Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Am J Chin Med ; 52(2): 493-512, 2024.
Article in English | MEDLINE | ID: mdl-38480500

ABSTRACT

Eugenol (EU) has been shown to ameliorate experimental colitis due to its anti-oxidant and anti-inflammatory bioactivities. In this study, DSS-induced acute colitis was established and applied to clarify the regulation efficacy of EU on intestinal barrier impairment and macrophage polarization imbalance along with the inflammatory response. Besides, the adjusting effect of EU on macrophages was further investigated in vitro. The results confirmed that EU intervention alleviated DSS-induced colitis through methods such as restraining weight loss and colonic shortening and decreasing DAI scores. Microscopic observation manifested that EU maintained the intestinal barrier integrity in line with the mucus barrier and tight junction protection. Furthermore, EU intervention significantly suppressed the activation of TLR4/MyD88/NF-[Formula: see text]B signaling pathways and pro-inflammatory cytokines gene expressions, while enhancing the expressions of anti-inflammatory cytokines. Simultaneously, WB and FCM analyses of the CD86 and CD206 showed that EU could regulate the DSS-induced macrophage polarization imbalance. Overall, our data further elucidated the mechanism of EU's defensive effect on experimental colitis, which is relevant to the protective efficacy of intestinal barriers, inhibition of oxidative stress and excessive inflammatory response, and reprogramming of macrophage polarization. Hence, this study may facilitate a better understanding of the protective action of the EU against UC.


Subject(s)
Colitis , Eugenol , Animals , Mice , Eugenol/pharmacology , Eugenol/therapeutic use , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4/genetics , Colitis/chemically induced , Colitis/drug therapy , Adaptor Proteins, Signal Transducing , Colon , Cytokines , Macrophages , Anti-Inflammatory Agents , Dextran Sulfate , NF-kappa B , Mice, Inbred C57BL , Disease Models, Animal
2.
Carbohydr Polym ; 331: 121874, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38388060

ABSTRACT

This study focuses on the development of bioactive materials using environmentally friendly techniques, renewable, biocompatible, and biodegradable polysaccharide, as well as natural bioactive compounds (NBCs) found in plant extracts. First, cornstarch aerogels with a porosity of 86 % and a specific surface area of 225 m2/g were produced via supercritical CO2- assisted drying. Further, thymol, citronellol, carvacrol, and eugenol were incorporated into the aerogels by supercritical CO2- assisted impregnation, which allowed variation in loadings of NBCs (12.8-17.6 %). Interaction between cornstarch aerogels and NBCs determined impregnation rate, pore wall thickness (in the range 18-95 nm), liquid absorption capacity (from 265 to 569 %), dehydration mass loss, and release in phosphate-buffered saline. Controlled release of NBCs was maintained over a 3-day period. Moreover, impregnated aerogels showed a significant antioxidant effect with the highest value for DPPH radical inhibition of 25.5 % determined for the aerogels impregnated with eugenol. Notable antimicrobial activity against tested Gram-negative bacteria, Gram-positive bacteria, and fungi was also observed, being the highest for thymol-loaded aerogel with the diameter of the inhibition zones of up to 37.5 mm. This work shows a promising green approach for the production of bioactive two-component starch-based materials for potential applications in skin infection treatment.


Subject(s)
Acyclic Monoterpenes , Cymenes , Starch , Thymol , Starch/chemistry , Thymol/pharmacology , Eugenol/pharmacology , Carbon Dioxide/chemistry , Gels/chemistry
3.
J Nat Med ; 78(3): 774-783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38418720

ABSTRACT

Epithelial-mesenchymal transition (EMT) has recently been associated with cancer invasion, metastasis, and resistance. In our previous study, we discovered nanaomycin K, a natural growth inhibitor for EMT-induced Madin Darby canine kidney (MDCK) cells, from the cultured broth of actinomycetes. However, the screening method was undeveloped, because the activity of nanaomycin K was discovered accidentally. In this study, we established a screening method by analyzing the characteristics of nanaomycin K in MDCK cells. Nanaomycin K showed the characteristic growth inhibitory activity on MDCK cells cultured under four conditions: medium containing dimethyl sulfoxide, SB431542, TGF-ß, and a mixture of SB431542 and TGF-ß. The activity was stronger in TGF-ß-treated cells than in DMSO-treated cells. In the mixture of SB431542 and TGF-ß-treated cells, the activity of nanaomycin K was suppressed. The anti-cancer agents, mitomycin C, cisplatin, and staurosporine, lacked the characteristics as that of nanaomycin K for these four treatment conditions. Since these four conditions distinguish between the effects of nanaomycin K and other anti-cancer agents in EMT-induced cells, the screening method was established. Among the 13,427 plant extracts tested, Piper betle leaf extract displayed growth inhibitory activity against EMT-induced cells. Through the purification of the extract via bio-guided fractionation, hydroxychavicol was isolated as an active compound. The cytotoxic activity of hydroxychavicol was stronger in EMT-induced MDCK cells than in control cells. However, its cytotoxic activity was suppressed in EMT-inhibited cells. Furthermore, hydroxychavicol exhibited same activity against SAS cells (human squamous cell carcinoma of the tongue). Thus, we have successfully established a screening method for growth inhibitors of EMT-induced cells and have discovered an inhibitor from plant-based sources.


Subject(s)
Epithelial-Mesenchymal Transition , Piper betle , Transforming Growth Factor beta , Animals , Dogs , Humans , Benzamides/pharmacology , Benzamides/chemistry , Cell Proliferation/drug effects , Dioxoles/pharmacology , Dioxoles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Eugenol/pharmacology , Eugenol/analogs & derivatives , Growth Inhibitors/pharmacology , Growth Inhibitors/chemistry , Growth Inhibitors/isolation & purification , Madin Darby Canine Kidney Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Transforming Growth Factor beta/metabolism , Piper betle/chemistry
4.
Sci Rep ; 14(1): 1910, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253778

ABSTRACT

This study aimed to investigate the effects of eugenol treatment on reproductive parameters in acrylamide (ACR)-intoxicated rats. The study evaluated alterations in relative testes and epididymides weights, sperm quality, serum hormonal status, seminal plasma amino acids, testicular cell energy and phospholipids content, oxidative and nitrosative stress parameters, adenosine monophosphate-activated protein kinase/ phosphoinositide 3-kinase/phosphor-protein kinase B/mammalian target of rapamycin (AMPK/PI3K/p-AKT/mTOR) signaling pathway, blood-testis barrier (BTB) remodeling markers, testicular autophagy and apoptotic markers, as well as histopathological alterations in testicular tissues. The results revealed that eugenol treatment demonstrated a significant improvement in sperm quality parameters, with increased sperm cell concentration, progressive motility live sperm, and a reduction in abnormal sperm, compared to the ACR-intoxicated group. Furthermore, eugenol administration increased the levels of seminal plasma amino acids in a dose-dependent manner. In addition, eugenol treatment dose-dependently improved testicular oxidative/nitrosative stress biomarkers by increasing oxidized and reduced glutathione levels and reducing malondialdehyde and nitric oxide contents as compared to ACRgroup. However, eugenol treatment at a high dose restored the expression of AMPK, PI3K, and mTOR genes, to levels comparable to the control group, while significantly increasing p-AKT content compared to the ACRgroup. In conclusion, the obtained findings suggest the potential of eugenol as a therapeutic agent in mitigating ACR-induced detrimental effects on the male reproductive system via amelioration of ROS-mediated autophagy, apoptosis, AMPK/p-AKT/mTOR signaling pathways and BTB remodeling.


Subject(s)
Antifibrinolytic Agents , Testis , Male , Animals , Rats , AMP-Activated Protein Kinases , Eugenol/pharmacology , Proto-Oncogene Proteins c-akt , Blood-Testis Barrier , Phosphatidylinositol 3-Kinases , Semen , Signal Transduction , TOR Serine-Threonine Kinases , Acrylamide/toxicity , Amino Acids , Mammals
5.
J Dairy Sci ; 107(2): 857-869, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709037

ABSTRACT

This study aimed to investigate the effect of administering a standardized blend of cinnamaldehyde, eugenol, and Capsicum oleoresin (CEC) to lactating dairy cattle for 84 d (i.e., 12 wk) on enteric CH4 emission, feed intake, milk yield and composition, and body weight. The experiment involved 56 Holstein-Friesian dairy cows (145 ± 31.1 d in milk at the start of the trial; mean ± standard deviation) in a randomized complete block design. Cows were blocked in pairs according to parity, lactation stage, and current milk yield, and randomly allocated to 1 of the 2 dietary treatments: a diet including 54.5 mg of CEC/kg of DM or a control diet without CEC. Diets were provided as partial mixed rations in feed bins, which automatically recorded individual feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CO2, CH4, and H2. Feeding CEC decreased CH4 yield (g/kg DMI) by on average 3.4% over the complete 12-wk period and by on average 3.9% from 6 wk after the start of supplementation onward. Feeding CEC simultaneously increased feed intake and body weight, and tended to increase milk protein content, whereas no negative responses were observed. These results must be further investigated and confirmed in longer-term in vivo experiments.


Subject(s)
Acrolein/analogs & derivatives , Capsicum , Lactation , Plant Extracts , Female , Pregnancy , Cattle , Animals , Lactation/physiology , Eugenol/pharmacology , Eugenol/metabolism , Capsicum/metabolism , Methane/metabolism , Diet/veterinary , Body Weight , Rumen/metabolism
6.
Parasitol Int ; 98: 102813, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37793471

ABSTRACT

Dengue fever is a worldwide public health problem, and efforts to eradicate it have focused on controlling the dengue vector, Aedes aegypti. This study aims to assess the toxicity and effect of commercial eugenol and piperine on Ae. aegypti larvae through enzyme detoxification and histopathological changes in the midgut. Laboratory-reared Ae. aegypti larvae were treated with various concentrations of commercial eugenol and piperine and observed after 24, 48, and 72 h. Biochemical methods were used to assess detoxification enzyme activity for acetylcholinesterase, glutathione S-transferase, and oxidase, and changes in the midgut were examined using routine histological examination. In terms of larvicidal activity, piperine exceeded eugenol. Piperine and eugenol had LC50 and LC90 values of 3.057 and 5.543 µM, respectively, and 6.421 and 44.722 µM at 24 h. Piperine and eugenol reduced oxidase activity significantly (p < 0.05), but increased acetylcholinesterase and glutathione S-transferase activity significantly (p < 0.05). After being exposed to piperine and eugenol, the food bolus and peritrophic membrane ruptured, the epithelial layer was interrupted and irregular, the epithelial cells shrank and formed irregularly, and the microvilli became irregular in shape. Commercial piperine and eugenol behave as potential larvicides, with processes involving altered detoxifying enzymes, specifically decreased oxidase function and increased GST activity, as well as midgut histological abnormalities.


Subject(s)
Aedes , Insecticides , Animals , Eugenol/pharmacology , Acetylcholinesterase , Larva , Plant Extracts/pharmacology , Mosquito Vectors , Glutathione Transferase , Oxidoreductases , Insecticides/pharmacology
7.
Molecules ; 28(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836676

ABSTRACT

The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan-gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical properties of the film, and an analysis of freshness preservation for chilled beef. The emulsion size (296.0 ± 10.2 nm), polydispersity index (0.457 ± 0.039), and potential (20.1 ± 0.9 mV) proved the success of emulsion. At the same time, the films displayed good mechanical and barrier properties. The index of beef preservation also indicated that eugenol was a better active ingredient than clove essence oil, which led to the rise of potential of hydrogen, chroma and water content, and effectively inhibited microbial propagation, protein degradation and lipid oxidation. These results suggest that the prepared composites can be used as promising materials for chilled beef preservation.


Subject(s)
Edible Films , Eugenol , Animals , Cattle , Eugenol/pharmacology , Gelatin , Emulsions , Clove Oil
8.
Braz J Biol ; 83: e271785, 2023.
Article in English | MEDLINE | ID: mdl-37610945

ABSTRACT

Ortho-eugenol is a synthetic derivative from eugenol, the major compound of clove essential oil, which has demonstrated antidepressant and antinociceptive effects in pioneering studies. Additionally, its effects appear to be dependent on the noradrenergic and dopaminergic systems. Depression and anxiety disorders are known to share a great overlap in their pathophysiology, and many drugs are effective in the treatment of both diseases. Furthermore, high levels of anxiety are related to working memory deficits and increased oxidative stress. Thus, in this study we investigated the effects of acute treatment of ortho-eugenol, at 50, 75 and 100 mg/kg, on anxiety, working memory and oxidative stress in male Swiss mice. Our results show that the 100 mg/kg dose increased the number of head-dips and reduced the latency in the hole-board test. The 50 mg/kg dose reduced malondialdehyde levels in the prefrontal cortex and the number of Y-maze entries compared to the MK-801-induced hyperlocomotion group. All doses reduced nitrite levels in the hippocampus. It was also possible to assess a statistical correlation between the reduction of oxidative stress and hyperlocomotion after the administration of ortho-eugenol. However, acute treatment was not able to prevent working memory deficits. Therefore, the present study shows that ortho-eugenol has an anxiolytic and antioxidant effect, and was able to prevent substance-induced hyperlocomotion. Our results contribute to the elucidation of the pharmacological profile of ortho-eugenol, as well as to direct further studies that seek to investigate its possible clinical applications.


Subject(s)
Eugenol , Memory, Short-Term , Male , Animals , Mice , Eugenol/pharmacology , Eugenol/therapeutic use , Anxiety/drug therapy , Anxiety Disorders , Oxidative Stress , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Clove Oil
9.
Daru ; 31(2): 183-192, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37639147

ABSTRACT

BACKGROUND: Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES: This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS: The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS: CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION: Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.


Subject(s)
Anti-Anxiety Agents , Oils, Volatile , Syzygium , Animals , Clove Oil/pharmacology , Clove Oil/metabolism , Oils, Volatile/pharmacology , Zebrafish , Syzygium/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Eugenol/pharmacology , Eugenol/metabolism
10.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446603

ABSTRACT

The development of the bamboo industry has been hindered by environmental issues caused by the application of bamboo preservatives. Chinese herbal phenolic compounds have been shown to possess broad-spectrum, potent antimildew properties, making them promising candidates for the development of new bamboo mildew inhibitors. In this study, we investigated the antimildew properties of three phenolic compounds, eugenol, carvacrol, and paeonol, against common mildews in bamboo materials using the Oxford cup method and the double-dilution method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the antimildew mechanism and its effects on mildew cell morphology. Our results showed that carvacrol exhibited the strongest antimildew activity, with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 1.56 mg/mL and 1.76 mg/mL, respectively, followed by eugenol and paeonol. At a concentration of 25 mg/mL, eugenol and carvacrol had an inhibitory rate of over 50% against various mildews. Different concentrations of the three compounds significantly disrupted the morphology and structural integrity of mildew hyphae, with the extent of damage increasing with concentration and treatment duration. In the sliced bamboo mildew prevention experiment, carvacrol at a concentration of 29.25 mg/mL was found to be highly effective against all tested mildews. Our study provides new insights and a theoretical basis for the development of eco-friendly bamboo mildew inhibitors based on plant phenolic compounds.


Subject(s)
Eugenol , Monoterpenes , Eugenol/pharmacology , Monoterpenes/pharmacology , Cymenes , Phenols/pharmacology , Fungi
11.
Phytomedicine ; 118: 154930, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348246

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) and excessive neuroinflammation, resulting in neuronal cell death and cognitive impairments. Eugenol, a phenylpropene, is the main component of Syzygium aromaticum L. (Myrtaceae) and has multiple therapeutic effects, including neuroprotective and anti-inflammatory effects, through multimodal mechanisms. PURPOSE: We aimed to investigate the effect of eugenol on AD pathologies using a 5× familiar AD (5×FAD) mouse model. METHODS: Eight-month-old 5×FAD and wild-type mice were administered with eugenol (10 or 30 mg/kg/day, p.o) for 2 months. Y-maze and Morris water maze tests were performed to assess the cognitive function of mice. After the behavioral test, molecular analysis was conducted to investigate the therapeutic mechanism of eugenol. RESULTS: Our findings indicate that eugenol treatment effectively mitigated cognitive impairments in 5×FAD mice. This beneficial effect was associated with a decrease in AD pathologies, including neuronal cell loss and Aß deposition. Specifically, eugenol inhibited necroptosis activation and increased microglial phagocytosis, which were the underlying mechanisms for the observed reductions in neuronal cell loss and Aß deposition, respectively. CONCLUSION: Overall, our data suggest that eugenol would be a potential therapeutic candidate for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Disease Models, Animal
12.
PLoS One ; 18(6): e0285473, 2023.
Article in English | MEDLINE | ID: mdl-37343020

ABSTRACT

Candida auris, the youngest Candida species, is known to cause candidiasis and candidemia in humans and has been related to several hospital outbreaks. Moreover, Candida auris infections are largely resistant to the antifungal drugs currently in clinical use, necessitating the development of novel medications and approaches to treat such infections. Following up on our previous studies that demonstrated eugenol tosylate congeners (ETCs) to have antifungal activity, several ETCs (C1-C6) were synthesized to find a lead molecule with the requisite antifungal activity against C. auris. Preliminary tests, including broth microdilution and the MUSE cell viability assay, identified C5 as the most active derivative, with a MIC value of 0.98 g/mL against all strains tested. Cell count and viability assays further validated the fungicidal activity of C5. Apoptotic indicators, such as phosphatidylserine externalization, DNA fragmentation, mitochondrial depolarization, decreased cytochrome c and oxidase activity and cell death confirmed that C5 caused apoptosis in C. auris isolates. The low cytotoxicity of C5 further confirmed the safety of using this derivative in future studies. To support the conclusions drawn in this investigation, additional in vivo experiments demonstrating the antifungal activity of this lead compound in animal models will be needed.


Subject(s)
Antifungal Agents , Candidiasis, Invasive , Animals , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida auris , Eugenol/pharmacology , Microbial Sensitivity Tests , Apoptosis , Candidiasis, Invasive/drug therapy , Cell Cycle Checkpoints
13.
Mol Biochem Parasitol ; 255: 111577, 2023 09.
Article in English | MEDLINE | ID: mdl-37329986

ABSTRACT

The parasite responsible for causing malaria infection, Plasmodium, is known to exhibit resistance to a number of already available treatments. This has prompted the continue search for new antimalarial drugs ranging from medicinal plant parts to synthetic compounds. In lieu of this, the mitigative action of the bioactive compound, eugenol towards P. berghei-induced anaemia and oxidative organ damage was investigated following a demonstration of in vitro and in vivo antiplasmodial effects. Mice were infected with chloroquine-sensitive strain of P. berghei and thereafter treated with eugenol at doses of 10 and 20 mg/kg body weight (BW) for seven days. The packed cell volume and redox sensitive biomarkers in the liver, brain and spleen were measured. Our result demonstrated that eugenol significantly (p < 0.05) ameliorated the P. berghei-associated anaemia at a dose of 10 mg/kg BW. In addition, the compound, at a dose of 10 mg/kg BW, significantly (p < 0.05) alleviated the P. berghei-induced organ damage. This evidently confirmed that eugenol plays an ameliorative role towards P. berghei-related pathological alterations. Hence, the study opens up a new therapeutic use of eugenol against plasmodium parasite.


Subject(s)
Anemia , Antimalarials , Mice , Animals , Plasmodium berghei , Eugenol/pharmacology , Eugenol/therapeutic use , Plant Extracts , Antimalarials/pharmacology , Antimalarials/therapeutic use , Oxidative Stress , Anemia/drug therapy , Anemia/etiology
14.
Braz J Biol ; 84: e271624, 2023.
Article in English | MEDLINE | ID: mdl-37311126

ABSTRACT

Among the different handling techniques in aquaculture, the use of anesthetics has had a growing interest focused on guaranteeing animal welfare, and reducing possible stress situations during general handling. The aim of this study was to present the use of eugenol and lidocaine with non-invasive anesthesia procedures in Dormitator latifrons, in which the different stages of anesthesia (induction and recovery) were determined. One hundred and twenty healthy fish of average weight of 73.59 ± 13.53 g and standard length of 17 ± 1.36 cm were used. The experimental fish were subjected to fasting for 24 h prior to the tests. Five fish were subjected to eugenol (25, 50, 100, and 200 µL/L), and lidocaine (100, 200, 300, and 400 mg/L), in triplicate. The time to reach deep and recovery anesthesia were recorded and the data analyzed using ANOVA (α= 0.05). Organisms exposed to anesthetics evidenced early episodes of fast, short-distance swimming (initial hyperactivity) for short periods of time. Survival was 100% with both compounds and concentrations. Fish exposed to a eugenol concentration of 200 µL/L had longer anesthesia times and took longer time to recover (P<0.05). The most effective concentrations for eugenol and lidocaine were of 200 µL/L and 400 µL/L in juvenile fish, promoting rapid inductions, without compromising the conditions for the recovery of the fish. This work provides practical information for handling and transportation D. latiforns with the least possible stress and ensuring animal welfare.


Subject(s)
Anesthetics , Perciformes , Animals , Lidocaine/pharmacology , Clove Oil/pharmacology , Eugenol/pharmacology , Anesthetics/pharmacology , Fishes , Sleep
15.
Molecules ; 28(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175309

ABSTRACT

The main objective of this research was to develop novel compounds from readily accessed natural products especially eugenol with potential biological activity. Eugenol, the principal chemical constituent of clove (Eugenia caryophyllata) from the family Myrtaceae is renowned for its pharmacological properties, which include analgesic, antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. According to reports, PPARγ regulates inflammatory reactions. The synthesized compounds were structurally analyzed using FT-IR, 1HNMR, 13CNMR, and mass spectroscopy techniques. Molecular docking was performed to analyze binding free energy and important amino acids involved in the interaction between synthesized derivatives and the target protein. The development of the structure-activity relationship is based on computational studies. Additionally, the stability of the best-docked protein-ligand complexes was assessed using molecular dynamic modeling. The in-vitro PPARγ competitive binding Lanthascreen TR-FRET assay was used to confirm the affinity of compounds to the target protein. All the synthesized derivatives were evaluated for an in vitro anti-inflammatory activity using an albumin denaturation assay and HRBC membrane stabilization at varying concentrations from 6.25 to 400 µM. In this background, with the aid of computational research, we were able to design six novel derivatives of eugenol synthesized, analyzed, and utilized TR-FRET competitive binding assay to screen them for their ability to bind PPARγ. Anti-inflammatory activity evaluation through in vitro albumin denaturation and HRBC method revealed that 1f exhibits maximum inhibition of heat-induced albumin denaturation at 50% and 85% protection against HRBC lysis at 200 and 400 µM, respectively. Overall, we found novel derivatives of eugenol that could potentially reduce inflammation by PPARγ agonism.


Subject(s)
Eugenol , PPAR gamma , Humans , Eugenol/pharmacology , PPAR gamma/metabolism , Molecular Docking Simulation , PPAR-gamma Agonists , Spectroscopy, Fourier Transform Infrared , Anti-Inflammatory Agents/pharmacology , Inflammation , Structure-Activity Relationship , Molecular Dynamics Simulation , Albumins
16.
Molecules ; 28(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985419

ABSTRACT

Eugenol essential oil (EEO) is the major component in aromatic extracts of Syzygium aromaticum (clove) and has several biological properties, such as antibacterial, antioxidant, and anti-inflammatory activities, as well as controlling vomiting, coughing, nausea, flatulence, diarrhea, dyspepsia, stomach distension, and gastrointestinal spasm pain. It also stimulates the nerves. Therefore, the aim of this study was to extract and purify EEO from clove buds and assess its ability to combat resistant Helicobacter pylori. Additionally, EEO's anti-inflammatory activity and its ability to suppress H. pylori biofilm formation, which is responsible for antibiotic resistance, was also investigated. Syzygium aromaticum buds were purchased from a local market, ground, and the EEO was extracted by using hydro-distillation and then purified and chemically characterized using gas chromatography-mass spectrometry (GC-MS). A disk-diffusion assay showed that Helicobacter pylori is sensitive to EEO, with an inhibition zone ranging from 10 ± 06 to 22 ± 04 mm. The minimum inhibition concentration (MIC) of EEO ranged from 23.0 to 51.0 µg/mL against both Helicobacter pylori clinical isolates and standard strains. In addition, EEO showed antibiofilm activity at 25 µg/mL and 50 µg/mL against various Helicobacter pylori strains, with suppression percentages of 49.32% and 73.21%, respectively. The results obtained from the anti-inflammatory assay revealed that EEO possesses strong anti-inflammatory activity, with human erythrocyte hemolysis inhibition percentages of 53.04, 58.74, 61.07, and 63.64% at concentrations of 4, 8, 16, and 32 µg/L, respectively. GC-MS analysis revealed that EEO is a major component of Syzygium aromaticum when extracted with a hydro-distillation technique, which was confirmed by its purification using a chemical separation process. EEO exhibited antibacterial action against resistant Helicobacter pylori strains, as well as antibiofilm and anti-inflammatory activities, and is a promising natural alternative in clinical therapy.


Subject(s)
Helicobacter pylori , Oils, Volatile , Syzygium , Humans , Oils, Volatile/chemistry , Eugenol/pharmacology , Clove Oil/pharmacology , Syzygium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Biofilms
17.
J Infect Dev Ctries ; 17(1): 80-85, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36795930

ABSTRACT

INTRODUCTION: Human trichomoniasis is a widespread sexually transmitted disease and the concern of drug resistance in the parasite is growing. Hence, this study was performed to evaluate in vitro antitrichomonal activity of Satureja khuzestanica, carvacrol, thymol, eugenol, and phytochemical evaluation of the S. khuzestanica oil. METHODOLOGY: Extracts and essential oil of S. khuzestanica, and the components were prepared. Then, susceptibility testing was performed using the microtiter plate method and Trichomonas vaginalis isolates. The minimum lethal concentration (MLC) of the agents was determined in comparison with metronidazole. Also, the essential oil was investigated by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. RESULTS: After 48 hours of incubation, carvacrol and thymol were the most effective antitrichomonal agents with MLC of 100 µg/mL, followed by the essential oil and hexanic extract (MLC = 200 µg/mL), then eugenol and methanolic extract (MLC = 400 µg/mL), in comparison with the metronidazole MLC of 6.8 µg/mL. Overall, 33 identified compounds accounted for 98.72% of the total essential oil composition with carvacrol, thymol, and p-cymene being the major constituents. CONCLUSIONS: The results suggested the potency of S. khuzestanica and its bioactive ingredients against T. vaginalis. Thus, further in vivo studies are required to evaluate the efficacies of the agents.


Subject(s)
Oils, Volatile , Satureja , Humans , Thymol/pharmacology , Thymol/analysis , Thymol/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antitrichomonal Agents , Satureja/chemistry , Eugenol/pharmacology , Metronidazole , Plant Extracts/pharmacology
18.
Phytother Res ; 37(7): 2759-2770, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36762415

ABSTRACT

Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.


Subject(s)
Appetite , Transient Receptor Potential Channels , Mice , Animals , Eugenol/pharmacology , AMP-Activated Protein Kinases/metabolism , Transient Receptor Potential Channels/metabolism , Signal Transduction
19.
Molecules ; 28(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770859

ABSTRACT

In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.


Subject(s)
Ocimum sanctum , Plants, Medicinal , Eugenol/pharmacology , Eugenol/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
20.
J Agric Food Chem ; 71(3): 1477-1487, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36642968

ABSTRACT

Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Pyroptosis is involved in the pathogenesis of coronavirus, but its role in TGEV-induced intestinal injury has yet to be fully elucidated. Eugenol, an essential plant oil, plays a vital role in antiviral innate immune responses. We demonstrate the preventive effect of eugenol on TGEV infection. Eugenol alleviates TGEV-induced intestinal epithelial cell pyroptosis and reduces intestinal injury in TGEV-infected piglets. Mechanistically, eugenol reduces the activation of NLRP3 inflammasome, thereby inhibiting TGEV-induced intestinal epithelial cell pyroptosis. In addition, eugenol scavenges TGEV-induced reactive oxygen species (ROS) increase, which in turn prevents TGEV-induced NLRP3 inflammasome activation and pyroptosis. Overall, eugenol protects the intestine by reducing TGEV-induced pyroptosis through inhibition of NLRP3 inflammasome activation, which may be mediated through intracellular ROS levels. These findings propose that eugenol may be an effective strategy to prevent TGEV infection.


Subject(s)
Transmissible gastroenteritis virus , Animals , Eugenol/pharmacology , Inflammasomes/genetics , Intestines , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Reactive Oxygen Species , Swine , Transmissible gastroenteritis virus/physiology , Phosphate-Binding Proteins/metabolism , Gasdermins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL