Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 722
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Anim Sci J ; 95(1): e13923, 2024.
Article in English | MEDLINE | ID: mdl-38337192

ABSTRACT

This study was done to investigate which components of rice bran (RB) are involved in the inhibition of methanogenesis by fractionating the rice bran and adding it to a rumen in vitro culture system. The RB extract obtained using ethanol and water was screened in an in vitro fermentation system. The experimental treatment conditions were as follows: a control group containing a substrate without supplements; substrates with 0.06 g of RB; 0.6 mL of ethanol; 0.6 mL of distilled water (DW); 0.6 mL of ethanol-soluble fraction (ESF); 0.06 g of ethanol-insoluble rice bran (EIRB); 0.6 mL of water-soluble fraction (WSF); and 0.06 g of water-insoluble rice bran (WIRB). Based on the result of the analysis, the addition of ESF significantly decreased CH4 and CH4 /g dry matter digested, methanogen population (p < 0.05), while gas and dry matter digestibility (DMD) were comparable with the control group. Total short-chain fatty acid (SCFA), and proportion of propionate were reduced, and the proportion of butyrate was increased by the addition of ethanol and ESF (p < 0.05). This result suggests that the supplementation of 10% ESF can substantially reduce methane production in vitro without a negative effect on substrate digestibility.


Subject(s)
Oryza , Rumen , Animals , Rumen/metabolism , Fermentation , Water , Methane/metabolism , Ethanol/metabolism , Ethanol/pharmacology , Plant Extracts/pharmacology , Diet , Digestion , Animal Feed/analysis
2.
Pharmacol Biochem Behav ; 237: 173726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360104

ABSTRACT

BACKGROUND: Some studies have highlighted the crucial role of aversion in addiction treatment. The pathway from the anterior paraventricular thalamus (PVT) to the shell of the nucleus accumbens (NAc) has been reported as an essential regulatory pathway for processing aversion and is also closely associated with substance addiction. However, its impact on alcohol addiction has been relatively underexplored. Therefore, this study focused on the role of the PVT-NAc pathway in the formation and relapse of alcohol addiction-like behaviour, offering a new perspective on the mechanisms of alcohol addiction. RESULTS: The chemogenetic inhibition of the PVT-NAc pathway in male mice resulted in a notable decrease in the establishment of ethanol-induced conditioned place aversion (CPA), and NAc-projecting PVT neurons were recruited due to aversive effects. Conversely, activation of the PVT-NAc pathway considerably impeded the formation of ethanol-induced conditioned place preference (CPP). Furthermore, during the memory reconsolidation phase, activation of this pathway effectively disrupted the animals' preference for alcohol-associated contexts. Whether it was administered urgently 24 h later or after a long-term withdrawal of 10 days, a low dose of alcohol could still not induce the reinstatement of ethanol-induced CPP. CONCLUSIONS: Our results demonstrated PVT-NAc circuit processing aversion, which may be one of the neurobiological mechanisms underlying aversive counterconditioning, and highlighted potential targets for inhibiting the development of alcohol addiction-like behaviour and relapse after long-term withdrawal.


Subject(s)
Alcoholism , Nucleus Accumbens , Mice , Male , Animals , Nucleus Accumbens/metabolism , Alcoholism/metabolism , Thalamus , Ethanol/pharmacology , Ethanol/metabolism , Recurrence
3.
PLoS One ; 19(1): e0287569, 2024.
Article in English | MEDLINE | ID: mdl-38271407

ABSTRACT

The objectives of the present study were to evaluate the acute toxicity, gastroprotective, therapeutic, anti-inflammatory and anti H. pylori activities of T. vulgaris total plant extract against ethanol-induced gastric ulcers in Sprague Dawley rats. Animals were divided into five groups i.e G-1 (Normal Control), Group 2 (ulcer control) were administered orally with 0.5% Carboxymethylcellulose (CMC), Group 3 (omeprazole treated) was administered orally with 20 mg/kg of omeprazole and Groups 4 and 5 (Low dose and High dose of the extract) were administered orally with 250, and 500 mg/ kg of Thymus vulgaris extract, respectively. After 1 hour, the normal group was orally administered with 0.5% CMC (5 ml/kg), whereas absolute alcohol (5ml/ kg) was orally administered to the ulcer control group, omeprazole group, and experimental groups. Stomachs were examined macroscopically and microscopically. Grossly, rats pre-treated with T. vulgaris demonstrated significantly decreased ulcer area and an increase in mucus secretion and pH of gastric content compared with the ulcer control group. Microscopy of gastric mucosa in the ulcer control group showed severe damage to gastric mucosa with edema and leukocytes infiltration of the submucosal layer. However, rats pretreated with omeprazole or Thyme vulgaris exhibited a mild to moderate disruption of the surface epithelium and lower level of edema and leukocyte infiltration of the submucosal layer. The T. vulgaris extract caused up-regulation of Hsp70 protein, down-regulation of Bax protein, and intense periodic acid Schiff uptake of the glandular portion of the stomach. Gastric mucosal homogenate of rats pre-treated with T. vulgaris exhibited significantly increased superoxide dismutase (SOD) and catalase (CAT) activities while malondialdehyde (MDA) level was significantly decreased. Based on the results showed in this study, Thymus vulgaris extract can be proposed as the safe medicinal plants for use and it has considerable gastroprotective potential via stomach epithelium protection against gastric ulcers and stomach lesions.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Thymus Plant , Rats , Animals , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ulcer/drug therapy , Ethanol/toxicity , Ethanol/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastric Mucosa/metabolism , Omeprazole/adverse effects , Antioxidants/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Edema/drug therapy
4.
J Sci Food Agric ; 104(3): 1723-1731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851602

ABSTRACT

BACKGROUND: In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS: Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION: Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Hydrochloric Acid , Ulcer/drug therapy , Ulcer/metabolism , Anti-Ulcer Agents/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Ethanol/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Plant Extracts/metabolism , Amino Acids/metabolism , Gastric Mucosa/metabolism
5.
Front Endocrinol (Lausanne) ; 14: 1229777, 2023.
Article in English | MEDLINE | ID: mdl-37795374

ABSTRACT

Introduction: Ganshu Nuodan is a liver-protecting dietary supplement composed of Ganoderma lucidum (G. lucidum) spore powder, Pueraria montana (Lour.) Merr. (P. montana), Salvia miltiorrhiza Bunge (S. miltiorrhiza) and Astragalus membranaceus (Fisch.) Bunge. (A. membranaceus). However, its pharmacodynamic material basis and mechanism of action remain unknown. Methods: A mouse model of acute alcohol liver disease (ALD) induced by intragastric administration of 50% alcohol was used to evaluate the hepatoprotective effect of Ganshu Nuodan. The chemical constituents of Ganshu Nuodan were comprehensively identified by UPLC-QTOF/MS, and then its pharmacodynamic material basis and potential mechanism of action were explored by proteomics and network pharmacology. Results: Ganshu Nuodan could ameliorate acute ALD, which is mainly manifested in the significant reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and malondialdehyde (MDA) content in liver and the remarkably increase of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver. Totally 76 chemical constituents were identified from Ganshu Nuodan by UPLC-QTOF/MS, including 21 quinones, 18 flavonoids, 11 organic acids, 7 terpenoids, 5 ketones, 4 sterols, 3 coumarins and 7 others. Three key signaling pathways were identified via proteomics studies, namely Arachidonic acid metabolism, Retinol metabolism, and HIF-1 signaling pathway respectively. Combined with network pharmacology and molecular docking, six key targets were subsequently obtained, including Ephx2, Lta4h, Map2k1, Stat3, Mtor and Dgat1. Finally, these six key targets and their related components were verified by molecular docking, which could explain the material basis of the hepatoprotective effect of Ganshu Nuodan. Conclusion: Ganshu Nuodan can protect acute alcohol-induced liver injury in mice by inhibiting oxidative stress, lipid accumulation and apoptosis. Our study provides a scientific basis for the hepatoprotective effect of Ganshu Nuodan in acute ALD mice and supports its traditional application.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases, Alcoholic , Mice , Animals , Molecular Docking Simulation , Network Pharmacology , Proteomics , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Ethanol/metabolism , Ethanol/therapeutic use , Glutathione/metabolism
6.
Bioresour Technol ; 387: 129630, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544531

ABSTRACT

The use of solid lipid sidestreams have been overlooked as a feedstock for the production of microbial biomass for food and feed applications and little to no recent work has examined the utilization of solid fatty acid distillates (FADs), which are a significant residue from vegetable oil processing. Yarrowia lipolytica and Rhodosporidium toruloides cultivated on cocoa fatty acid distillates (CFAD) generated final cell dry weight values > 40 g/L, with strong productivity (3.3 g/L·h) and rich protein (>45%) and lipid content (>25%). Interestingly, microbial oils were > 65% unsaturated fatty acids, compared < 20% unsaturated content in FAD. Importantly, to overcome mass-transfer limitations associated with bioconversion of solid lipid residues, ethanol was applied as a co-substrate to solubilize FAD residues. Here, FAD residues from cocoa deodorization have been demonstrated to be high energy feedstocks that represent an attractive substrate for the production of both single cell protein and oil (SCPO).


Subject(s)
Fatty Acids , Yarrowia , Fatty Acids/metabolism , Lipids , Ethanol/metabolism , Plant Oils/metabolism , Yarrowia/metabolism
7.
J Agric Food Chem ; 71(33): 12538-12548, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37578164

ABSTRACT

High concentrations of ethanol could cause intracellular oxidative stress in yeast, which can lead to ethanol-oxidation cross-stress. Antioxidant dipeptides are effective in maintaining cell viability and stress tolerance under ethanol-oxidation cross-stress. In this study, we sought to elucidate how antioxidant dipeptides affect the yeast cell wall and membrane defense systems to enhance stress tolerance. Results showed that antioxidant dipeptide supplementation reduced cell leakage of nucleic acids and proteins by changing cell wall components under ethanol-oxidation cross-stress. Antioxidant dipeptides positively modulated the cell wall integrity pathway and up-regulated the expression of key genes. Antioxidant dipeptides also improved the cell membrane integrity by increasing the proportion of unsaturated fatty acids and regulating the expression of key fatty acid synthesis genes. Moreover, the addition of antioxidant dipeptides significantly (p < 0.05) increased the content of ergosterol. Ala-His (AH) supplementation caused the highest content of ergosterol, with an increase of 23.68 ± 0.01% compared to the control, followed by Phe-Cys (FC) and Thr-Tyr (TY). These results revealed that the improvement of the cell wall and membrane functions of antioxidant dipeptides was responsible for enhancing the ethanol-oxidation cross-stress tolerance of yeast.


Subject(s)
Antioxidants , Saccharomyces cerevisiae , Antioxidants/pharmacology , Antioxidants/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Wall/metabolism , Cell Membrane/metabolism , Ethanol/metabolism , Ergosterol , Dipeptides/pharmacology , Dipeptides/metabolism
8.
Food Chem Toxicol ; 179: 113973, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37506865

ABSTRACT

Anneslea fragrans Wall. (AF) is an important medicinal and edible plant in China. The principal objectives of this study are to explore the hepatoprotective effect of ethanol-aqueous (AFE) and hot-water (AFW) extracts in vitro and in vivo. UPLC-ESI-MS/MS analysis showed that AFW and AFE are rich in dihydrochalcones. Both AFW and AFE significantly up-regulated the expressions of SOD, CAT and GSH, reduced the MDA content in acetaminophen (APAP)-induced HepG2 cells, and suppressed the expressions of NO, TNF-α, IL-1ß, and IL-6 in LPS-induced RAW246.7 cells. In APAP-induced mice, AFW and AFE administration significantly decreased the plasma levels of AST and ALT, and improved liver tissue damage, the collagen deposition and fibrosis formation. Moreover, AFW and AFE decreased the MDA and ROS accumulations via activating Nrf2 pathway to increase the hepatic GSH contents and activities of SOD, CAT, HO-1, and NQO-1, reduced the levels of NO, TNF-α, IL-1ß, and IL-6 by suppressing the JNK/p38/ERK/NF-κB pathways, and alleviated apoptosis via regulating Bcl-2, Bax, caspase-3/9 protein expressions. This study provides a new sight that AFW and AFE may have a potential natural resource for the treatment of liver injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Animals , Acetaminophen/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ethanol/metabolism , Interleukin-6/metabolism , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Liver , Superoxide Dismutase/metabolism , Water , Chemical and Drug Induced Liver Injury/metabolism , Oxidative Stress , NF-E2-Related Factor 2/metabolism
9.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175366

ABSTRACT

Echinacea purpurea is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower (Echinacea purpurea) roots and their extracts (water, 40%, 50%, 60% ethanol, and 60% glycerol). Phytochemical characterization was carried out by gravimetric, spectrophotometric, and chromatographic methods. Echinacea roots were characterized by a low lipid (0.8%) content. In contrast, carbohydrates (45%) and proteins (20%) occupied a large part of the dry matter. Amongst the extracts, the highest yield was obtained using water as a solvent (53%). Water extract was rich in protein and carbohydrates as fructans (inulin) were the most abundant carbohydrate constituent. The most exhaustive recovery of the phenolic components was conducted by extraction with 40% ethanol and 60% glycerol. It was found that water is the most suitable extractant for obtaining a polysaccharide-containing complex (PSC) (8.87%). PSC was composed mainly of fructans (inulin) and proteins with different molecular weight distributions. The yield of PSC decreased with an increasing ethanol concentration (40% > 50% > 60%) but the lowest yield was obtained from 60% glycerol extract. The obtained results showed that Echinacea roots contained a large amount of biologically active substances-phenolic components and polysaccharides and that glycerol was equally efficient to ethanol in extracting caffeic acid derivatives from purple coneflower roots. The data can be used for the preparation of extracts having different compositions and thus easily be incorporated into commercial products.


Subject(s)
Echinacea , Echinacea/chemistry , Inulin/metabolism , Glycerol/metabolism , Plant Extracts/analysis , Plant Roots/chemistry , Phenols/analysis , Fructans/analysis , Water/analysis , Ethanol/metabolism , Caffeic Acids/metabolism
10.
Photodermatol Photoimmunol Photomed ; 39(5): 466-477, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37165910

ABSTRACT

BACKGROUND: UV exposure is one of the primary factors responsible for photoaging, causing the increase in matrix metalloproteinases (MMPs) and the reduction in collagen. Salvia plebeia R. Br (SP), as an herbaceous plant, contains abundant flavonoids and possesses excellent anti-inflammatory and antioxidant activities. This study aimed to investigate the photoprotective effects of SP on UVB-induced photodamage in immortalized human keratinocytes (HaCaTs) and Kunming mice, as well as its main active components such as homoplantaginin (HP). METHODS: CCK-8 was applied to detect the cell viability in UVB-irradiated or non-irradiated HaCaTs. Commercial kits were used to evaluate the levels of ROS, MDA, SA-ß-Gal, MMP-1, and IL-6. The expression of MAPK and TGF-ß/Smad pathways was detected by western blot. HE and Masson's trichrome staining were performed to examine the epidermis thickness and collagen degradation of Kunming mice. RESULTS: Our results found that SP and HP notably decreased UVB-induced ROS, MDA, and SA-ß-Gal production, and inhibited MMP-1 and IL-6 secretion by inhibiting the MAPK signaling pathway. In addition, SP and HP significantly promoted type I procollagen synthesis by activation of TGF-ß/Smad pathway. Consistently, the in vivo experiments also indicated that SP and HP had a photoprotective effect, which significantly reversed UVB-induced epidermis thickness and collagen degradation. CONCLUSION: This study demonstrated that SP effectively could protect skin from UVB-induced photoaging, while HP acted as the active substance in SP. All these findings provided a new strategy for skin photoaging treatment.


Subject(s)
Matrix Metalloproteinase 1 , Skin Aging , Mice , Animals , Humans , Matrix Metalloproteinase 1/metabolism , Interleukin-6 , Ethanol/metabolism , Ethanol/pharmacology , Reactive Oxygen Species/metabolism , Collagen/metabolism , Skin/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Ultraviolet Rays/adverse effects , Fibroblasts/metabolism , Plant Extracts/pharmacology
11.
Fitoterapia ; 168: 105524, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37146735

ABSTRACT

Potentilla longifolia is effective in the treatment of hepatitis as a Chinese herb. We firstly evaluated the effect of water extract of P. longifolia (WEPL) on mice with nonalcoholic fatty liver disease (NAFLD) induced by high-fat (HF) diet. The results showed that WEPL reduced HF-induced increases of the serum ALT, AST, TG and TC, and reduced lipid drops of liver tissues to a different extent compared with HF group; WEPL dose-dependently promoted the phosphorylation degrees of AMPK and ACC; WEPL decreased significantly genes expressions of SREBP1α, FAS and SCD1 and increased PPARα and CD36. Then three new (1-3) and 13 known compounds (4-16) were firstly-isolated from the 95% ethanol extract of this plant. Further experiments showed that a new compound (ganyearmcaooside C) showed the best inhibitory effect on lipid accumulation in 3 T3-L1 cells such as reducing the accumulation of oil droplets and triglyceride level, showing new drug potential for related diseases.


Subject(s)
Non-alcoholic Fatty Liver Disease , Potentilla , Animals , Mice , Molecular Structure , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Liver , Ethanol/metabolism , Ethanol/pharmacology , Ethanol/therapeutic use , Diet, High-Fat , Mice, Inbred C57BL , Lipid Metabolism
12.
J Agric Food Chem ; 71(16): 6389-6397, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37052370

ABSTRACT

Squalene is a triterpene that can be obtained from fish and plant oils. It is important in cosmetics and vaccines and is a precursor for many high-value terpenes and steroids. In order to increase squalene accumulation, the mevalonate pathway was systematically enhanced. Accumulation of squalene tended to increase when ethanol was added as a carbon source during fermentation, but a high concentration of ethanol affected both the strain growth and accumulation of products. By overexpressing the key trehalose synthesis gene TPS1 and the heat shock protein gene HSP104, the content of trehalose by Saccharomyces cerevisiae (S. cerevisiae) was enhanced, and stress caused by ethanol was relieved. The OD600 value of the modified S. cerevisiae strain was increased by 80.2%, its ethanol tolerance was increased to 30 g/L, and it retained excellent activity with 50 g/L ethanol. After optimizing the fermentation conditions, the squalene titer in a 5 L bioreactor reached 27.3 g/L and the squalene content was 650 mg/g dry cell weight, the highest squalene production parameters reported to date for a microorganism.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Squalene/metabolism , Ethanol/metabolism , Trehalose/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fermentation , Metabolic Engineering , Heat-Shock Proteins/genetics
13.
Food Chem Toxicol ; 175: 113752, 2023 May.
Article in English | MEDLINE | ID: mdl-37004906

ABSTRACT

Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and barks are generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III proteins. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by suppressing MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Animals , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Liver , Oxidative Stress , Antioxidants/pharmacology , Apoptosis , Ethanol/metabolism , Chemical and Drug Induced Liver Injury/metabolism
14.
J Agric Food Chem ; 71(12): 4837-4850, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36930948

ABSTRACT

Excessive drinking has been listed by the World Health Organization as the fifth major risk factor; especially the liver, as the core organ of alcohol metabolism, is prone to organic lesions. Probiotics have received attention due to their bioactivity for liver protection. The beneficial effects of probiotics on hosts are related to their physiological functions. Therefore, based on the concept of second-generation synbiotes, this study explored the protective effects of four dietary polyphenols on the stress tolerance, hydrophobicity, adhesion, and digestive characteristics of L. rhamnosus 1.0320. L. rhamnosus 1.0320 had the best synergistic effect with dihydromyricetin (DMY). Therefore, this combination was selected as a synbiotic supplement to explore the protective effect on acute alcohol exposure-induced hepatic impairment. The results showed that L. rhamnosus 1.0320 combined with DMY restored the intestinal barrier by upregulating short-chain fatty acid levels and activated the adenosine 5'-monophosphate-activated protein kinase-mediated lipid metabolism pathway to inhibit oxidative stress, inflammation, and lipid accumulation in the liver. Furthermore, 109 CFU/mouse/d L. rhamnosus 1.0320 and 50 mg/kg/d DMY by gavage were identified as the optimal doses for protection against acute alcohol expose-induced hepatic impairment. This study provides new insights into alleviating acute alcoholic hepatic impairment by targeting intestinal metabolites through the gut-liver axis.


Subject(s)
Lacticaseibacillus rhamnosus , Liver Diseases, Alcoholic , Probiotics , Mice , Animals , Lacticaseibacillus , Lipid Metabolism , Protein Kinases/metabolism , Liver/metabolism , Ethanol/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Fatty Acids, Volatile/metabolism , Signal Transduction , Adenosine/metabolism
15.
Neuroendocrinology ; 113(8): 844-858, 2023.
Article in English | MEDLINE | ID: mdl-36948162

ABSTRACT

INTRODUCTION: Early life ethanol exposure is known to program hypothalamic proopiomelanocortin (POMC) neurons to express a reduced level of POMC and its control of stress axis functions throughout the life span. In this study, we tested whether miRNAs contribute to the ethanol-induced suppression of Pomc gene expression during the developmental period. METHODS: In in vivo studies, POMC-EGFP male mice were fed with 2.5 g/kg ethanol using milk formula (AF), pair-fed isocaloric milk formula, or left in the litter during postnatal days (PNDs) 2-6. In in vitro studies, mHypoA-POMC/GFP cells were treated with ethanol (50 mM) for a 24-h period. Hypothalamic tissues or cell extracts were used for measurement of miRNAs and POMC mRNA. RESULTS: Determination of genome-wide microRNA expression profile identified 40 miRNAs significantly altered in hypothalamic tissues of AF mice. In silico analysis further identified miRNA-383, -384, and -488 have putative binding sites at the POMC 3'UTR. However, only miR-383 and miR-384 are identified to be responsive to ethanol. Administration of miR-383 or -384 inhibitor oligos suppressed ethanol-stimulated miR-383 or -384 expression and restored Pomc mRNA and protein expression in AF mice. mHypoA-POMC/GFP cells when treated with ethanol showed elevated levels of miR-383 and miR-384 and reduced level of Pomc mRNA. Treatment with miR-383 or -384 mimic oligos reduced the level of Pomc mRNA, while treatment with miR-383 or -384 inhibitor oligos increased the level of Pomc mRNA. Reporter assay further confirms the binding specificity of miR-383 and miR-384 to Pomc 3'UTR. CONCLUSION: These data suggest that miR-383 and miR-384 suppress Pomc gene expression and may contribute to the ethanol-induced alteration of the stress axis functions.


Subject(s)
Ethanol , Pro-Opiomelanocortin , Mice , Male , Animals , Pro-Opiomelanocortin/metabolism , Ethanol/metabolism , Ethanol/pharmacology , 3' Untranslated Regions , Hypothalamus/metabolism , Gene Expression
16.
Molecules ; 28(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903310

ABSTRACT

An example of the implementation of the principles of the circular economy is the use of sugar beet pulp as animal feed. Here, we investigate the possible use of yeast strains to enrich waste biomass in single-cell protein (SCP). The strains were evaluated for yeast growth (pour plate method), protein increment (Kjeldahl method), assimilation of free amino nitrogen (FAN), and reduction of crude fiber content. All the tested strains were able to grow on hydrolyzed sugar beet pulp-based medium. The greatest increases in protein content were observed for Candida utilis LOCK0021 and Saccharomyces cerevisiae Ethanol Red (ΔN = 2.33%) on fresh sugar beet pulp, and for Scheffersomyces stipitis NCYC1541 (ΔN = 3.04%) on dried sugar beet pulp. All the strains assimilated FAN from the culture medium. The largest reductions in the crude fiber content of the biomass were recorded for Saccharomyces cerevisiae Ethanol Red (Δ = 10.89%) on fresh sugar beet pulp and Candida utilis LOCK0021 (Δ = 15.05%) on dried sugar beet pulp. The results show that sugar beet pulp provides an excellent matrix for SCP and feed production.


Subject(s)
Beta vulgaris , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/metabolism , Beta vulgaris/chemistry , Vegetables/metabolism , Animal Feed , Ethanol/metabolism , Sugars/metabolism
17.
J Microbiol Biotechnol ; 33(4): 463-470, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-36788475

ABSTRACT

This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.


Subject(s)
Aloe , Antioxidants , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Aloe/metabolism , Mice, Inbred C57BL , Oxidative Stress , Liver , Ethanol/metabolism , Glutathione/metabolism , Plant Extracts/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
18.
J Med Food ; 26(3): 193-200, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36827085

ABSTRACT

Humulus japonicus has been used to treat obesity, hypertension, and nonalcoholic fatty liver and to alleviate inflammation and oxidative stress. In the present study, we aimed to investigate the effects of H. japonicus ethanol extracts (HE) and luteolin 7-O-ß-d-glucoside (LU), which is identified as a major active component of H. japonicus, on ethanol-induced oxidative stress and lipid accumulation in primary hepatocytes. Mouse primary hepatocytes were treated with HE and stimulated with ethanol. The MTT test was used to determine cell viability. By using Western blotting, the effects of HE on the expression of different proteins were investigated. Experimental mice were given a 5% alcohol liquid Lieber-DeCarli diet to induce alcoholic fatty liver. We found that both HE and LU individually attenuated ethanol-induced lipid accumulation, lipogenic protein expression, and cellular oxidative stress in hepatocytes. Treatment with HE or LU increased PPARα and SOD1 expression and catalase activity in a dose-dependent manner. Small interfering RNA of PPARα reduced the effects of HE on oxidative stress, lipid metabolism, and levels of antioxidants. We also observed that orally administered HE treatment alleviated hepatic steatosis in a diet containing ethanol-fed mice. This study suggests HE as a functional food that can improve hepatic steatosis, thereby preventing hepatic injury caused by alcohol consumption.


Subject(s)
Humulus , Non-alcoholic Fatty Liver Disease , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Ethanol/metabolism , Hepatocytes/metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , PPAR alpha/genetics , PPAR alpha/metabolism
19.
Bioresour Technol ; 374: 128805, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36849100

ABSTRACT

In this study, medium-chain fatty acid (MCFA) generation from mixed sludge (including primary sludge and waste activated sludge) was investigated without additional electron donors (EDs). 0.5 g COD/L of MCFAs was produced and the in situ generated ethanol could serve as the EDs during the anaerobic fermentation of mixed sludge without thermal hydrolysis process (THP) pretreatment. THP increased the MCFA production by approximately 128% in the anaerobic fermentation. During 102 days of operation, the fermentation of THP pre-treated mixed sludge stably generated 2.9 g COD/L MCFAs. The self-generated EDs could not maximize MCFA production, and external addition of ethanol improved MCFA yield. Caproiciproducens was the dominant chain-elongating bacteria. PICRUST2 revealed that both fatty acid biosynthesis and reverse ß-oxidation pathways could participate in MCFA synthesis, and ethanol addition could enhance the contribution of the reverse ß-oxidation pathway. Future studies should focus on the improvement of MCFA production from THP-assisted sludge fermentation.


Subject(s)
Electrons , Sewage , Fatty Acids , Fermentation , Ethanol/metabolism , Dietary Supplements , Fatty Acids, Volatile
20.
Biomolecules ; 13(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-36671520

ABSTRACT

Alcohol abuse, a global health problem, is closely associated with many pathological processes, such as dyslipidemia and cardiovascular disease. In particular, excessive alcohol consumption promotes dyslipidemia and liver damage, such as hepatic steatosis, fibrosis, and cirrhosis. Beeswax alcohol (BWA) is a natural product used for its antioxidant properties that has not been evaluated for its efficacy in alcohol-induced liver injury. In the present study, zebrafish were exposed to 1% ethanol with supplementation of 10% fermented black rice bran (BRB-F), 10% BWA, or 10% mixtures of BWA+BRB-F (MIX). The BRB-F, BWA, and MIX supplementation increased the survival rate dramatically without affecting the body weight changes. In histology of hepatic tissue, alcoholic foamy degeneration was ameliorated by the BWA or MIX supplements. Moreover, dihydroethidium (DHE) and immunohistochemistry staining suggested that the MIX supplement decreased the hepatic ROS production and interleukin-6 expression significantly owing to the enhanced antioxidant properties, such as paraoxonase. Furthermore, the MIX supplement improved alcohol-induced dyslipidemia and oxidative stress. The BWA and MIX groups showed lower blood total cholesterol (TC) and triglyceride (TG) levels with higher high-density lipoprotein-cholesterol (HDL-C) than the alcohol-alone group. The MIX group showed the highest HDL-C/TC ratio and HDL-C/TG ratio with the lowest low-density lipoprotein (LDL)-C/HDL-C ratio. In conclusion, BWA and BRB-F showed efficacy to treat alcohol-related metabolic disorders, but the MIX supplement was more effective in ameliorating the liver damage and dyslipidemia, which agrees with an enhanced antioxidant and anti-inflammatory activity exhibited by BWA/BRB-F in a synergistic manner.


Subject(s)
Dyslipidemias , Oryza , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Ethanol/metabolism , Zebrafish/metabolism , Oryza/metabolism , Liver/metabolism , Lipoproteins, LDL/metabolism , Dyslipidemias/metabolism , Cholesterol/metabolism , Cholesterol, HDL/metabolism , Dietary Supplements , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL