Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 631
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Sci Total Environ ; 908: 168374, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37956851

ABSTRACT

Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.


Subject(s)
Cadmium , Soil Pollutants , Humans , Cadmium/analysis , Lactuca , Lanthanum/toxicity , Lead/toxicity , Vegetables , Endocytosis , Soil Pollutants/analysis , Soil
2.
Front Cell Infect Microbiol ; 13: 1163569, 2023.
Article in English | MEDLINE | ID: mdl-38125905

ABSTRACT

The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.


Subject(s)
African Swine Fever Virus , Endosomal Sorting Complexes Required for Transport , Swine , Animals , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , African Swine Fever Virus/genetics , Calcium-Binding Proteins/metabolism , Endosomes/metabolism , Endocytosis
3.
Nat Commun ; 14(1): 5622, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699893

ABSTRACT

Potato late blight caused by Phytophthora infestans is a devastating disease worldwide. Unlike other plant pathogens, double-stranded RNA (dsRNA) is poorly taken up by P. infestans, which is a key obstacle in using dsRNA for disease control. Here, a self-assembled multicomponent nano-bioprotectant for potato late blight management is designed based on dsRNA and a plant elicitor. Nanotechnology overcomes the dsRNA delivery bottleneck for P. infestans and extends the RNAi protective window. The protective effect of nano-enabled dsRNA against infection arises from a synergistic mechanism that bolsters the stability of dsRNA and optimizes its effective intracellular delivery. Additionally, the nano-enabled elicitor enhances endocytosis and amplifies the systemic defense response of the plants. Co-delivery of dsRNA and an elicitor provides a protective effect via the two aspects of pathogen inhibition and elevated plant defense mechanisms. The multicomponent nano-bioprotectant exhibits superior control efficacy compared to a commercial synthetic pesticide in field conditions. This work proposes an eco-friendly strategy to manage devastating plant diseases and pests.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genetics , Endocytosis , Inhibition, Psychological , Nanotechnology , RNA, Double-Stranded
4.
Nano Lett ; 23(17): 8013-8021, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37615624

ABSTRACT

The rapid proliferative biological behavior of primary foci of anaplastic thyroid cancer (ATC) makes it a lethal tumor. According to the specific iodine uptake capacity of thyroid cells and enhanced endocytosis of ATC cells, we designed a kind of nanoclay drug-loading system and showed a promising treatment strategy for ATC. Introducing potassium iodide (KI) improves the homoaggregation of clay nanoparticles and then affects the distribution of nanoparticles in vivo, which makes KI@DOX-KaolinMeOH enriched almost exclusively in thyroid tissue. Simultaneously, the improvement of dispersibility of KI@DOX-KaolinMeOH changes the target uptake of ATC cells by improving the endocytosis and nanoparticle-induced autophagy, which regulate the production of autolysosomes and autophagy-enhanced chemotherapy, eventually contributing to a tumor inhibition rate of more than 90% in the primary foci of ATC. Therefore, this facile strategy to improve the homoaggregation of nanoclay by introducing KI has the potential to become an advanced drug delivery vehicle in ATC treatment.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Potassium Iodide/pharmacology , Potassium Iodide/therapeutic use , Kaolin , Endocytosis , Drug Delivery Systems , Thyroid Neoplasms/drug therapy
5.
Phytomedicine ; 119: 155011, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562093

ABSTRACT

BACKGROUND: Alzheimer's disease (AD), the most prevalent form of dementia, remains untreatable. One of the factors that contributes to its progression is microglia-mediated inflammation. Pterostilbene, a compound isolated from Chinese dragon's blood, can reduce inflammation caused by overactive microglia. However, its effects on AD transgenic animals and the possible underlying mechanism remain unknown. METHODS: We evaluated the effect of pterostilbene on learning and memory difficulties in transgenic APP/PS1 mice. We used immunofluorescence to detect microglial activation and Aß aggregation. We explored the cellular mechanism of pterostilbene by establishing LPS- stimulated BV2 cells and oAß1-42- exposed HEK 293T cells that overexpress TLR4 and/or MD2 via lentivirus. We applied flow cytometry and immunoprecipitation to examine how pterostilbene regulates TLR4 signaling. RESULTS: Pterostilbene enhanced the learning and memory abilities of APP/PS1 mice and reduced microglial activation and Aß aggregation in their hippocampus. Pterostilbene alleviated oAß1-42-induced inflammation, which required the involvement of MD2. Pterostilbene disrupted the binding between TLR4 and MD2, which may further prevent TLR4 dimerization and subsequent inflammatory response. Moreover, pterostilbene restored the impaired endocytosis of oAß1-42 through an autophagy-dependent mechanism. CONCLUSION: This is the first demonstration that pterostilbene can potentially treat AD by blocking the interaction of TLR4 and MD2, thereby suppressing TLR4-mediated inflammation.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Toll-Like Receptor 4/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Inflammation/drug therapy , Inflammation/metabolism , Microglia , Autophagy , Endocytosis , Disease Models, Animal
6.
Environ Toxicol Pharmacol ; 101: 104171, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295740

ABSTRACT

The objective of this study was to explore the endocytosis mechanisms of uranium uptake in HK-2 cells and its toxic effects. Our results demonstrated that uranium exposure impairs redox homeostasis and increases the permeability of the cell membrane and mitochondrial membrane, which may induce cell apoptosis by cytochrome-c leakage. Alkaline phosphatase activity increased after uranium exposure, which may be involved in the process of intracellular mineralisation of uranium, leading to severe cell necrosis. Furthermore, our findings demonstrated that the clathrin-mediated endocytosis process contributed substantially to uranium uptake in HK-2 cells and the total uranium uptake was highly correlated with cell viability, reaching a high correlation coefficient (r = -0.853) according to Pearson correlation analysis. In conclusion, the uptake of uranium into mammalian cells was mainly facilitated by the clathrin-mediated endocytosis pathway and induced dose-dependent cellular toxicity, including redox homeostasis imbalance, membrane injury, cell apoptosis and necrosis.


Subject(s)
Uranium , Animals , Uranium/pharmacology , Cell Line , Clathrin/metabolism , Clathrin/pharmacology , Endocytosis , Necrosis , Mammals
7.
Plant Sci ; 330: 111633, 2023 May.
Article in English | MEDLINE | ID: mdl-36775070

ABSTRACT

Pollen tube polar growth is a key cellular process during plant fertilization and is regulated by tip-focused exocytosis and endocytosis. However, the spatiotemporal dynamics and localizations of apical exocytosis and endocytosis in the tip region are still a matter of debate. Here, we use a refined spinning-disk confocal microscope coupled with fluorescence recovery after photobleaching for sustained live imaging and quantitative analysis of rapid vesicular activities in growing pollen tube tips. We traced and analyzed the occurrence site of exocytic plasma membrane-targeting of Arabidopsis secretory carrier membrane protein 4 and its subsequent endocytosis in tobacco pollen tube tips. We demonstrated that the pollen tube apex is the site for both vesicle polar exocytic fusion and endocytosis to take place. In addition, we disrupted either tip-focused exocytosis or endocytosis and found that their dynamic activities are closely correlated with one another basing on the spatial organization of actin fringe. Collectively, our findings attempt to propose a new exocytosis and endocytosis-coordinated yin-yang working model underlying the apical membrane organization and dynamics during pollen tube tip growth.


Subject(s)
Arabidopsis , Pollen Tube , Endocytosis/physiology , Actins/metabolism , Cell Membrane/metabolism , Arabidopsis/metabolism , Exocytosis/physiology
8.
Cell Rep ; 42(2): 112036, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36701234

ABSTRACT

Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) is an important signaling phospholipid that is required for regulated exocytosis and some forms of endocytosis. The two processes share a topologically similar pore structure that connects the vesicle lumen with the outside. Widening of the fusion pore during exocytosis leads to cargo release, while its closure initiates kiss&run or cavicapture endocytosis. We show here, using live-cell total internal reflection fluorescence (TIRF) microscopy of insulin granule exocytosis, that transient accumulation of PI(4,5)P2 at the release site recruits components of the endocytic fission machinery and stalls the late fusion pore expansion that is required for peptide release. The absence of clathrin differentiates this mechanism from clathrin-mediated endocytosis. Knockdown of phosphatidylinositol-phosphate-5-kinase-1c or optogenetic recruitment of 5-phosphatase reduces PI(4,5)P2 transients and accelerates fusion pore expansion, suggesting that acute PI(4,5)P2 synthesis is involved. Thus, local phospholipid signaling inhibits fusion pore expansion and peptide release through an unconventional endocytic mechanism.


Subject(s)
Endocytosis , Exocytosis , Cell Membrane , Insulin , Clathrin , Phosphatidylinositols , Membrane Fusion
9.
J Biomol Struct Dyn ; 41(13): 6422-6433, 2023.
Article in English | MEDLINE | ID: mdl-35912718

ABSTRACT

This study proposes a novel model for integration of SARS-CoV-2 into host cell via endocytosis as a possible alternative to the prevailing direct fusion model. It is known that the SARS-CoV-2 spike protein undergoes proteolytic cleavage at S1-S2 cleavage site and the cleaved S2 domain is primed by the activated serine protease domain (SPD) of humanTMPRSS2 to become S2'. The activated SPD of TMPRSS2 is formed after it is cleaved by autocatalysis from the membrane bound non-catalytic ectodomain (hNECD) comprising of LDLRA CLASS-I repeat and a SRCR domain. It is known that the SRCR domains as well as LDLRA repeat harboring proteins mediate endocytosis of viruses and certain ligands. Based on this, we put forward a hypothesis that the exposed hNECD binds to the S2' as both are at an interaction proximity soon after S2 is processed by the SPD and this interaction may lead to the endocytosis of virus. Based on this hypothesis we have modelled the hNECD structure, followed by docking studies with the known 3D structure of S2'. The interaction interface of hNECD with S2' was further used for virtual screening of FDA-approved drug molecules and Indian medicinal plant-based compounds. We also mapped the known mutations of concern and mutations of interest on interaction interface of S2' and found that none of the known mutations map onto the interaction interface. This indicates that targeting the interaction between the hNECD of TMPRSS2 and S2' may serve as an attractive therapeutic target.Communicated by Ramaswamy H. Sarma.


Subject(s)
Endocytosis , SARS-CoV-2 , Serine Endopeptidases , Spike Glycoprotein, Coronavirus , Humans , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Protein Domains , Molecular Docking Simulation , Protein Structure, Tertiary
10.
mSystems ; 7(6): e0056322, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36317887

ABSTRACT

Phosphonates are important components of marine organic phosphorus, but their bioavailability and catabolism by eukaryotic phytoplankton remain enigmatic. Here, diatom Phaeodactylum tricornutum was used to investigate the bioavailability of phosphonates and describe the underlying molecular mechanism. The results showed that 2-aminoethylphosphonic acid (2-AEP) can be utilized as an alternative phosphorus source. Comparative transcriptomics revealed that the utilization of 2-AEP comprised 2 steps, including molecular uptake through clathrin-mediated endocytosis and incorporation into the membrane phospholipids in the form of diacylglyceryl-2-AEP (DAG-2-AEP). In the global ocean, we found the prevalence and dynamic expression pattern of key genes that are responsible for vesicle formation (CLTC, AP-2) and DAG-AEP synthesis (PCYT2, EPT1) in diatom assemblages. This study elucidates a distinctive mechanism of phosphonate utilization by diatoms, and discusses the ecological implications. IMPORTANCE Phosphonates contribute ~25% of total dissolved organic phosphorus in the ocean, and are found to be important for marine phosphorus biogeochemical cycle. As a type of biogenic phosphonate produced by microorganisms, 2-aminoethylphosphonic acid (2-AEP) widely exists in the ocean. It is well known that 2-AEP can be cleaved and utilized by prokaryotes, but its ability to support the growth of eukaryotic phytoplankton remains unclear. Our research identified the bioavailability of 2-AEP for the diatom Phaeodactylum tricornutum, and proposed a distinctive metabolic pathway of 2-AEP utilization. Different from the enzymatic hydrolysis of phosphonates, the results suggested that P. tricornutum utilizes 2-AEP by incorporating it into phospholipid instead of cleaving the C-P bond. Moreover, the ubiquitous distribution of associated representative gene transcripts in the environmental assemblages and the higher gene transcript abundance in the cold regions were observed, which suggests the possible environmental adaption of 2-AEP utilization by diatoms.


Subject(s)
Diatoms , Organophosphonates , Diatoms/genetics , Transcriptome , Organophosphonates/metabolism , Aminoethylphosphonic Acid/metabolism , Phytoplankton/genetics , Endocytosis , Phosphorus/metabolism , Clathrin/genetics
11.
Ecotoxicol Environ Saf ; 246: 114166, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36228352

ABSTRACT

Uranium is a radioactive heavy metal and a significant public health concern; however, its associated underlying toxicological mechanisms remain largely unknown. In this work, the uptake and efflux processes of uranium in CHO-k1 cells were studied and the cytotoxicity effects were explored. It was found that both the uptake and efflux processes took place rapidly and half of the internalized uranium was expelled within 8 h. The uranium exposure caused a decrease of cell viability and adhesion ability in a dose-dependent manner and blocked the cell cycle at the G1 stage. In addition, gene expression analysis revealed relative changes in the transcription of metabolism related genes. Further studies revealed that the cytotoxicity of uranium could be alleviated by exposing cells to a lower temperature or by the addition of amantadine-HCl, an endocytosis inhibitor. Interestingly, after uranium exposure, needle-like precipitates were observed in both intracellular and extracellular regions. These findings collectively suggest that the cellular transport of uranium is a rapid process that disturbs cell metabolism and induces cytotoxicity, and this impact could be reduced by slowing down endocytic processes.


Subject(s)
Uranium , Cricetinae , Animals , Uranium/toxicity , Uranium/metabolism , Cricetulus , CHO Cells , Cell Survival , Endocytosis
12.
Nat Commun ; 13(1): 5032, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028511

ABSTRACT

In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism.


Subject(s)
Meningitis, Pneumococcal , Streptococcus pneumoniae , Animals , Bacterial Proteins , Cytotoxins , Endocytosis , Inflammation , Mice , Streptolysins
13.
J Dent Res ; 101(9): 1055-1063, 2022 08.
Article in English | MEDLINE | ID: mdl-35394372

ABSTRACT

Limited therapeutic options are available for treating deep caries. Those materials with potential of a dual effect to remineralize hard tissue and regenerate defective dentin tissues could be used as a new strategy for deep caries treatment. However, the application of the single component remains a challenge mainly because they lack calcium and phosphorus, are easily degraded, and are difficult to retain in the intricate body fluid environment. Considering the abundant source of calcium and phosphorus as well as the delivery performance of mesoporous bioactive glass (MBG), an amelogenin-derived peptide (QP5), which has a significant role in hard tissue remineralization, was loaded to fabricate a novel composite. After the synthesis of highly ordered MBG using a sol-gel method, the QP5 peptide was loaded increasingly by its extensive porous structure and enhanced electrostatic absorption. When used in an acidic environment, the MBG/QP5 composite presented pH-responsiveness, releasing therapeutic ions and functional peptides in a sequential cascade, and eventually adjusted the pH to a neutral state. The composite was internalized by dental pulp cells through a clathrin-mediated pathway and influenced by cell membrane lipid raft regulation. It could be also transported through the macro-pinocytotic pathway. Compared to the single treatment of peptide QP5 in 48 h, the composite facilitated a higher level of retention of the intracellular peptides. The composite further promoted migration and odontogenesis of dental pulp cells, including the improved activity of alkaline phosphatase, increased formation of mineralized nodules, and upregulated expression of mineralization-related genes compared to using MBG or QP5 alone. The composite further induced the dentin-like layer in a rat pulp capping model. The results suggested that this intelligent material with pH-responsiveness provides a promising alternative treatment method for biomimetic restoration of deep caries.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Animals , Biocompatible Materials/pharmacology , Calcium , Endocytosis , Glass/chemistry , Odontogenesis , Peptides , Phosphorus , Porosity , Rats , Tissue Scaffolds/chemistry
14.
Sci Total Environ ; 823: 153700, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35168012

ABSTRACT

Endocytosis of metals in plants is a growing field of study involving metal uptake from the rhizosphere. Uranium, which is naturally and artificially released into the rhizosphere, is known to be taken up by certain species of plant, such as Nicotiana tabacum, and we hypothesize that endocytosis contributes to the uptake of uranium in tobacco. The endocytic uptake of uranium was investigated in tobacco BY-2 cells using an optimized setup of culture in phosphate-deficient medium. A combination of methods in biochemistry, microscopy and spectroscopy, supplemented by proteomics, were used to study the interaction of uranium and the plant cell. We found that under environmentally relevant uranium concentrations, endocytosis remained active and contributed to 14% of the total uranium bioassociation. Proteomics analyses revealed that uranium induced a change in expression of the clathrin heavy chain variant, signifying a shift in the type of endocytosis taking place. However, the rate of endocytosis remained largely unaltered. Electron microscopy and energy-dispersive X-ray spectroscopy showed an adsorption of uranium to cell surfaces and deposition in vacuoles. Our results demonstrate that endocytosis constitutes a considerable proportion of uranium uptake in BY-2 cells, and that endocytosed uranium is likely targeted to the vacuole for sequestration, providing a physiologically safer route for the plant than uranium transported through the cytosol.


Subject(s)
Uranium , Biological Transport , Endocytosis , Phosphates/metabolism , Nicotiana , Uranium/metabolism
15.
Nat Commun ; 12(1): 7344, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937876

ABSTRACT

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Subject(s)
Lymphocytes/metabolism , Nucleic Acid Heteroduplexes/metabolism , Oligonucleotides/metabolism , RNA/metabolism , Administration, Intravenous , Adoptive Transfer , Animals , Demyelinating Diseases/genetics , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Endocytosis/drug effects , Female , Gene Expression Regulation , Gene Silencing , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Humans , Integrin alpha4/genetics , Integrin alpha4/metabolism , Jurkat Cells , Male , Mice, Inbred C57BL , Nucleic Acid Heteroduplexes/administration & dosage , Nucleic Acid Heteroduplexes/pharmacokinetics , Nucleic Acid Heteroduplexes/pharmacology , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacokinetics , Oligonucleotides/pharmacology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/pathology , Tissue Distribution/drug effects
16.
J Tradit Chin Med ; 41(5): 771-778, 2021 10.
Article in English | MEDLINE | ID: mdl-34708636

ABSTRACT

OBJECTIVE: To explore the neuroprotective mechanisms of Tongluo Huatan capsule (THC) in a rat model of vascular dementia (VD). METHODS: A rat model of VD was established by repeated clamping of bilateral common carotid arteries with the intraperitoneal injection of sodium nitroprusside solution. VD rats were administered THC, memantine hydrochloride, or distilled water daily for 14 d after operation. Learning and memory abilities were assessed using the step-down passive avoidance test, novel object recognition (NOR) test, and Morris water maze (MWM) test. Pathological changes in the hippocampus were observed through hematoxylin and eosin and Nissl staining. The expression levels of clathrin, RAB5B, and N-methyl-D-aspartic acid receptor 1 (NMDAR1) were measured by immunohistochemistry staining, real-time quantitative polymerase chain reaction and Western blot. RESULTS: Rats in VD group showed impaired learning and memory abilities (step-down passive avoidance, NOR, and MWM) and abnormalities in neuronal morphology (light microscopy) in the hippocampus. The mRNA or protein expression levels of clathrin and RAB5B were decreased, and NMDAR1 was increased in hippocampal tissues (P < 0.05). Administration of THC promoted the learning and memory abilities and the morphological structure of hippocampal neurons in VD rats. Besides, THC enhanced mRNA or protein expression levels of clathrin and RAB5B, and decreased NMDAR1 (P < 0.05). CONCLUSION: THC may improve cognitive functions by regulating the endocytosis of NMDA receptors mediated by clathrin.


Subject(s)
Dementia, Vascular , Animals , Clathrin/genetics , Clathrin/metabolism , Cognition , Dementia, Vascular/drug therapy , Dementia, Vascular/genetics , Dementia, Vascular/metabolism , Drugs, Chinese Herbal , Endocytosis , Hippocampus/metabolism , Maze Learning , N-Methylaspartate/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
17.
Int J Biol Macromol ; 189: 443-454, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34425122

ABSTRACT

In this contribution, we report the fabrication of multifunctional nanoparticles with gold shell over an iron oxide nanoparticles (INPs) core. The fabricated system combines the magnetic property of INPs and the surface plasmon resonance of gold. The developed nanoparticles are coated with thiolated pectin (TPGINs), which provides stability to the nanoparticles dispersion and allows the loading of hydrophobic anticancer drugs. Curcumin (Cur) is used as the model drug and an encapsulation efficiency of approximately 80% in TPGINs is observed. Cytotoxicity study with HeLa cells shows that Cur-loaded TPGINs have better viability percent (~30%) than Cur alone (~40%) at a dose of 30 µg of TPGINs. Further, annexin V-PI assay demonstrated the enhanced anticancer activity of Cur-loaded TPGINs via induction of apoptosis. The use of TPGINs leads to a significant enhancement in generating reactive oxygen species (ROS) in HeLa cells through improved radiosensitization by gamma irradiation (0.5 Gy). TPGINs are further evaluated for imparting contrast in magnetic resonance imaging (MRI) with the r2 relaxivity in the range of 11.06-13.94 s-1 µg-1 mL when measured at 7 Tesla. These experimental results indicate the potential of TPGINs for drug delivery and MR imaging.


Subject(s)
Diagnostic Imaging , Multifunctional Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Pectins/chemistry , Radiation Tolerance , Cell Death/drug effects , Cell Survival/drug effects , Curcumin/pharmacology , Drug Liberation , Endocytosis/drug effects , HeLa Cells , Humans , Hydrodynamics , Kinetics , Magnetic Resonance Imaging , Multifunctional Nanoparticles/ultrastructure , Particle Size , Phantoms, Imaging , Photoelectron Spectroscopy , Reactive Oxygen Species/metabolism , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Staining and Labeling , Thermogravimetry
18.
Carbohydr Polym ; 270: 118383, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364625

ABSTRACT

The elucidation of the oral absorption of natural polysaccharides contributes to their further research and utilization. Herein, to explore the absorption of a pectin-type polysaccharide from Smilax china L. (SCLP), SCLP was respectively fluorescently labeled with fluorescein-5-thioicarbazide (FSCLP) and Cyanine7 amine (Cy7-SCLP) for in vitro and in vivo tracking. The near-infrared imaging demonstrated that Cy7-SCLP was absorbable in the small intestine and distributed in the liver and kidney after oral administration. Subsequently, in vitro intestinal epithelial tissue experiments showed that the jejunum was the dominant site of FSCLP transport. Further transport studies in the Caco-2 cell monolayer illustrated that FSCLP was delivered across the monolayer via transcellular transport by caveolae-mediated endocytosis and macropinocytosis together with paracellular transport by reversibly affecting tight junctions. In summary, this work presents the oral absorption characteristics and mechanisms of SCLP through the intestinal epithelium, which will facilitate the further development of SCLP and pectin polysaccharides.


Subject(s)
Intestinal Absorption/drug effects , Intestinal Mucosa/metabolism , Pectins/pharmacokinetics , Polysaccharides/pharmacokinetics , Smilax/chemistry , Administration, Oral , Animals , Caco-2 Cells , Endocytosis , Fluorescein/administration & dosage , Humans , Intestinal Mucosa/drug effects , Kidney/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Pectins/administration & dosage , Polysaccharides/administration & dosage , Rats , Rats, Sprague-Dawley , Tight Junctions , Transcytosis
19.
J Photochem Photobiol B ; 221: 112257, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34271410

ABSTRACT

Organic semiconductor small molecules IHIC and ITIC have been developed as solar cell materials, and because of their strong near-infrared absorption capabilities, they are promising for cancer phototherapy. This article reports the application of semiconductor small molecule IHIC/ITIC liposomes in photothermal therapy and photoacoustic imaging of tumors firstly. Experiments show that the liposome-loaded IHIC/ITIC material has good biocompatibility and can be effectively enriched in tumor sites. After being irradiated with laser, it can emit strong photoacoustic signals, and has achieved good results in the photothermal treatment of breast cancer mice. We believe that organic semiconductor small molecule IHIC/ITIC will become a promising photothermal agent with wonderful development possibilities.


Subject(s)
Biocompatible Materials/chemistry , Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Semiconductors , Animals , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Cell Survival/drug effects , Endocytosis/drug effects , Endocytosis/radiation effects , HeLa Cells , Humans , Lasers , Liposomes/chemistry , Mice , Mice, Nude , Microscopy, Confocal , Neoplasms/diagnostic imaging , Neoplasms/pathology , Particle Size , Photoacoustic Techniques , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Photothermal Therapy , Transplantation, Heterologous
20.
Food Funct ; 12(18): 8522-8534, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34312648

ABSTRACT

Tea polysaccharides exhibit multiple important bioactivities, but very few of them can be absorbed through the small intestine. To enhance the absorption efficacy of tea polysaccharides, a cationic vitamin B12-conjugated glycogen derivative bearing the diethylenetriamine residues (VB12-DETA-Gly) was synthesized and characterized using FTIR, 1H NMR, and UV-vis spectroscopy. An acidic tea polysaccharide (TPSA) was isolated from green tea. The TPSA/VB12-DETA-Gly complexed nanoparticles were prepared, which showed positive zeta potentials and were irregular spherical nanoparticles in the sizes of 50-100 nm. To enable the fluorescence and UV-vis absorption properties of TPSA, a Congo red residue-conjugated TPSA derivative (CR-TPSA) was synthesized. The interactions and complexation mechanism between the CR-TPSA and the VB12-DETA-Gly derivatives were investigated using fluorescence spectroscopy, resonance light scattering spectroscopy, and UV-vis spectroscopy. The results indicated that the electrostatic interaction could play a major role during the CR-TPSA and VB12-DETA-Gly-II complexation processes. The TPSA/VB12-DETA-Gly nanoparticles were nontoxic and exhibited targeted endocytosis for the Caco-2 cells, and showed high permeation through intestinal enterocytes using the Caco-2 cell model. Therefore, they exhibit potential for enhancing the absorption efficacy of tea polysaccharides through the small intestinal mucosa.


Subject(s)
Enterocytes/metabolism , Glycogen/analogs & derivatives , Nanoparticle Drug Delivery System , Nanoparticles , Polysaccharides/pharmacokinetics , Tea/chemistry , Vitamin B 12 , Caco-2 Cells , Cations , Endocytosis , Glycogen/chemistry , Glycogen/metabolism , Humans , Intestinal Absorption , Nanoparticles/chemistry , Nanoparticles/toxicity , Permeability , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL