Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 45(1): 65-71, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32237412

ABSTRACT

The interaction of endophytes and host plant is an effective mean to regulate the growth and secondary metabolism of medicinal plants. Here we want to elucidate the effects and mechanism of Phoma herbarum D603 on the root development and tanshinone synthesis in root of Salvia miltiorrhiza by endophyte-plant coculture system. The mycelium of P. herbarum D603 was colonized in the root tissue space, and formed a stable symbiotic relationship with host plant. The in vitro activities analysis showed that the concentration of IAA produced by D603 can reach(6.45±0.23) µg·mL~(-1), and this strain had some abilities of phosphorus solubilization and siderophore production activities. The coculture experiment showed that strain D603 can significantly promote the synthesis and accumulation of tanshinones in the root of S. miltiorrhiza, in which after 8 weeks of treatment with D603, the content of tanshinone Ⅱ_A in the roots reached up to(1.42±0.59) mg·g~(-1). By the qRT-PCR analysis results, we found that D603 could improve the expression levels of some key genes(DXR, DXS, GGPP, HMGR, CPS) of tanshinone biosynthesis pathway in host plant S. miltiorrhiza, but the promoting effect mainly occurred in the early stage of the interaction, and the enzyme activity level decreased in varying degrees of the later stage. In summary, seed-associated endophyte P. herbarum D603 can promote the growth and root development of S. miltiorrhiza by producing hormones, promoting nutrient absorption and siderophore production, and promote the synthesis and accumulation of tanshinones by regulating the expression level of key genes in the synthetic pathway in S. miltiorrhiza.


Subject(s)
Abietanes/biosynthesis , Ascomycota/growth & development , Plant Roots/microbiology , Salvia miltiorrhiza/microbiology , Endophytes/growth & development , Plant Roots/metabolism , Salvia miltiorrhiza/metabolism , Seeds/microbiology
2.
J Sci Food Agric ; 100(1): 441-446, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31512241

ABSTRACT

BACKGROUND: The production of mycelium from endophytic fungi is of interest for applications ranging from inoculants and biofertilizers for crop production to fermentations for enzyme and metabolite production. The purpose of this study was to test the capacity of a solid growth medium based on beet pulp for growing different strains of endophytes. RESULTS: The ergosterol content of inoculated medium was measured to estimate fungal growth. Several parameters related to the preparation of the growth medium, such as water content, calcium salts and incubation time, were evaluated. The greatest fungal biomass production was observed in a medium prepared with a 1:2 (beet pulp:water) ratio, containing calcium sulfate and carbonate. Strains belonging to different fungal species grew well in the growth medium finally selected, producing yields ranging from 50 to 500 g mycelium per kilogram of dry culture, after 22-27 days. Cultures containing up to 400 g beet pulp grew successfully, and could be scaled up. CONCLUSION: A solid culture medium based on beet pulp supported the growth of diverse taxa of fungal endophytes. Both the water and calcium salt content of the growth medium affected the efficiency of mycelium production. Considering these factors, beet pulp medium was an excellent endophyte cultivation medium because of the high yield of fungal biomass observed, together with its ease of handling and scaling-up production. © 2019 Society of Chemical Industry.


Subject(s)
Beta vulgaris/microbiology , Culture Media/metabolism , Endophytes/growth & development , Fungi/growth & development , Beta vulgaris/chemistry , Biomass , Culture Media/chemistry , Endophytes/metabolism , Fermentation , Fungi/metabolism , Mycelium/growth & development , Mycelium/metabolism
3.
Environ Microbiol Rep ; 11(4): 548-557, 2019 08.
Article in English | MEDLINE | ID: mdl-30970176

ABSTRACT

Serendipitaceae represents a diverse fungal group in the Basidiomycota that includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal lifestyle. Plants rely upon both nitrogen and phosphorous, for essential growth processes, and are often provided by mycorrhizal fungi. In this study, we investigated the cellular proteome of Serendipita vermifera MAFF305830 and closely related Serendipita vermifera subsp. bescii NFPB0129 grown in vitro under (N) ammonium and (P) phosphate starvation conditions. Mycelial growth pattern was documented under these conditions to correlate growth-specific responses to nutrient starvation. We found that N-starvation accelerated hyphal radial growth, whereas P-starvation accelerated hyphal branching. Additionally, P-starvation triggers an integrated starvation response leading to remodelling of lipid metabolism. Higher abundance of an ammonium transporter known to serve as both an ammonium sensor and stimulator of hyphal growth was detected under N-starvation. Additionally, N-starvation led to strong up-regulation of nitrate, amino acid, peptide, and urea transporters, along with several proteins predicted to have peptidase activity. Taken together, our finding suggests S. bescii and S. vermifera have the metabolic capacity for nitrogen assimilation from organic forms of N compounds. We hypothesize that the nitrogen metabolite repression is a key regulator of such organic N assimilation.


Subject(s)
Basidiomycota/metabolism , Endophytes/metabolism , Lipid Metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Ammonium Compounds/metabolism , Bacterial Proteins/metabolism , Basidiomycota/growth & development , Endophytes/growth & development , Gene Ontology , Hyphae/growth & development , Hyphae/metabolism , Nitrogen/deficiency , Phosphates/deficiency , Phosphates/metabolism , Phosphorus/deficiency , Proteome/metabolism , Stress, Physiological
4.
J Basic Microbiol ; 59(7): 713-722, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30994190

ABSTRACT

Plant endophytes are rich in secondary metabolites and are widely used in medicine, chemical, food, agriculture, and other fields. Here, an endophytic fungus is isolated from Ginkgo biloba L. leaves and identified as Alternaria brassicae GL07 through genotypic characterizations. It can produce fruity scented volatiles. The analysis of volatile organic compounds (VOCs) was done by gas chromatography-mass spectrometry. A total of 32 components were identified; and at different culture times, the composition of VOCs was different. It had more components in the first two weeks, but a fewer components on the 21st day. More olefins, ketone, aldehyde, and alcohol were found in the growth period and more amines and esters were found in the decline period. Also, 2,5-dihydroxyacetophenone, ß-ionone, and nonanal were found. They were the same ingredients in Ginkgo essential oils and some of them were isolated for the first time in the volatile constituents of endophytes. The antioxidant activity and whitening activities of all extracts were also evaluated. When cultured for 10 days, it had the strongest 2,2-diphenyl-2-picrylhydrazyl radical (IC50 , 0.56 g/L), hydroxyl radical scavenging ability (IC50 , 0.47 g/L), reducing ability, and tyrosinase inhibition ability (IC50 , 5.18 g/L), which may be due to a large amount of ketones and alcohols produced during the log phase. This demonstrates the potential of A. brassicae GL07 to produce bioactive compounds and to be used for perfume and cosmetic industries.


Subject(s)
Alternaria/chemistry , Alternaria/growth & development , Antioxidants/metabolism , Volatile Organic Compounds/metabolism , Alternaria/classification , Alternaria/genetics , Endophytes/chemistry , Endophytes/classification , Endophytes/genetics , Endophytes/growth & development , Ginkgo biloba/microbiology , Oxidation-Reduction , Phylogeny , Plant Extracts/chemistry , Plant Leaves/microbiology , Volatile Organic Compounds/chemistry
5.
Steroids ; 145: 1-4, 2019 05.
Article in English | MEDLINE | ID: mdl-30738076

ABSTRACT

A new ergosterol derivative, 23R-hydroxy-(20Z,24R)-ergosta-4,6,8(14),20(22)-tetraen-3-one (1), and a biosynthetically related known compound, (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (2), were isolated from the co-culture between endophytic fungus Pleosporales sp. F46 and endophytic bacterium Bacillus wiedmannii Com1 both inhibiting in the medicinal plant Mahonia fortunei. The structure of the new compound 1 was determined by extensive spectroscopic analysis using HRMS and NMR, together with the modified Mosher's ester method. This is the first example of isolation of a ergosterol derivative with a Δ20(22)-double bond in the side chain. Compound 1 exhibited moderate antibacterial efficacy against Staphylococcus aureus and no obvious cytotoxic activities against the cancer cell lines A549, MDA-MB-231 and Hct116. Our results not only reveal that compound 1 is a potent antibacterial lead compound, but also highlight the powder of co-cultivation for inducing the production of cryptic natural products from endophytes derived from the same host plant.


Subject(s)
Ascomycota/metabolism , Bacillus/metabolism , Coculture Techniques , Endophytes/metabolism , Mahonia/microbiology , Steroids/biosynthesis , Ascomycota/growth & development , Ascomycota/physiology , Bacillus/growth & development , Bacillus/physiology , Endophytes/growth & development , Endophytes/physiology , Models, Molecular , Molecular Conformation , Steroids/chemistry
6.
J Antibiot (Tokyo) ; 72(3): 174-177, 2019 03.
Article in English | MEDLINE | ID: mdl-30542160

ABSTRACT

Two new isochromanone derivatives, (3S,4S)-3,8-dihydroxy-6-methoxy-3,4,5-trimethylisochroman-1-one (1) and methyl (S)-8-hydroxy-6-methoxy-5-methyl-4a-(3-oxobutan-2-yl)benzoate (2), together with six known compounds (3‒8) were isolated from the cultures of an endophytic fungus Phoma sp. PF2 obtained from Artemisia princeps. The chemical structures of the isolated compounds were elucidated by interpretation of spectroscopic data (1D, 2D NMR, HRESIMS, and CD) and calculation of ECD. All the isolated compounds (1‒8) showed moderate inhibitory activities on nitric oxide levels in lipopolysaccharide-induced RAW264.7 machrophage cells.


Subject(s)
Artemisia/microbiology , Ascomycota/metabolism , Biological Products/isolation & purification , Biological Products/pharmacology , Endophytes/metabolism , Immunosuppressive Agents/isolation & purification , Immunosuppressive Agents/pharmacology , Animals , Ascomycota/growth & development , Ascomycota/isolation & purification , Biological Products/chemistry , Circular Dichroism , Culture Media/chemistry , Endophytes/growth & development , Endophytes/isolation & purification , Immunosuppressive Agents/chemistry , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , RAW 264.7 Cells , Spectrometry, Mass, Electrospray Ionization
7.
Braz J Microbiol ; 49 Suppl 1: 47-58, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30166266

ABSTRACT

To know more about the potential roles of endophytic fungi in the formation mechanism of Daodi medicinal material, diversity and communities of culturable endophytic fungi in three types of tree peonies were investigated. Endophytic fungi of three types of tree peonies were isolated and identified. The diversity was analyzed. Bayesian trees constructed by MrBayes 3.2.6 after phylogenetic analysis of the ITS sequences. The endophytic fungi potential for synthesis of natural products was assessed by means of detecting NRPS and PKS gene sequences. In total, 364 endophytic fungi isolates representing 26 genera were recovered from Paeonia ostii 'Feng Dan', Paeonia ostii 'Luoyang Feng Dan', and Paeonia suffruticosa 'Luoyang Hong'. More culturable endophytic fungi appeared in P. suffruticosa 'Luoyang Hong' (206) compared with P. ostii 'Feng Dan' (60) and P. ostii 'Luoyang Feng Dan' (98). The fungal community of P. ostii 'Feng Dan' had the highest richness and diversity. PKSs and NRPS detection rates of endophytic fungi from P. ostii 'Feng Dan' are both the highest among the three types of tree peonies. Results indicate that endophytic fungus is an important factor of Daodi Cortex Moutan forming, and endophytic fungi in peony are related to genuineness of Cortex Moutan.


Subject(s)
Biodiversity , Biological Products/metabolism , Endophytes/isolation & purification , Fungi/isolation & purification , Paeonia/microbiology , Drugs, Chinese Herbal/metabolism , Endophytes/classification , Endophytes/genetics , Endophytes/growth & development , Fungi/classification , Fungi/genetics , Fungi/growth & development , Paeonia/classification , Paeonia/growth & development , Paeonia/metabolism , Phylogeny
8.
Fungal Biol ; 122(5): 373-378, 2018 05.
Article in English | MEDLINE | ID: mdl-29665963

ABSTRACT

The recent discovery that entomopathogenic fungi can grow endophytically in plant tissues has spurred research into novel plant protection measures. However, current applications of fungi aiming at endophytism mostly lack targeted formulation strategies resulting in low efficacy. Here, we aimed at enhancing Metarhizium brunneum CB15 endophytism in potato plants by (i) improvement of fungal growth from beads and (ii) cellulase formation or addition to encapsulated mycelium. We found that beads supplemented with cellulose alone or in addition with inactivated baker's yeast exhibited cellulase activity and increased mycelial growth by 12.6 % and 13.6 %, respectively. Higher enzymatic activity achieved by cellulase co-encapsulation promoted a shift from mycelial growth to spore formation with maximum numbers of 2.5 × 108 ± 6.1 × 107 per bead. This correlated with improved endophytism in potato plants by 61.2 % compared to non-supplemented beads. Our study provides first evidence that customized formulations of fungal entomopathogens with enzymes can improve endophytism and this may increase efficacy in plant protection strategies against herbivorous pests.


Subject(s)
Cellulase/metabolism , Endophytes/enzymology , Endophytes/growth & development , Metarhizium/enzymology , Metarhizium/growth & development , Solanum tuberosum/microbiology , Mycelium/growth & development , Spores, Fungal/growth & development
9.
Ecotoxicol Environ Saf ; 147: 602-609, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28923725

ABSTRACT

Petroleum hydrocarbons are well known by their high toxicity and recalcitrant properties. Their increasing utilization around worldwide led to environmental contamination. Phytoremediation using plant-associated microbe is an interesting approach for petroleum degradation and actinobacteria have a great potential for that. For this purpose, our study aimed to isolate, characterize, and assess the ability of endophytic actinobacteria to degrade crude petroleum, as well as to produce plant growth promoting traits. Seventeen endophytic actinobacteria were isolated from roots of plants grown naturally in sandy contaminated soil. Among them, six isolates were selected on the basis of their tolerance to petroleum on solid minimal medium and characterized by 16S rDNA gene sequencing. All petroleum-tolerant isolates belonged to the Streptomyces genus. Determination by crude oil degradation by gas chromatorgraph-flame ionization detector revealed that five strains could use petroleum as sole carbon and energy source and the petroleum removal achieved up to 98% after 7 days of incubation. These isolates displayed an important role in the degradation of the n-alkanes (C6-C30), aromatic and polycyclic aromatic hydrocarbons. All strains showed a wide range of plant growth promoting features such as siderophores, phosphate solubilization, 1-aminocyclopropane-1-carboxylate deaminase, nitrogen fixation and indole-3-acetic acid production as well as biosurfactant production. This is the first study highlighting the petroleum degradation ability and plant growth promoting attributes of endophytic Streptomyces. The finding suggests that the endophytic actinobacteria isolated are promising candidates for improving phytoremediation efficiency of petroleum contaminated soil.


Subject(s)
Endophytes/metabolism , Petroleum/analysis , Plants/microbiology , Soil Pollutants/analysis , Streptomyces/metabolism , Algeria , Biodegradation, Environmental , Carbon-Carbon Lyases/metabolism , Endophytes/growth & development , Nitrogen Fixation/drug effects , Plant Development/drug effects , Plants/metabolism , Soil/chemistry , Streptomyces/growth & development
10.
Braz. j. microbiol ; 49(supl.1): 47-58, 2018. tab, graf
Article in English | LILACS | ID: biblio-974328

ABSTRACT

Abstract To know more about the potential roles of endophytic fungi in the formation mechanism of Daodi medicinal material, diversity and communities of culturable endophytic fungi in three types of tree peonies were investigated. Endophytic fungi of three types of tree peonies were isolated and identified. The diversity was analyzed. Bayesian trees constructed by MrBayes 3.2.6 after phylogenetic analysis of the ITS sequences. The endophytic fungi potential for synthesis of natural products was assessed by means of detecting NRPS and PKS gene sequences. In total, 364 endophytic fungi isolates representing 26 genera were recovered from Paeonia ostii 'Feng Dan', Paeonia ostii 'Luoyang Feng Dan', and Paeonia suffruticosa 'Luoyang Hong'. More culturable endophytic fungi appeared in P. suffruticosa 'Luoyang Hong' (206) compared with P. ostii 'Feng Dan' (60) and P. ostii 'Luoyang Feng Dan' (98). The fungal community of P. ostii 'Feng Dan' had the highest richness and diversity. PKSs and NRPS detection rates of endophytic fungi from P. ostii 'Feng Dan' are both the highest among the three types of tree peonies. Results indicate that endophytic fungus is an important factor of Daodi Cortex Moutan forming, and endophytic fungi in peony are related to genuineness of Cortex Moutan.


Subject(s)
Biological Products/metabolism , Paeonia/microbiology , Biodiversity , Endophytes/isolation & purification , Fungi/isolation & purification , Phylogeny , Drugs, Chinese Herbal/metabolism , Paeonia/classification , Paeonia/growth & development , Paeonia/metabolism , Endophytes/classification , Endophytes/growth & development , Endophytes/genetics , Fungi/classification , Fungi/growth & development , Fungi/genetics
11.
Int J Mol Sci ; 18(10)2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28934107

ABSTRACT

Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.


Subject(s)
Cadmium/metabolism , Endophytes/metabolism , Pseudomonas/metabolism , Serratia/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Zinc/metabolism , Biodegradation, Environmental , Brassica napus/microbiology , Cadmium/toxicity , Endophytes/drug effects , Endophytes/growth & development , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Helianthus/drug effects , Helianthus/microbiology , Microscopy, Confocal , Plant Roots/drug effects , Plant Roots/microbiology , Pseudomonas/drug effects , Pseudomonas/growth & development , Serratia/drug effects , Serratia/growth & development , Soil Pollutants/toxicity , Thiobarbiturates/metabolism , Zinc/toxicity
12.
J Microbiol ; 55(4): 267-272, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28124776

ABSTRACT

This study details the introduction of a gfp marker into an endophytic bacterial strain (Achromobacter marplatensis strain 17, isolated from sugar beet) to monitor its colonization of sugar beet (Beta. vulgaris L.). Stability of the plasmid encoding the gfp was confirmed in vitro for at least 72 h of bacterial growth and after the colonization of tissues, under nonselective conditions. The colonization was observed using fluorescence microscopy and enumeration of culturable endophytes in inoculated sugar beet plants that grew for 10 or 20 days. gfp-Expressing strains were re-isolated from the inner tissues of surface-sterilized roots and stems of inoculated plants, and the survival of the Achromobacter marplatensis 17:gfp strain in plants 20 days after inoculation, even in the absence of selective pressure, suggests that it is good colonizer. These results also suggest that this strain could be a useful tool for the delivery of enzymes or other proteins into plants. In addition, the study highlights that sugar beet plants can be used effectively for detailed in vitro studies on the interactions between A. marplatensis strain 17 and its host, particularly if a gfp-tagged strain of the pathogen is used.


Subject(s)
Achromobacter/growth & development , Beta vulgaris/microbiology , Endophytes/growth & development , Achromobacter/chemistry , Achromobacter/genetics , Endophytes/chemistry , Endophytes/genetics , Genomic Instability , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Microscopy, Fluorescence , Plant Roots/microbiology , Plant Stems/microbiology , Plasmids , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Staining and Labeling
13.
Crit Rev Microbiol ; 43(2): 238-261, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27936989

ABSTRACT

A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants.


Subject(s)
Biological Products/metabolism , Endophytes/metabolism , Fungi/metabolism , Plants, Medicinal/metabolism , Plants, Medicinal/microbiology , Secondary Metabolism/drug effects , Endophytes/growth & development , Fungi/growth & development , Gene Expression Regulation, Plant/drug effects , Signal Transduction
14.
Microbiol Res ; 186-187: 153-60, 2016.
Article in English | MEDLINE | ID: mdl-27242153

ABSTRACT

The citrus industry is severely affected by citrus black spot (CBS), a disease caused by the pathogen Phyllosticta citricarpa. This disease causes loss of production, decrease in the market price of the fruit, and reduction in its export to the European Union. Currently, CBS disease is being treated in orchards with various pesticides and fungicides every year. One alternative to CBS disease control without harming the environment is the use of microorganisms for biological control. Diaporthe endophytica and D. terebinthifolii, isolated from the medicinal plants Maytenus ilicifolia and Schinus terebinthifolius have an inhibitory effect against P. citricarpa in vitro and in detached fruits. Moreover, D. endophytica and D. terebinthifolii were transformed by Agrobacterium tumefaciens for in vivo studies. The transformants retained the ability to control of phytopathogenic fungus P. citricarpa after transformation process. Furthermore, D. endophytica and D. terebinthifolii were able to infect and colonize citrus plants, which is confirmed by reisolation of transformants from inoculated and uninoculated leaves. Light microscopic analysis showed fungus mycelium colonizing intercellular region and oil glands of citrus, suggesting that these two new species are capable of colonizing citrus plants, in addition to controlling the pathogen P. citricarpa.


Subject(s)
Antibiosis , Ascomycota/growth & development , Ascomycota/isolation & purification , Citrus/microbiology , Pest Control, Biological/methods , Plant Diseases/prevention & control , Plants, Medicinal/microbiology , Agrobacterium tumefaciens/genetics , Ascomycota/genetics , Endophytes/growth & development , Endophytes/isolation & purification , Plant Diseases/microbiology , Transformation, Genetic
15.
BMC Microbiol ; 16: 103, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27277006

ABSTRACT

BACKGROUND: Medicinal plants harboring endophytic fungi could carry significant potential for producing bioactive secondary metabolites. Endophytic fungi serve as alternate source of interesting compounds in their natural and modified synthetic forms to treat different diseases. In this regard, endophytic microflora associated with alkaloid-rich medicinal plants Rhazya stricta is least known. RESULTS: We isolated one new bioactive compound sorokiniol (1) along with two known cyclic peptides BZR-cotoxin I (2) and BZR-cotoxin IV (3) from fungal endophyte Bipolaris sorokiniana LK12. The structures of the isolated new and known compounds were elucidated through spectroscopic data, including 1D and 2D NMR ((1)H, (13)C, HSQC, HMBC, and NOESY), mass, and UV. The known peptides (2-3) were characterized by ESI-MS, MS/MS, and by comparing the NMR data with the literature. The isolated metabolites were assayed for their role against enzyme inhibition. Compound 1 was significantly inhibitory towards acetyl cholinestrase while the other compounds (2-3) had moderate anti-lipid peroxidation and urease activities. CONCLUSION: The present results suggest that the endophytic microorganism associated with indigenously important medicinal plants can offer a rich source of biologically active chemical constituents which could help in discovering enzyme inhibitory lead drugs.


Subject(s)
Apocynaceae/microbiology , Ascomycota/growth & development , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Ascomycota/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Endophytes/chemistry , Endophytes/growth & development , Lipid Peroxidation/drug effects , Magnetic Resonance Spectroscopy , Secondary Metabolism , Tandem Mass Spectrometry
16.
FEMS Microbiol Lett ; 363(11)2016 06.
Article in English | MEDLINE | ID: mdl-27190291

ABSTRACT

In this study, we isolated 15 endophytic fungi from five Sudanese medicinal plants. Each fungal endophytic strain was identified by sequencing of internal transcribed spacer (ITS) regions of rDNA. Ethyl acetate extracts were prepared from each endophyte cultivated in vitro and tested for their respective antibacterial activities and antiproliferative activities against human cancer cells. Antibacterial screening was carried out against two bacterial strains: Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, by the broth dilution method. Cell viability was evaluated by the MTT procedure after exposure of MCF7 breast cancer cells and HT29 or HCT116 human colon adenocarcinoma cells to each endophytic extract. Of interest, Byssochlamys spectabilis isolated from Euphorbia prostata showed cytotoxicity (IC50 = 1.51 ± 0.2 µg mL(-1)) against MCF7 cells, but had a low effect against HT29 or HCT116 cells (IC50 > 20 µg mL(-1)). Cladosporium cladosporioides 2, isolated from Vernonia amygdalina leaves, showed antiproliferative activities against MCF7 cells (IC50 = 10.5 ± 1.5 µg mL(-1)) only. On the other hand, B. spectabilis and Alternaria sp. extract had antibacterial activities against the S. aureus strain. The findings of this work revealed that endophytic fungi associated with medicinal plants from Sudan could be considered as an attractive source of new therapeutic compounds.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Endophytes/chemistry , Fungi/chemistry , Plants, Medicinal/microbiology , Acetates/chemistry , Alternaria/chemistry , Byssochlamys/chemistry , Byssochlamys/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cladosporium/chemistry , Cladosporium/isolation & purification , DNA, Ribosomal/genetics , Endophytes/genetics , Endophytes/growth & development , Endophytes/isolation & purification , Escherichia coli/drug effects , Euphorbia/microbiology , Fungi/genetics , Fungi/isolation & purification , Humans , Inhibitory Concentration 50 , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Plant Leaves/microbiology , Sudan , Vernonia/microbiology
17.
Environ Microbiol ; 18(8): 2357-65, 2016 09.
Article in English | MEDLINE | ID: mdl-26013664

ABSTRACT

In this work we have studied the antagonistic interactions existing among cultivable bacteria isolated from three ecological niches (rhizospheric soil, roots and stem/leaves) of the traditional natural medicinal plant Echinacea purpurea. The three compartments harboured different taxonomic assemblages of strains, which were previously reported to display different antibiotic resistance patterns, suggesting the presence of differential selective pressure due to antagonistic molecules in the three compartments. Antagonistic interactions were assayed by the cross-streak method and interpreted using a network-based analysis. In particular 'within-niche inhibition' and 'cross-niche inhibition' were evaluated among isolates associated with each compartment as well as between isolates retrieved from the three different compartments respectively. Data obtained indicated that bacteria isolated from the stem/leaves compartment were much more sensitive to the antagonistic activity than bacteria from roots and rhizospheric soil. Moreover, both the taxonomical position and the ecological niche might influence the antagonistic ability/sensitivity of different strains. Antagonism could play a significant role in contributing to the differentiation and structuring of plant-associated bacterial communities.


Subject(s)
Bacteria/isolation & purification , Echinacea/microbiology , Endophytes/isolation & purification , Plants, Medicinal/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Endophytes/classification , Endophytes/genetics , Endophytes/growth & development , Plant Leaves/microbiology , Plant Roots/microbiology , Plant Stems/microbiology
18.
Braz. j. microbiol ; 46(4): 977-989, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769669

ABSTRACT

Abstract A total of 48 endophytic bacteria were isolated from surface-sterilized tissues of the medicinal plant Lonicera japonica, which is grown in eastern China; six strains were selected for further study based on their potential ability to promote plant growth in vitro (siderophore and indoleacetic acid production). The bacteria were characterized by phylogenetically analyzing their 16S rRNA gene similarity, by examining their effect on the mycelial development of pathogenic fungi, by testing their potential plant growth-promoting characteristics, and by measuring wheat growth parameters after inoculation. Results showed that the number of endophytic bacteria in L. japonica varied among different tissues, but it remained relatively stable in the same tissues from four different plantation locations. Among the three endophytic strains, strains 122 and 124 both had high siderophore production, with the latter showing the highest phosphate solubilization activity (45.6 mg/L) and aminocyclopropane-1-carboxylic acid deaminase activity (47.3 nmol/mg/h). Strain 170 had the highest indoleacetic acid (IAA) production (49.2 mg/L) and cellulase and pectinase activities. After inoculation, most of the six selected isolates showed a strong capacity to promote wheat growth. Compared with the controls, the increase in the shoot length, root length, fresh weight, dry weight, and chlorophyll content was most remarkable in wheat seedlings inoculated with strain 130. The positive correlation between enzyme (cellulose and pectinase) activity and inhibition rate on Fusarium oxysporum, the IAA production, and the root length of wheat seedlings inoculated with each tested endophytic strain was significant in regression analysis. Deformity of pathogenic fungal mycelia was observed under a microscope after the interaction with the endophytic isolates. Such deformity may be directly related to the production of hydrolytic bacterial enzymes (cellulose and pectinase). The six endophytic bacterial strains were identified to be Paenibacillus and Bacillus strains based on the results of 16S rRNA gene sequencing analysis and their physiological and biochemical characteristics. Results indicate the promising application of endophytic bacteria to the biological control of pathogenic fungi and the improvement of wheat crop growth.


Subject(s)
Bacillus/classification , Bacillus/genetics , Bacillus/growth & development , Bacillus/isolation & purification , Bacillus/metabolism , Bacillus/microbiology , China/classification , China/genetics , China/growth & development , China/isolation & purification , China/metabolism , China/microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/growth & development , Endophytes/isolation & purification , Endophytes/metabolism , Endophytes/microbiology , Indoleacetic Acids/classification , Indoleacetic Acids/genetics , Indoleacetic Acids/growth & development , Indoleacetic Acids/isolation & purification , Indoleacetic Acids/metabolism , Indoleacetic Acids/microbiology , Lonicera/classification , Lonicera/genetics , Lonicera/growth & development , Lonicera/isolation & purification , Lonicera/metabolism , Lonicera/microbiology , Molecular Sequence Data/classification , Molecular Sequence Data/genetics , Molecular Sequence Data/growth & development , Molecular Sequence Data/isolation & purification , Molecular Sequence Data/metabolism , Molecular Sequence Data/microbiology , Paenibacillus/classification , Paenibacillus/genetics , Paenibacillus/growth & development , Paenibacillus/isolation & purification , Paenibacillus/metabolism , Paenibacillus/microbiology , Phylogeny/classification , Phylogeny/genetics , Phylogeny/growth & development , Phylogeny/isolation & purification , Phylogeny/metabolism , Phylogeny/microbiology , Plant Roots/classification , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/isolation & purification , Plant Roots/metabolism , Plant Roots/microbiology , Siderophores/classification , Siderophores/genetics , Siderophores/growth & development , Siderophores/isolation & purification , Siderophores/metabolism , Siderophores/microbiology , Triticum/classification , Triticum/genetics , Triticum/growth & development , Triticum/isolation & purification , Triticum/metabolism , Triticum/microbiology
19.
Microb Biotechnol ; 8(4): 707-15, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25997013

ABSTRACT

Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.


Subject(s)
Bacteria/isolation & purification , Bacteriological Techniques/methods , Culture Media/chemistry , Endophytes/isolation & purification , Plant Extracts/metabolism , Plants/microbiology , Bacteria/growth & development , Bacteria/metabolism , Endophytes/growth & development , Humans
SELECTION OF CITATIONS
SEARCH DETAIL