Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
2.
Recent Pat Anticancer Drug Discov ; 16(3): 377-392, 2021.
Article in English | MEDLINE | ID: mdl-33888051

ABSTRACT

BACKGROUND: Bee venom is a promising agent for cancer treatment due to its selective cytotoxic potential for cancer cells through apoptotic pathways. However, there is no evidence for changes in the epigenome and mitochondrial DNA copy numbers after bee venom application. The purpose of this study was to determine the impact of bee venom on cytosine modifications and mitochondrial DNA copy number variation. METHODS: A broad range of methods was applied to elucidate the impact of bee venom on neoplastic cells. These included MTT assay for detection of cytotoxicity, immunostaining of cytosine modifications and mitochondria, assessment of cellular morphology by flow cytometry, and quantification of mitochondrial DNA copy numbers using QPCR. RESULTS: Bee venom-induced cell death was selective for cancer cells, where it triggered a response characterized by alteration of cytosine modification. In contrast, normal cells were more resistant to DNA modifications. Furthermore, application of the venom resulted in variation of mitochondrial membrane permeability and mitochondrial DNA copy numbers, together with alterations in cell morphology, manifesting as reduced affected cell size. CONCLUSION: The study findings suggest that bee venom can be used as a selective DNA (de)methylating agent in cancer. Various agents (such as decitabine and 5-azacytidine) have been synthesized and developed for cancer treatment, and a range of syntheses and preparation and application methods have been described for these patented drugs. However, to the best of our knowledge, no previous research has investigated the use of bee venom or any component thereof for epigenetic therapy in cancer cells.


Subject(s)
Bee Venoms/pharmacology , DNA, Mitochondrial/drug effects , Epigenome/drug effects , Mitochondria/drug effects , Animals , Apitherapy , Cell Line, Tumor , Cell Shape , Cell Size , DNA Copy Number Variations/drug effects , Epigenesis, Genetic/drug effects , Epigenome/genetics , Hep G2 Cells , Humans , Mice , Mitochondria/genetics , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , NIH 3T3 Cells , Permeability/drug effects
3.
J Agric Food Chem ; 68(52): 15449-15459, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33320666

ABSTRACT

DNA methylation is an epigenetic event that plays critical roles in the pathogenesis, progression, and treatment of human diseases. In this study, we investigated the epigenetic mechanisms for Astragalus polysaccharide (APS)-improved osteoporosis in a rat model. The results showed that APS significantly changed the DNA methylome in colonic epithelia with great efficiency. Gene set enrichment analysis (GSEA) based on differentially methylated sites (DMSs) revealed that APS caused promoter DNA methylation changes of genes associated with calcium homeostasis, osteoclast/osteoblast balance, Wnt signaling, and hormone-related processes. Further analysis showed high consistency of APS-induced gene methylomic changes in colonic epithelia and its effects on diabetes, virus infection, and wound healing, which had been reported already. Moreover, we suggested new functions and the involved mechanisms of APS in heart disease, neurological disorder, reproductive problem, and olfactory dysfunction. In this study, we offered epigenetic mechanisms for APS-improved osteoporosis. More importantly, we proposed and proved a reliable method to explore the beneficial effects of bioactive polysaccharides by studying DNA methylation changes at nonfocal sites. We firmly believed the promising prospects of this method for its great efficiency, rapidness, and economy in exploring possible beneficial or therapeutic effects of functional macromolecules with one single experiment.


Subject(s)
Astragalus Plant/chemistry , Drugs, Chinese Herbal/administration & dosage , Osteoporosis/drug therapy , Polysaccharides/administration & dosage , Animals , Calcium/metabolism , DNA Methylation/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Epigenesis, Genetic/drug effects , Epigenome/drug effects , Female , Humans , Osteoporosis/genetics , Osteoporosis/metabolism , Pilot Projects , Polysaccharides/chemistry , Rats , Rats, Sprague-Dawley
4.
AAPS J ; 22(1): 8, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31807911

ABSTRACT

Moringa isothiocyanate (MIC-1) is a bioactive constituent found abundantly in Moringa oleifera which possesses antioxidant and anti-inflammation properties. However, epigenome and transcriptome effects of MIC-1 in kidney mesangial cells challenged with high glucose (HG), a pre-condition for diabetic nephropathy (DN) remain unknown. Herein, we examined the transcriptome gene expression and epigenome DNA methylation in mouse kidney mesangial cells (MES13) using next-generation sequencing (NGS) technology. After HG treatment, epigenome and transcriptome were significantly altered. More importantly, MIC-1 exposure reversed some of the changes caused by HG. Integrative analysis of RNA-Seq data identified 20 canonical pathways showing inverse correlations between HG and MIC-1. These pathways included GNRH signaling, P2Y purigenic receptor signaling pathway, calcium signaling, LPS/IL-1-mediated inhibition of RXR function, and oxidative ethanol degradation III. In terms of alteration of DNA methylation patterns, 173 differentially methylation regions (DMRs) between the HG group and low glucose (LG) group and 149 DMRs between the MIC-1 group and the HG group were found. Several HG related DMRs could be reversed by MIC-1 treatment. Integrative analysis of RNA-Seq and Methyl-Seq data yielded a subset of genes associated with HG and MIC-1, and the gene expression changes may be driven by promoter CpG status. These genes include Col4a2, Tceal3, Ret, and Agt. In summary, our study provides novel insights related to transcriptomic and epigenomic/CpG methylomic alterations in MES13 upon challenged by HG but importantly, MIC-1 treatment reverses some of the transcriptome and epigenome/CpG methylome. These results may provide potential molecular targets and therapeutic strategies for DN.


Subject(s)
Diabetic Nephropathies/drug therapy , Epigenome/drug effects , Isothiocyanates/therapeutic use , Mesangial Cells/drug effects , Rhamnose/analogs & derivatives , Transcriptome/drug effects , Animals , Cell Line , Drug Evaluation, Preclinical , Glucose , Isothiocyanates/pharmacology , Mesangial Cells/metabolism , Mice , Moringa oleifera , Phytotherapy , Reactive Oxygen Species/metabolism , Rhamnose/pharmacology , Rhamnose/therapeutic use , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL