, lymphopenic Rag1-/- mice reconstituted with WT vs. Nlrp12-/- CD4+ T cells, or among bone marrow (BM) chimeric mice. Antigen-specific Th-effector responses were evaluated by ELISA and intracellular cytokine staining. Cellular composition of uveitic eyes from WT or Nlrp12-/- mice was compared using flow cytometry. Expression of Nlrp12 and of cytokines/chemokines within the neuroretina was evaluated by immunoblotting and quantitative PCR. RESULTS: Nlrp12-/- mice developed exacerbated uveitis characterized by extensive vasculitis, chorioretinal infiltrates and photoreceptor damage. Nlrp12 was dispensable for T cell priming and differentiation of peripheral Th1 or Th17 cells, and uveitis in immunodeficient mice reconstituted with either Nlrp12-/- or WT T cells was similar. Collectively, this ruled out T cells as the source of Nlrp12-mediated protection to EAU. Uveitic Nlrp12-/- eyes had more pronounced myeloid cell accumulation than uveitic WT eyes. Transplantation of Nlrp12-/- BM resulted in increased susceptibility to EAU regardless of host genotype, but interestingly, a non-hematopoietic origin for Nlrp12 function was also observed. Indeed, Nlrp12 was found to be constitutively expressed in the neuroretina, where it suppressed chemokine/cytokine induction. CONCLUSIONS: Our data identify a combinatorial role for Nlrp12 in dampening autoimmunity of the neuroretina. These findings could provide a pathway for development of therapies for uveitis and potentially other autoinflammatory/autoimmune diseases of the CNS.


Subject(s)
Autoimmune Diseases , Encephalomyelitis, Autoimmune, Experimental , Uveitis , Animals , Autoimmunity , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/pathology , Eye Proteins/genetics , Eye Proteins/metabolism , Immunity, Innate , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Retina/pathology , Retinol-Binding Proteins , Th17 Cells , Uveitis/metabolism
7.
Molecules ; 27(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35164175

ABSTRACT

A new formulation of a pomegranate-peel extract (PEm) obtained by PUAE (Pulsed Ultrasound-Assisted Extraction) and titrated in both ellagic acid (EA) and punicalagin is proposed, characterized and then analyzed for potential health properties in mice suffering from the experimental autoimmune encephalomyelitis (EAE). PEm effects were compared to those elicited by a formulation containing EA (EAm). Control and EAE mice were chronically administered EAm and Pem dissolved in the drinking water, starting from the day 10 post-immunization (d.p.i.), with a "therapeutic" protocol to deliver daily 50 mg/kg of EA. Treated EAE mice did not limit their daily access to the beverage, nor did they show changes in body weight, but they displayed a significant amelioration of "in vivo" clinical symptoms. "Ex vivo" histochemical analysis showed that spinal-cord demyelination and inflammation in PEm and EAm-treated EAE mice at 23 ± 1 d.p.i. were comparable to those in the untreated EAE animals, while microglia activation (measured as Ionized Calcium Binding Adaptor 1, Iba1 staining) and astrocytosis (quantified as glial fibrillar acid protein, GFAP immunopositivity) significantly recovered, particularly in the gray matter. EAm and PEm displayed comparable efficiencies in controlling the spinal pathological cellular hallmarks in EAE mice, and this would support their delivery as dietary supplementation in patients suffering from multiple sclerosis (MS).


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/therapy , Plant Extracts/therapeutic use , Pomegranate , Animals , Disease Models, Animal , Ellagic Acid/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Hydrolyzable Tannins/therapeutic use , Mice , Mice, Inbred C57BL , Pomegranate/chemistry
8.
J Neuroimmunol ; 362: 577778, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34814011

ABSTRACT

D-mannose (D-m) is a glucose epimer found in natural products, especially fruits. In mouse models of diabetes and airway inflammation, D-m supplementation via drinking water attenuated pathology by modifying cellular energy metabolism, leading to the activation of latent transforming growth factor beta (TGF-ß), which in turn induced T regulatory cells (Tregs). Given that Tregs are important in controlling neuroinflammation in experimental autoimmune encephalomyelitis (EAE) and likely in multiple sclerosis (MS), we hypothesized that D-m could also suppress EAE. We found that D-m delayed disease onset and reduced disease severity in two models of EAE. Importantly, D-m treatment prevented relapses in a relapsing-remitting model of EAE, which mimics the most common clinical manifestation of MS. EAE suppression was accompanied by increased frequency of CD4+FoxP3+ Tregs in the central nervous system, suggesting that EAE suppression resulted from Treg cell induction by D-m. These findings suggest that D-m has the potential to be a safe and low-cost complementary therapy for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mannose/pharmacology , T-Lymphocytes, Regulatory/drug effects , Administration, Oral , Animals , Female , Mice
9.
Fitoterapia ; 156: 105099, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896483

ABSTRACT

The aim of this study is to investigate the potential preventive and therapeutic effects of nobiletin by evaluating the expression of cytokines associated with inflammatory reactions in an autoimmune encephalomyelitis mouse model. A total of 60 male C57BL/6 mice aged between 8 and 10 weeks were used. Mice were divided into six groups (n = 10 mice per group): control, EAE, low-prophylaxis, high-prophylaxis, low-treatment and high-treatment. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG) and pertussis toxin. Nobiletin was administered in low (25 mg/kg) and high (50 mg/kg) doses, intraperitoneally. The prophylactic and therapeutic effects of nobiletin on brain tissue and spinal cord were evaluated by expression of interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), IL-6, IL-10 and transforming growth factor-beta (TGF-ß) using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Prophylactic and therapeutic use of nobiletin inhibited EAE-induced increase of TNF-α, IL-1ß and IL-6 activities to alleviate inflammatory response in brain and spinal cord. Moreover, nobiletin supplement dramatically increased the IL-10, TGF-ß and IFNγ expressions in prophylaxis and treatment groups compared with the EAE group in the brain and spinal cord. The results obtained from this study show that prophylactic and therapeutic nobiletin modulates expressions of proinflammatory and antiinflammatory cytokines in brain and spinal cord dose-dependent manner in EAE model. These data demonstrates that nobiletin has a potential to attenuate inflammation in EAE mouse model. These experimental findings need to be supported by clinical studies.


Subject(s)
Antioxidants/therapeutic use , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Flavones/therapeutic use , Multiple Sclerosis/drug therapy , Animals , Antioxidants/pharmacology , Brain/drug effects , Brain/immunology , Brain/pathology , Cytokines/drug effects , DNA, Complementary/biosynthesis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Flavones/pharmacology , Immunohistochemistry , Inflammation/drug therapy , Inflammation/immunology , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/prevention & control , RNA/genetics , RNA/isolation & purification , Real-Time Polymerase Chain Reaction , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology
10.
Nat Commun ; 12(1): 7344, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937876

ABSTRACT

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Subject(s)
Lymphocytes/metabolism , Nucleic Acid Heteroduplexes/metabolism , Oligonucleotides/metabolism , RNA/metabolism , Administration, Intravenous , Adoptive Transfer , Animals , Demyelinating Diseases/genetics , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Endocytosis/drug effects , Female , Gene Expression Regulation , Gene Silencing , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Humans , Integrin alpha4/genetics , Integrin alpha4/metabolism , Jurkat Cells , Male , Mice, Inbred C57BL , Nucleic Acid Heteroduplexes/administration & dosage , Nucleic Acid Heteroduplexes/pharmacokinetics , Nucleic Acid Heteroduplexes/pharmacology , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacokinetics , Oligonucleotides/pharmacology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/pathology , Tissue Distribution/drug effects
11.
Oxid Med Cell Longev ; 2021: 5521503, 2021.
Article in English | MEDLINE | ID: mdl-33815654

ABSTRACT

BACKGROUND: Bu Shen Yi Sui capsule (BSYS) is a traditional Chinese medicine prescription that has shown antineuroinflammatory and neuroprotective effects in treating multiple sclerosis (MS) and its animal model of experimental autoimmune encephalomyelitis (EAE). Microglia play an important role in neuroinflammation. The M1 phenotype of microglia is involved in the proinflammatory process of the disease, while the M2 phenotype plays an anti-inflammatory role. Promoting the polarization of microglia to M2 in MS/EAE is a promising therapeutic strategy. This study is aimed at exploring the effects of BSYS on microglial polarization in mice with EAE. METHODS: The EAE model was established by the intraperitoneal injection of pertussis toxin and subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG)35-55 in C57BL/6J mice. The mice were treated with BSYS (3.02 g/kg), FTY720 (0.3 mg/kg), or distilled water by intragastric administration. H&E and LFB staining, transmission electron microscopy, qRT-PCR, immunofluorescence, ELISA, fluorescence in situ hybridization, and western blotting were used to detect the histological changes in myelin, microglial M1/M2 polarization markers, and the expression of key genes involved in EAE. Results and Conclusions. BSYS treatment of EAE mice increased the body weight, decreased the clinical score, and reduced demyelination induced by inflammatory infiltration. BSYS also inhibited the mRNA expression of M1 microglial markers while increasing the mRNA level of M2 markers. Additionally, BSYS led to a marked decrease in the ratio of M1 microglia (iNOS+/Iba1+) and an obvious increase in the number of M2 microglia (Arg1+/Iba1+). In the EAE mouse model, miR-124 expression was decreased, and miR-155 expression was increased, while BSYS treatment significantly reversed this effect and modulated the levels of C/EBP α, PU.1, and SOCS1 (target genes of miR-124 and miR-155). Therefore, the neuroprotective effect of BSYS against MS/EAE was related to promoting microglia toward M2 polarization, which may be correlated with changes in miR-124 and miR-155 in vivo.


Subject(s)
Brain/pathology , Demyelinating Diseases/genetics , Drugs, Chinese Herbal/pharmacology , Encephalomyelitis, Autoimmune, Experimental/genetics , Inflammation/pathology , MicroRNAs/metabolism , Microglia/pathology , Animals , Body Weight/drug effects , CCAAT-Enhancer-Binding Proteins/metabolism , Capsules , Cell Differentiation/drug effects , Cell Polarity/drug effects , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/pathology , Exosomes/metabolism , Female , Inflammation/genetics , Mice, Inbred C57BL , MicroRNAs/blood , MicroRNAs/genetics , Oligodendroglia/drug effects , Oligodendroglia/pathology , Phenotype , Proto-Oncogene Proteins/metabolism , Spinal Cord/pathology , Trans-Activators/metabolism , Up-Regulation/genetics
12.
Front Immunol ; 12: 640778, 2021.
Article in English | MEDLINE | ID: mdl-33912166

ABSTRACT

The etiology of multiple sclerosis (MS) is not clear, and the treatment of MS presents a great challenge. This study aimed to investigate the pathogenesis and potential therapeutic targets of MS and to define target genes of matrine, a quinolizidine alkaloid component derived from the root of Sophorae flavescens that effectively suppressed experimental autoimmune encephalomyelitis (EAE), an animal model of MS. To this end, the GSE108000 gene data set in the Gene Expression Omnibus Database, which included 7 chronic active MS lesions and 10 control samples of white matter, was analyzed for differentially expressed genes (DEGs). X cell was used to analyze the microenvironmental differences in brain tissue samples of MS patients, including 64 types of immune cells and stromal cells. The biological functions and enriched signaling pathways of DEGs were analyzed by multiple approaches, including GO, KEGG, GSEA, and GSVA. The results by X cell showed significantly increased numbers of immune cell populations in the MS lesions, with decreased erythrocytes, megakaryocytes, adipocytes, keratinocytes, endothelial cells, Th1 cells and Tregs. In GSE108000, there were 637 DEGs, including 428 up-regulated and 209 down-regulated genes. Potential target genes of matrine were then predicted by the network pharmacology method of Traditional Chinese medicine, and 12 key genes were obtained by cross analysis of the target genes of matrine and DEGs in MS lesions. Finally, we confirmed by RT-PCR the predicted expression of these genes in brain tissues of matrine-treated EAE mice. Among these genes, 2 were significantly downregulated and 6 upregulated by matrine treatment, and the significance of this gene regulation was further investigated. In conclusion, our study defined several possible matrine target genes, which can be further elucidated as mechanism(s) of matrine action, and novel targets in the treatment of MS.


Subject(s)
Alkaloids/pharmacology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Multiple Sclerosis/pathology , Quinolizines/pharmacology , Transcriptome/drug effects , Animals , Brain/drug effects , Brain/immunology , Computational Biology/methods , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression Profiling/methods , Humans , Mice , Multiple Sclerosis/immunology , Matrines
13.
Brain ; 144(4): 1152-1166, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33899089

ABSTRACT

A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut-CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut-CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.


Subject(s)
Dietary Supplements , Enteritis/pathology , Linoleic Acids, Conjugated/pharmacology , Monocytes/immunology , Multiple Sclerosis, Relapsing-Remitting/pathology , Adult , Animals , Autoimmunity/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Enteritis/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Multiple Sclerosis, Relapsing-Remitting/immunology , Pilot Projects , Proof of Concept Study
14.
J Mol Neurosci ; 71(2): 215-224, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32812186

ABSTRACT

Multiple sclerosis (MS) is known as a chronic neuroinflammatory disorder typified by an immune-mediated demyelination process with ensuing axonal damage and loss. Sinomenine is a natural alkaloid with different therapeutic benefits, including anti-inflammatory and immunosuppressive activities. In this study, possible beneficial effects of sinomenine in an MOG-induced model of MS were determined. Sinomenine was given to MOG35-55-immunized C57BL/6 mice at doses of 25 or 100 mg/kg/day after onset of MS clinical signs till day 30 post-immunization. Analyzed data showed that sinomenine reduces severity of the clinical signs and to some extent decreases tissue level of pro-inflammatory cytokines IL-1ß, IL-6, IL-18, TNFα, IL-17A, and increases level of anti-inflammatory IL-10. In addition, sinomenine successfully attenuated tissue levels of inflammasome NLRP3, ASC, and caspase 1 besides its reduction of intensity of neuroinflammation, demyelination, and axonal damage and loss in lumbar spinal cord specimens. Furthermore, immunoreactivity for MBP decreased and increased for GFAP and Iba1 after MOG-immunization, which was in part reversed upon sinomenine administration. Overall, sinomenine decreases EAE severity, which is attributed to its alleviation of microglial and astrocytic mobilization, demyelination, and axonal damage along with its suppression of neuroinflammation, and its beneficial effect is also associated with its inhibitory effects on inflammasome and pyroptotic pathways; this may be of potential benefit for the primary progressive phenotype of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Inflammasomes/antagonists & inhibitors , Morphinans/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Animals , Astrocytes/drug effects , Body Weight , Cytokines/analysis , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice , Mice, Inbred C57BL , Microglia/drug effects , Morphinans/administration & dosage , Morphinans/pharmacology , Myelin-Oligodendrocyte Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Peptide Fragments/immunology , Peptide Fragments/toxicity , Pyroptosis/drug effects , Random Allocation , Specific Pathogen-Free Organisms , Spinal Cord/chemistry
15.
Sci Rep ; 10(1): 22190, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335128

ABSTRACT

Multiple sclerosis is an autoimmune disease that affects the myelinated central nervous system (CNS) neurons and triggers physical and cognitive disabilities. Conventional therapy is based on disease-modifying drugs that control disease severity but can also be deleterious. Complementary medicines have been adopted and evidence indicates that yeast supplements can improve symptoms mainly by modulating the immune response. In this investigation, we evaluated the therapeutic potential of Saccharomyces cerevisiae and its selenized derivative (Selemax) in experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice submitted to EAE induction were orally supplemented with these yeasts by gavage from day 0 to day 14 after EAE induction. Both supplements determined significant reduction in clinical signs concomitantly with diminished Th1 immune response in CNS, increased proportion of Foxp3+ lymphocytes in inguinal and mesenteric lymph nodes and increased microbiota diversity. However, Selemax was more effective clinically and immunologically; it reduced disease prevalence more sharply, increased the proportion of CD103+ dendritic cells expressing high levels of PD-L1 in mesenteric lymph nodes and reduced the intestinal inflammatory process more strongly than S. cerevisiae. These results suggest a clear gut-brain axis modulation by selenized S. cerevisiae and suggest their inclusion in clinical trials.


Subject(s)
Dietary Supplements , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunomodulation , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Saccharomyces cerevisiae/immunology , Animals , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/pathology , Immune Tolerance , Lymphocyte Count , Mice , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
16.
J Neuroinflammation ; 17(1): 147, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32375831

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of its complex pathogenesis, there is no definite cure for MS. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine used for its therapeutic properties with several autoimmune diseases. It is also used to inhibit acute immune rejection due to its anti-inflammatory and immunosuppressive properties. However, it is unclear whether ATO has a therapeutic effect on EAE, and the underlying mechanisms have not yet been clearly elucidated. In this study, we attempted to assess whether ATO could be used to ameliorate EAE in mice. METHODS: ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and the proportion of CD4+ T cells. In vitro, for mechanistic studies, CD4+ T cells were sorted from the spleen of naïve C57BL/6 mice and treated with ATO and then used for an apoptosis assay, JC-1 staining, imaging under a transmission electron microscope, and western blotting. RESULTS: ATO delayed the onset of EAE and alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation, and decreased the expression levels of IL-2, IFN-γ, IL-1ß, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4+ T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4+ T cell apoptosis via the mitochondrial pathway both in vitro and in vivo. Additionally, the administration of ATO had no adverse effect on the heart, liver, or kidney function, nor did it induce apoptosis in the spinal cord. CONCLUSIONS: Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.


Subject(s)
Arsenic Trioxide/pharmacology , CD4-Positive T-Lymphocytes/drug effects , Encephalomyelitis, Autoimmune, Experimental/pathology , Animals , Apoptosis/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Mice , Mice, Inbred C57BL
17.
Ann Neurol ; 88(1): 123-136, 2020 07.
Article in English | MEDLINE | ID: mdl-32293054

ABSTRACT

OBJECTIVE: Treatment of relapses in multiple sclerosis (MS) has not advanced beyond steroid use, which reduces acute loss of function, but has little effect on residual disability. Acute loss of function in an MS model (experimental autoimmune encephalomyelitis [EAE]) is partly due to central nervous system (CNS) hypoxia, and function can promptly improve upon breathing oxygen. Here, we investigate the cause of the hypoxia and whether it is due to a deficit in oxygen supply arising from impaired vascular perfusion. We also explore whether the CNS-selective vasodilating agent, nimodipine, may provide a therapy to restore function, and protect from demyelination in 2 MS models. METHODS: A variety of methods have been used to measure basic cardiovascular physiology, spinal oxygenation, mitochondrial function, and tissue perfusion in EAE. RESULTS: We report that the tissue hypoxia in EAE is associated with a profound hypoperfusion of the inflamed spinal cord. Treatment with nimodipine restores spinal oxygenation and can rapidly improve function. Nimodipine therapy also reduces demyelination in both EAE and a model of the early MS lesion. INTERPRETATION: Loss of function in EAE, and demyelination in EAE, and the model of the early MS lesion, seem to be due, at least in part, to tissue hypoxia due to local spinal hypoperfusion. Therapy to improve blood flow not only protects neurological function but also reduces demyelination. We conclude that nimodipine could be repurposed to offer substantial clinical benefit in MS. ANN NEUROL 2020 ANN NEUROL 2020;88:123-136.


Subject(s)
Calcium Channel Blockers/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Nimodipine/therapeutic use , Spinal Cord/pathology , Animals , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Magnetic Resonance Imaging , Male , Myelin Sheath/pathology , Rats , Rats, Sprague-Dawley
18.
Aging (Albany NY) ; 12(7): 6225-6239, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32265343

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by T cell infiltration and demyelination of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a classical preclinical animal model of MS. In this study, we found that rotating magnetic field (RMF) treatment exerts potential preventive effects on the discovery of EAE, including reducing the severity of the disease and delaying the onset of the disease. The results indicated that RMF (0.2 T, 4 Hz) treatment increases the accumulation of CD4+ cells in the spleen and lymph nodes by downregulating the expression of CCL-2, CCL-3 and CCL-5, but has no significant effect on myelin oligodendrocyte glycoprotein (MOG) specific T cell responses. Simultaneously, RMF treatment adjusted the imbalance between regulatory T (Treg) cell and T helper 1 (Th1) cells or T helper 17 (Th17) cells by increasing the proportion of Treg cells and inhibiting the ratio of Th1 and Th17 cell subsets. These findings suggest that exposure to RMF may improve EAE disease by promoting CD4+ cell accumulation into peripheral lymphoid tissue, improving the imbalance between Treg and Th1/Th17 cells. Therefore, as a mild physical therapy approach, RMF, is likely to be a potential way to alter the development of EAE.


Subject(s)
CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Lymph Nodes/pathology , Magnetic Field Therapy/methods , Multiple Sclerosis , Spleen/pathology , T-Lymphocytes, Regulatory , Th1 Cells , Th17 Cells , Animals , Cell Count/methods , Cytokines/analysis , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Myelin-Oligodendrocyte Glycoprotein/immunology , Treatment Outcome
19.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31883839

ABSTRACT

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Subject(s)
Complement C3/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Synapses/pathology , Thalamus/pathology , Aged , Aged, 80 and over , Animals , Callithrix , Cell Line, Tumor , Complement C3/antagonists & inhibitors , Disease Models, Animal , Female , Gliosis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, Complement 3b/metabolism
20.
Intern Med ; 59(1): 55-60, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31484905

ABSTRACT

Objective Oryeongsan (Goreisan), a formula composed of five herbal medicines, has long been used to treat impairments of the regulation of body fluid homeostasis. Goreisan has been revealed to have anti-inflammatory actions and inhibit a water channel, the aquaporin (AQP). We herein report the therapeutic effect of Goreisan on experimental autoimmune encephalomyelitis (EAE in, an animal model of inflammatory demyelinating diseases. Materials and Methods EAE mice immunized with MOG35-55 peptide were divided into Goreisan- and sham-treated groups. The clinical EAE score and histopathological finding of the central nervous system (CNS) were analyzed. For the proliferation assay, prepared spleen cells from immunized mice were cultured and analyzed for the [3H]-thymidine uptake and cytokine concentrations of the culture supernatant. The relative quantification of AQP4 mRNA in the CNS of EAE mice was analyzed quantitatively. Results The EAE score of the Goreisan-treated mice was significantly lower than that of the sham-treated mice. The CD4-positive cell number in the CNS of Goreisan-treated mice was lower than that of sham-treated mice. In the recall response to MOG35-55 peptide, the cell proliferation did not differ markedly between the spleen cells from Goreisan- and sham-treated mice. Furthermore, Goreisan decreased the mRNA level of AQP4 in the spinal cord during EAE. Conclusion Goreisan prevented the disease activity of EAE by inhibiting the migration of pathogenic cells into the CNS by suppressing the AQP4 expression in the CNS. Goreisan may have a therapeutic effect on inflammatory demyelinating diseases.


Subject(s)
Aquaporin 4/drug effects , CD4-Positive T-Lymphocytes/drug effects , Cytokines/drug effects , Drugs, Chinese Herbal/pharmacology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Spinal Cord/drug effects , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Cell Proliferation , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Cytokines/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Mice , Mice, Inbred C57BL , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL