Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Agric Food Chem ; 72(13): 7089-7099, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512774

ABSTRACT

Breast cancer patients undergoing chemotherapy often experience muscle wasting and weakness, which impact their quality of life. A potential solution lies in customizing amino acid compositions based on exome-derived formulations (ExAAs). The study hypothesized that tailoring dietary amino acids using ExAAs could enhance muscle health. Theoretical amino acid requirements were calculated from the genome's exome region, and a breast cancer mouse model undergoing paclitaxel treatment was established. The mice were supplemented with a cancer-specific nutritional formula (QJS), and the effects of QJS and amino acid-adjusted QJS (adjQJS) were compared. Both formulations improved the nutritional status without compromising tumor growth. Notably, adjQJS significantly enhanced muscle strength compared to QJS (1.51 ± 0.25 vs. 1.30 ± 0.08 fold change, p < 0.05). Transcriptome analysis revealed alterations in complement and coagulation cascades, with an observed upregulation of C3 gene expression in adjQJS. Immune regulation also changed, showing a decrease in B cells and an increase in monocytes in skeletal muscle with adjQJS. Importantly, adjQJS resulted in a notable increase in Alistipes abundance compared to QJS (10.19 ± 0.04% vs. 5.03 ± 1.75%). This study highlights the potential of ExAAs as valuable guide for optimizing amino acid composition in diets for breast cancer patients undergoing chemotherapy.


Subject(s)
Breast Neoplasms , Exome , Humans , Animals , Mice , Female , Exome/genetics , Quality of Life , Amino Acids/metabolism , Diet , Muscle Strength , Muscle, Skeletal/metabolism , Dietary Supplements , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism
2.
Nutrients ; 14(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36297015

ABSTRACT

Habitual coffee consumption is an addictive behavior with unknown genetic variations and has raised public health issues about its potential health-related outcomes. We performed exome-wide association studies to identify rare risk variants contributing to habitual coffee consumption utilizing the newly released UK Biobank exome dataset (n = 200,643). A total of 34,761 qualifying variants were imported into SKAT to conduct gene-based burden and robust tests with minor allele frequency <0.01, adjusting the polygenic risk scores (PRS) of coffee intake to exclude the effect of common coffee-related polygenic risk. The gene-based burden and robust test of the exonic variants found seven exome-wide significant associations, such as OR2G2 (PSKAT = 1.88 × 10−9, PSKAT-Robust = 2.91 × 10−17), VEZT1 (PSKAT = 3.72 × 10−7, PSKAT-Robust = 1.41 × 10−7), and IRGC (PSKAT = 2.92 × 10−5, PSKAT-Robust = 1.07 × 10−7). These candidate genes were verified in the GWAS summary data of coffee intake, such as rs12737801 (p = 0.002) in OR2G2, and rs34439296 (p = 0.008) in IRGC. This study could help to extend genetic insights into the pathogenesis of coffee addiction, and may point to molecular mechanisms underlying health effects of habitual coffee consumption.


Subject(s)
Coffee , Receptors, Odorant , Humans , Exome Sequencing , Receptors, Odorant/genetics , Exome/genetics , Hyperphagia/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
3.
J Allergy Clin Immunol ; 150(4): 947-954, 2022 10.
Article in English | MEDLINE | ID: mdl-35753512

ABSTRACT

BACKGROUND: Prospective genetic evaluation of patients at this referral research hospital presents clinical research challenges. OBJECTIVES: This study sought not only a single-gene explanation for participants' immune-related presentations, but viewed each participant holistically, with the potential to have multiple genetic contributions to their immune phenotype and other heritable comorbidities relevant to their presentation and health. METHODS: This study developed a program integrating exome sequencing, chromosomal microarray, phenotyping, results return with genetic counseling, and reanalysis in 1505 individuals from 1000 families with suspected or known inborn errors of immunity. RESULTS: Probands were 50.8% female, 71.5% were ≥18 years, and had diverse immune presentations. Overall, 327 of 1000 probands (32.7%) received 361 molecular diagnoses. These included 17 probands with diagnostic copy number variants, 32 probands with secondary findings, and 31 probands with multiple molecular diagnoses. Reanalysis added 22 molecular diagnoses, predominantly due to new disease-gene associations (9 of 22, 40.9%). One-quarter of the molecular diagnoses (92 of 361) did not involve immune-associated genes. Molecular diagnosis was correlated with younger age, male sex, and a higher number of organ systems involved. This program also facilitated the discovery of new gene-disease associations such as SASH3-related immunodeficiency. A review of treatment options and ClinGen actionability curations suggest that at least 251 of 361 of these molecular diagnoses (69.5%) could translate into ≥1 management option. CONCLUSIONS: This program contributes to our understanding of the diagnostic and clinical utility whole exome analysis on a large scale.


Subject(s)
Exome , Genetic Testing , Exome/genetics , Female , Genetic Testing/methods , Genomics , Humans , Male , Phenotype , Prospective Studies
4.
Am J Med Genet A ; 182(9): 2129-2132, 2020 09.
Article in English | MEDLINE | ID: mdl-32627382

ABSTRACT

YY1 mutations cause Gabriele-de Vries syndrome, a recently described condition involving cognitive impairment, facial dysmorphism and intrauterine growth restriction. Movement disorders were reported in 5/10 cases of the original series, but no detailed description was provided. Here we present a 21-year-old woman with a mild intellectual deficit, facial dysmorphism and a complex movement disorder including an action tremor, cerebellar ataxia, dystonia, and partial ocular apraxia as the presenting and most striking feature. Whole-exome sequencing revealed a novel heterozygous de novo mutation in YY1 [NM: 003403.4 (YY1): c.907 T > C; p.(Cys303Arg)], classified as pathogenic according to the ACMG guidelines.


Subject(s)
Movement Disorders/genetics , Neurodevelopmental Disorders/genetics , YY1 Transcription Factor/genetics , Child , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/pathology , Movement Disorders/pathology , Neurodevelopmental Disorders/pathology , Phenotype , Exome Sequencing
5.
JAMA Ophthalmol ; 137(12): 1444-1448, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31647501

ABSTRACT

Importance: Greater understanding of molecular features of conjunctival melanoma (CM) may improve its clinical management. Objective: To evaluate molecular features of CM and application of this information into clinical care. Design, Setting, and Participants: In a prospective case series of CM with integrative exome and transcriptome analysis, 8 patients at an academic ocular oncology setting were evaluated. The study was conducted from November 2015 to March 2018. Interventions/Exposures: Integrative exome and transcriptome analysis of CMs and clinical management of a patient's care by using this information. Main Outcomes and Measures: Molecular characterization of CM and its potential clinical application. Results: In the 8 patients (4 men) included in analysis, 4 subgroups of CM were observed, including the BRAF V600E mutation in 1 tumor, NRAS Q61R mutation in 3 tumors, NF1 mutations (Q1188X, R440X, or M1215K+ S15fs) in 3 tumors, and triple-wild type (triple-WT) in 1 tumor. The triple-WT case had CCND1 amplification and mutation in the CIC gene (Q1508X). Five tumors, including the triple-WT, also harbored mutations in MAPK genes. In addition to the genes linked to mitogen-activated protein kinase and phosphoinositol 3-kinase pathways, those involved in cell cycle and/or survival, ubiquitin-mediated protein degradation, and chromatin remodeling/epigenetic regulation (ATRX being the most frequently mutated: noted in 5 tumors) may play an important role. Other frequently mutated genes included PREX2 (n = 3), APOB (n = 4), and RYR1/2 (n = 4), although their relevance remains to be determined. The mutation burden ranged from 1.1 to 15.6 mutations per megabase (Mut/Mb) and was 3.3 Mut/Mb or less in 3 tumors and more than 10 Mut/Mb in 2 tumors. A patient with a large tumor and BRAF V600E mutation was treated with combined systemic BRAF (dabrafenib) and MEK (trametinib) inhibitors. After 3 months of therapy, her CM responded substantially and the residual tumor was removed by local surgical excision. Conclusions and Relevance: The NRAS Q61R and NF1 mutations were more common than the BRAF V600E mutation in this series. Although small tumors (where incisional biopsy is not indicated) are treated with surgical excision regardless of mutational profile, in large tumors carrying the BRAF V600E mutation, neoadjuvant therapy with combined systemic BRAF and MEK inhibitors followed by local excision may be used as an alternative to exenteration. Integrative omics analysis of CM may be informative and guide clinical management and treatment in selected cases.


Subject(s)
Antineoplastic Agents/therapeutic use , Conjunctival Neoplasms/genetics , Exome/genetics , GTP Phosphohydrolases/genetics , Melanoma/genetics , Membrane Proteins/genetics , Neurofibromin 1/genetics , Proto-Oncogene Proteins B-raf/genetics , Adult , Aged , Aged, 80 and over , Conjunctival Neoplasms/drug therapy , Conjunctival Neoplasms/pathology , DNA Mutational Analysis , Female , Gene Expression Profiling , Humans , Imidazoles/therapeutic use , Male , Melanoma/drug therapy , Melanoma/pathology , Oximes/therapeutic use , Precision Medicine , Prospective Studies , Protein Kinase Inhibitors/therapeutic use , Pyridones/therapeutic use , Pyrimidinones/therapeutic use
6.
Biomed Res Int ; 2018: 1250721, 2018.
Article in English | MEDLINE | ID: mdl-30584530

ABSTRACT

BACKGROUND AND AIM: ROHHADNET (rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, neuroendocrine tumor) syndrome is a rare disease with grave outcome. Although early recognition is essential, prompt diagnosis may be challenging due to its extreme rarity. This study aimed to systematically review its clinical manifestation and to identify genetic causes. MATERIALS AND METHODS: We firstly conducted a systematic review on ROHHAD/NET. Electronic databases were searched using related terms. We secondly performed whole exome sequencing (WES) and examined copy number variation (CNV) in two patients to identify genetic causes. RESULTS: In total, 46 eligible studies including 158 patients were included. There were 36 case reports available for individual patient data (IPD; 48 patients, 23 ROHHAD, and 25 ROHHADNET) and 10 case series available for aggregate patient data (APD; 110 patients, 71 ROHHAD, and 39 ROHHADNET). The median age at onset calculated from IPD was 4 years. Gender information was available in 100 patients (40 from IPD and 60 from APD) in which 65 females and 35 males were showing female preponderance. Earliest manifestation was rapid obesity, followed by hypothalamic symptoms. Most common types of neuroendocrine tumors were ganglioneuromas. Patients frequently had dysnatremia and hyperprolactinemia. Two patients were available for WES. Rare variants were identified in PIK3R3, SPTBN5, and PCF11 in one patient and SRMS, ZNF83, and KMT2B in another patient, respectively. However, there was no surviving variant shared by the two patients after filtering. CONCLUSIONS: This study systematically reviewed the phenotype of ROHHAD/NET aiming to help early recognition and reducing morbidity. The link of variants identified in the present WES requires further investigation.


Subject(s)
Autonomic Nervous System Diseases/genetics , Hypothalamus/pathology , Hypoventilation/genetics , Neuroendocrine Tumors/genetics , Obesity/genetics , Age of Onset , Child , Child, Preschool , DNA Copy Number Variations/genetics , Exome/genetics , Female , Humans , Male , Meta-Analysis as Topic , Phenotype , Syndrome
7.
Toxicol Pathol ; 46(6): 706-718, 2018 08.
Article in English | MEDLINE | ID: mdl-30045675

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide; however, the mutational properties of HCC-associated carcinogens remain largely uncharacterized. We hypothesized that mechanisms underlying chemical-induced HCC can be characterized by evaluating the mutational spectra of these tumors. To test this hypothesis, we performed exome sequencing of B6C3F1/N HCCs that arose either spontaneously in vehicle controls ( n = 3) or due to chronic exposure to gingko biloba extract (GBE; n = 4) or methyleugenol (MEG; n = 3). Most archived tumor samples are available as formalin-fixed paraffin-embedded (FFPE) blocks, rather than fresh-frozen (FF) samples; hence, exome sequencing from paired FF and FFPE samples was compared. FF and FFPE samples showed 63% to 70% mutation concordance. Multiple known (e.g., Ctnnb1T41A, BrafV637E) and novel (e.g., Erbb4C559S, Card10A700V, and Klf11P358L) mutations in cancer-related genes were identified. The overall mutational burden was greater for MEG than for GBE or spontaneous HCC samples. To characterize the mutagenic mechanisms, we analyzed the mutational spectra in the HCCs according to their trinucleotide motifs. The MEG tumors clustered closest to Catalogue of Somatic Mutations in Cancer signatures 4 and 24, which are, respectively, associated with benzo(a)pyrene- and aflatoxin-induced HCCs in humans. These results establish a novel approach for classifying liver carcinogens and understanding the mechanisms of hepatocellular carcinogenesis.


Subject(s)
Carcinogens/toxicity , Exome/genetics , Gene Expression Profiling , Liver Neoplasms, Experimental/genetics , Liver/drug effects , Mutation , Sequence Analysis, DNA/methods , Animals , Cryopreservation , DNA, Neoplasm/genetics , Eugenol/analogs & derivatives , Eugenol/toxicity , Female , Formaldehyde/chemistry , Ginkgo biloba , Liver/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Male , Mice, Inbred Strains , Paraffin Embedding , Plant Extracts/toxicity , Reproducibility of Results , Tissue Fixation
8.
Intern Med J ; 48(7): 786-794, 2018 07.
Article in English | MEDLINE | ID: mdl-29607586

ABSTRACT

BACKGROUND: Technology has progressed from single gene panel to large-scale genomic sequencing. This is raising expectations from clinicians and patients alike. The utility and performance of this technology in a clinical setting needs to be evaluated. AIM: This pilot study investigated the feasibility of using exome-scale sequencing (ESS) to identify molecular drivers within cancers in real-time for Precision Oncology in the clinic. METHODS: Between March 2014 and March 2015, the Victorian Comprehensive Cancer Centre Alliance explored the feasibility and utility of ESS in a pilot study. DNA extracted from the tumour specimens underwent both ESS and targeted 'hotspot' sequencing (TS). Blood was taken for germline analysis. A multi-disciplinary molecular tumour board determined the clinical relevance of identified mutations; in particular, whether they were 'actionable' and/or 'druggable'. RESULTS: Of 23 patients screened, 15 (65%) met the tissue requirements for genomic analysis. TS and ESS were successful in all cases. ESS identified pathogenic somatic variants in 73% (11/15 cases) versus 53% (8/15 cases) using TS. Clinically focused ESS identified 63 variants, consisting of 30 somatic variants (including all 13 identified by TS) and 33 germline variants. Overall, there were 48 unique variants. ESS had a clinical impact in 53% (8/15 cases); 47% (7/15 cases) were referred to the familial cancer clinic, and 'druggable' targets were identified in 53% (8/15 cases). CONCLUSION: ESS of tumour DNA impacted clinical decision-making in 53%, with 20% more pathogenic variants identified through ESS than TS. The identification of germline variants in 47% was an unexpected finding.


Subject(s)
Exome/genetics , Neoplasms/genetics , Sequence Analysis, DNA , Adolescent , Adult , Aged , DNA, Neoplasm/analysis , Female , Genetic Markers , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Pilot Projects , Precision Medicine , Young Adult
9.
Arch Dermatol Res ; 309(10): 773-785, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28913623

ABSTRACT

Syndromic ichthyosis is rare inherited disorders of cornification with varied disease complications. This disorder appears in seventeen subtypes associated with severe systematic manifestations along with medical, cosmetic and social problems. Syndromic ichthyosis with prominent hair abnormalities covers five major subtypes: Netherton syndrome, trichothiodystrophy, ichthyosis hypotrichosis syndrome, ichthyosis hypotrichosis sclerosing cholangitis and ichthyosis follicularis atrichia photophobia syndrome. These syndromes mostly prevail in high consanguinity states, with distinctive clinical features. The known pathogenic molecules involved in ichthyosis syndromes with prominent hair abnormalities include SPINK5, ERCC2, ERCC3, GTF2H5, MPLKIP, ST14, CLDN1 and MBTPS2. Despite underlying genetic origin, most of the health professionals solely rely on phenotypic expression of these disorders that leads to improper management of patients, hence making these patients living an orphanage life. After dermal features, association of other systems such as nervous system, skeletal system, hair abnormalities or liver problems may sometimes give clues for diagnosis but still leaving place for molecular screening for efficient diagnosis. In this paper, we have presented a review of ichthyosis syndrome with prominent hair abnormalities, with special emphasis on their updated genetic consequences and disease management. Additionally, we aim to update health professionals about the practice of molecular screening in ichthyosis syndromes for appropriate diagnosis and treatment.


Subject(s)
Hair Diseases/therapy , Hair/abnormalities , Ichthyosis/therapy , Photophobia/therapy , Rare Diseases/therapy , Consanguinity , Dermatologic Agents/therapeutic use , Exome/genetics , Genetic Testing/methods , Hair Diseases/diagnosis , Hair Diseases/etiology , Hair Diseases/mortality , High-Throughput Nucleotide Sequencing , Humans , Ichthyosis/diagnosis , Ichthyosis/etiology , Ichthyosis/mortality , Mutation , Phenotype , Photophobia/diagnosis , Photophobia/etiology , Photophobia/mortality , Phototherapy/methods , Rare Diseases/diagnosis , Rare Diseases/etiology , Rare Diseases/mortality , Syndrome
10.
Am J Chin Med ; 45(5): 1075-1092, 2017.
Article in English | MEDLINE | ID: mdl-28659030

ABSTRACT

Glomerular mesangial cells (GMCs) activation is implicated in the pathogenesis of diabetic nephropathy (DN). Our previous study revealed that high glucose (HG)-treated glomerular endothelial cells (GECs) produce an increased number of TGF-[Formula: see text]1-containing exosomes to activate GMCs through the TGF-[Formula: see text]1/Smad3 signaling pathway. We also identified that Tongxinluo (TXL), a traditional Chinese medicine, has beneficial effects on the treatment of DN in DN patients and type 2 diabetic mice. However, it remained elusive whether TXL could ameliorate renal structure and function through suppression of intercellular transfer of TGF-[Formula: see text]1-containing exosomes from GECs to GMCs. In this study, we demonstrate that TXL can inhibit the secretion of TGF-[Formula: see text]1-containing exosomes from HG-treated GECs. Furthermore, exosomes produced by HG induced-GECs treated with TXL cannot trigger GMC activation, proliferation and extracellular matrix (ECM) overproduction both in vitro and in vivo. These results suggest that TXL can prevent the transfer of TGF-[Formula: see text]1 from GECs to GMCs via exosomes, which may be one of the mechanisms of TXL in the treatment of DN.


Subject(s)
Cell Communication/drug effects , Cell Communication/genetics , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Endothelial Cells/metabolism , Exome/genetics , Kidney Glomerulus/cytology , Kidney/pathology , Mesangial Cells/metabolism , Phytotherapy , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Animals , Cells, Cultured , Diabetic Nephropathies/pathology , Disease Models, Animal , Fibrosis , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Signal Transduction/drug effects , Signal Transduction/genetics
11.
Brain Dev ; 39(5): 422-425, 2017 May.
Article in English | MEDLINE | ID: mdl-28063748

ABSTRACT

BACKGROUND: Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal storage disorder caused by a deficiency of the lysosomal enzyme, aspartylglucosaminidase (AGA). This disorder is rare in the general population except in Finland. Since the most characteristic feature of this disorder is a progressive developmental regression, patients often show no specific symptoms in the initial stages, and thus early diagnosis is often challenging. CASE REPORT: We encountered a 16-year-old boy who began to show difficulties in his speech at the age of 6years. Due to a mild regression in his development, he gradually lost common daily abilities. His diagnosis was first obtained through exome sequencing that identified a novel homozygous mutation in the AGA gene. This result was reasonable because of parental consanguinity. Reduced enzymatic activity of AGA was then confirmed. His urine was retrospectively screened by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and a specific pattern of abnormal metabolites was identified. CONCLUSIONS: Because both exome sequencing and MALDI-TOF-MS screening are adaptable and comprehensive, future combinatory use of these methods would be useful for diagnosis of rare inborn errors of metabolism such as AGU.


Subject(s)
Aspartylglucosaminuria/genetics , Aspartylglucosylaminase/genetics , Mutation/genetics , Adolescent , Aspartylglucosaminuria/diagnostic imaging , Aspartylglucosylaminase/metabolism , Exome/genetics , Humans , Japan , Magnetic Resonance Imaging , Male , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thalamus/diagnostic imaging
12.
Brain Dev ; 39(5): 426-430, 2017 May.
Article in English | MEDLINE | ID: mdl-28063749

ABSTRACT

Symmetrical thalamic calcification or bilateral symmetrical thalamic gliosis presents at delivery with hypertonia, fixed flexion contractures and prominent bulbar signs, without preceding perinatal asphyxia. At post-mortem, there is evidence of bilateral symmetrical selective thalamic neuronal encrustation and gliosis. To date, 27 cases are published with no underlying diagnosis identified. Two affected children from singleton pregnancies were reported and therefore, a genetic cause proposed. No previous reports have performed genetic testing to confirm or reject this hypothesis. We report three additional cases of this rare condition, expanding the clinical and pathological phenotype. We performed trio whole exome sequencing, the first in this cohort of patients, and did not identify a pathogenic variant. As postulated in the original report, the likely underlying mechanism is antenatal hypoxia in the third trimester.


Subject(s)
Brain Diseases/complications , Brain Diseases/pathology , Calcinosis/etiology , Thalamus/pathology , Brain Diseases/diagnostic imaging , Brain Diseases/genetics , Calcinosis/diagnostic imaging , Calcinosis/genetics , Exome/genetics , Female , Genetic Testing , Humans , Infant , Magnetic Resonance Imaging , Male , Thalamus/diagnostic imaging
13.
Am J Hum Genet ; 100(1): 21-30, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27939641

ABSTRACT

Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-ß-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.


Subject(s)
Fibromuscular Dysplasia/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mutation , Nuclear Proteins/genetics , Transcription Factors/genetics , Adolescent , Adult , Bone and Bones/pathology , Brachydactyly/genetics , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins , Exome/genetics , Female , Genes, Recessive , Heterozygote , Homozygote , Humans , Learning Disabilities/genetics , Male , Middle Aged , Pedigree , Syndactyly/genetics , Syndrome
14.
Science ; 354(6319)2016 Dec 23.
Article in English | MEDLINE | ID: mdl-28008009

ABSTRACT

The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery.


Subject(s)
Delivery of Health Care, Integrated , Disease/genetics , Electronic Health Records , Exome/genetics , High-Throughput Nucleotide Sequencing , Adult , Drug Design , Gene Frequency , Genomics , Humans , Hypolipidemic Agents/pharmacology , INDEL Mutation , Lipids/blood , Molecular Targeted Therapy , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
15.
Am J Hum Genet ; 99(4): 802-816, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27616483

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated cation channels that mediate excitatory synaptic transmission. Genetic mutations in multiple NMDAR subunits cause various childhood epilepsy syndromes. Here, we report a de novo recurrent heterozygous missense mutation-c.1999G>A (p.Val667Ile)-in a NMDAR gene previously unrecognized to harbor disease-causing mutations, GRIN2D, identified by exome and candidate panel sequencing in two unrelated children with epileptic encephalopathy. The resulting GluN2D p.Val667Ile exchange occurs in the M3 transmembrane domain involved in channel gating. This gain-of-function mutation increases glutamate and glycine potency by 2-fold, increases channel open probability by 6-fold, and reduces receptor sensitivity to endogenous negative modulators such as extracellular protons. Moreover, this mutation prolongs the deactivation time course after glutamate removal, which controls the synaptic time course. Transfection of cultured neurons with human GRIN2D cDNA harboring c.1999G>A leads to dendritic swelling and neuronal cell death, suggestive of excitotoxicity mediated by NMDAR over-activation. Because both individuals' seizures had proven refractory to conventional antiepileptic medications, the sensitivity of mutant NMDARs to FDA-approved NMDAR antagonists was evaluated. Based on these results, oral memantine was administered to both children, with resulting mild to moderate improvement in seizure burden and development. The older proband subsequently developed refractory status epilepticus, with dramatic electroclinical improvement upon treatment with ketamine and magnesium. Overall, these results suggest that NMDAR antagonists can be useful as adjuvant epilepsy therapy in individuals with GRIN2D gain-of-function mutations. This work further demonstrates the value of functionally evaluating a mutation, enabling mechanistic understanding and therapeutic modeling to realize precision medicine for epilepsy.


Subject(s)
Genes, Dominant/genetics , Mutation , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Spasms, Infantile/drug therapy , Spasms, Infantile/genetics , Amino Acid Sequence , Base Sequence , Cell Death , Child , DNA Mutational Analysis , Dendrites/pathology , Electroencephalography , Exome/genetics , Female , Glutamic Acid/metabolism , Humans , Infant , Infant, Newborn , Ketamine/therapeutic use , Magnesium/therapeutic use , Memantine/administration & dosage , Memantine/therapeutic use , Models, Molecular , Precision Medicine , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/drug therapy , Seizures/genetics , Seizures/metabolism , Spasms, Infantile/metabolism
16.
Clin Immunol ; 168: 88-93, 2016 07.
Article in English | MEDLINE | ID: mdl-27057999

ABSTRACT

LRBA (lipopolysaccharide-responsive and beige-like anchor protein) deficiency associates immune deficiency, lymphoproliferation, and various organ-specific autoimmunity. To date, prevalent symptoms are autoimmune cytopenias and enteropathy, and lymphocytic interstitial lung disease. In 2 siblings from a consanguineous family presenting with early onset polyautoimmunity, we presumed autosomal recessive inheritance and performed whole exome sequencing. We herein report the first case of early-onset, severe, chronic polyarthritis associated with LRBA deficiency. A novel 1bp insertion in the LRBA gene, abolishing protein expression, was identified in this family. Among the 2 brothers homozygous for LRBA mutation, one developed Evans syndrome and deceased at age 8.5 from complications of severe autoimmune thrombocytopenia. His brother, who carried the same homozygous LRBA mutation, early-onset erosive polyarthritis associated with chronic, bilateral, anterior uveitis and early onset type 1 diabetes mellitus. This report widens the clinical spectrum of LRBA deficiency and, in lights of the variable phenotypes described so far, prompts us to screen for this disease in patients with multiple autoimmune symptoms in the family, including severe, erosive, polyarticular juvenile arthritis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Arthritis/genetics , Autoimmunity/genetics , Mutation , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Arthritis/complications , Arthritis/metabolism , Child, Preschool , Chronic Disease , Consanguinity , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Exome/genetics , Family Health , Fatal Outcome , Female , Humans , Immunoblotting , Male , Pedigree , Sequence Analysis, DNA , Siblings , Uveitis, Anterior/complications , Uveitis, Anterior/genetics , Uveitis, Anterior/metabolism
17.
Exp Mol Pathol ; 100(1): 8-12, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26626801

ABSTRACT

Many genetic factors play important roles in the development of endometrial cancer. The aim of this study was to investigate genetic alterations in the Taiwanese population with endometrial cancer. DNA was extracted from 10 cases of fresh-frozen endometrial cancer tissue. The exomes of cancer-related genes were captured using the NimbleGen Comprehensive Cancer Panel (578 cancer-related genes) and sequenced using the Illumina Genomic Sequencing Platform. Our results revealed 120 variants in 99 genes, 21 of which were included in the Oncomine Cancer Research Panel used in the National Cancer Institute Match Trial. The 21 genes comprised 8 tumor suppressor candidates (ATM, MSH2, PIK3R1, PTCH1, PTEN, TET2, TP53, and TSC1) and 13 oncogene candidates (ALK, BCL9, CTNNB1, ERBB2, FGFR2, FLT3, HNF1A, KIT, MTOR, PDGFRA, PPP2R1A, PTPN11, and SF3B1). We identified a high frequency of mutations in PTEN (50%) and genes involved in the endometrial cancer-related molecular pathway, which involves the IL-7 signaling pathway (PIK3R1, n=1; AKT2, n=1; FOXO1, n=1). We report the mutational landscape of endometrial cancer in the Taiwanese population. We believe that this study will shed new light on fundamental aspects for understanding the molecular pathogenesis of endometrial cancer and may aid in the development of new targeted therapies.


Subject(s)
Endometrial Neoplasms/genetics , Genetic Predisposition to Disease , Mutation/genetics , PTEN Phosphohydrolase/genetics , Chromosome Mapping , Endometrial Neoplasms/pathology , Exome/genetics , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Interleukin-7/genetics , Interleukin-7/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Receptor, ErbB-2/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Sequence Analysis, DNA/methods
18.
Ophthalmic Genet ; 36(3): 270-5, 2015.
Article in English | MEDLINE | ID: mdl-25687216

ABSTRACT

BACKGROUND: Methylmalonic aciduria and homocystinuria type C (cblC), a disorder of vitamin B12 (cobalamin) metabolism caused by mutations in the MMACHC gene, presents with many systemic symptoms, including neurological, cognitive, psychiatric, and thromboembolic events. Retinal phenotypes, including maculopathy, pigmentary retinopathy, and optic atrophy are common in early onset form of the disease but are rare in adult onset forms. MATERIALS AND METHODS: An adult Hispanic female presented with decreased central vision, bilateral pericentral ring scotomas and bull's eye-appearing macular lesions at 28 years of age. Her medical history was otherwise unremarkable except for iron deficiency anemia and both urinary tract and kidney infections. Screening of the ABCA4 gene, mutations in which frequently cause bull's eye maculopathy, was negative. Subsequently, analysis with whole exome sequencing was performed. RESULTS: Whole exome sequencing discovered compound heterozygous mutations in MMACHC, c.G482A:p.Arg161Gln and c.270_271insA:p.Arg91Lysfs*14, which segregated with the disease in the family. The genetic diagnosis was confirmed by biochemical laboratory testing, showing highly elevated urine methylmalonic acid/creatinine and homocysteine levels, and suggesting disease management with hydroxycobalamin injections and carnitine supplementation. CONCLUSIONS: In summary, a unique case of an adult patient with bull's eye macular lesions and no clinically relevant systemic symptoms was diagnosed with cblC by genetic screening and follow-up biochemical laboratory tests.


Subject(s)
Carrier Proteins/genetics , Exome/genetics , Homocystinuria/diagnosis , Homocystinuria/genetics , Macular Degeneration/genetics , Mutation , Vitamin B 12 Deficiency/congenital , Adult , Electroretinography , Female , Genetic Testing , Heterozygote , Homocystinuria/drug therapy , Humans , Oxidoreductases , Pedigree , Scotoma/diagnosis , Sequence Analysis, DNA , Tomography, Optical Coherence , Visual Acuity/physiology , Visual Fields/physiology , Vitamin B 12/therapeutic use , Vitamin B 12 Deficiency/diagnosis , Vitamin B 12 Deficiency/drug therapy , Vitamin B 12 Deficiency/genetics , Vitamin B Complex/therapeutic use
19.
Eur J Paediatr Neurol ; 19(2): 233-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25604808

ABSTRACT

BACKGROUND: The diagnostic trajectory of complex paediatric neurology may be long, burdensome, and expensive while its diagnostic yield is frequently modest. Improvement in this trajectory is desirable and might be achieved by innovations such as whole exome sequencing. In order to explore the consequences of implementing them, it is important to map the current pathway. To that end, this study assessed the healthcare resource use and associated costs in this diagnostic trajectory in the Netherlands. METHODS: Fifty patients presenting with complex paediatric neurological disorders of a suspected genetic origin were included between September 2011 and March 2012. Data on their healthcare resource utilization were collected from the hospital medical charts. Unit prices were obtained from the Dutch Healthcare Authority, the Dutch Healthcare Insurance Board, and the financial administration of the hospital. Bootstrap simulations were performed to determine mean quantities and costs. RESULTS: The mean duration of the diagnostic trajectory was 40 months. A diagnosis was established in 6% of the patients. On average, patients made 16 physician visits, underwent four imaging and two neurophysiologic tests, and had eight genetic and 16 other tests. Mean bootstrapped costs per patient amounted to €12,475, of which 43% was for genetic tests (€5,321) and 25% for hospital visits (€3,112). CONCLUSION: Currently, the diagnostic trajectories of paediatric patients who have complex neurological disease with a strong suspected genetic component are lengthy, resource-intensive, and low-yield. The data from this study provide a backdrop against which the introduction of novel techniques such as whole exome sequencing should be evaluated.


Subject(s)
Nervous System Diseases/diagnosis , Nervous System Diseases/economics , Neurologic Examination/economics , Neurology/economics , Pediatrics/economics , Adolescent , Age Factors , Child , Child, Preschool , Costs and Cost Analysis , Exome/genetics , Female , Genetic Testing/economics , Health Resources/economics , Health Resources/statistics & numerical data , Hospitalization/economics , Humans , Infant , Infant, Newborn , Male , National Health Programs/economics , Nervous System Diseases/genetics , Netherlands , Sequence Analysis, DNA , Treatment Outcome
20.
Eur J Paediatr Neurol ; 18(4): 495-501, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24742911

ABSTRACT

INTRODUCTION: There are many similarities, both clinical and radiological, between mitochondrial leukoencephalopathies and Alexander disease, an astrogliopathy. Clinically, both can manifest with a myriad of symptoms and signs, arising from the neonatal period to adulthood. Radiologically, both can demonstrate white matter changes, signal abnormalities of basal ganglia or thalami, brainstem abnormalities and contrast enhancement of white matter structures. Magnetic resonance spectroscopy may reveal elevation of lactate in the abnormal white matter in Alexander disease making the distinction even more challenging. PATIENT AND METHODS: We present a child who was considered to have an infantile onset mitochondrial disorder due to a combination of neurological symptoms and signs (developmental regression, failure to thrive, episodic deterioration, abnormal eye movements, pyramidal and cerebellar signs), urinary excretion of 3-methyl-glutaconic acid and imaging findings (extensive white matter changes and cerebellar atrophy) with a normal head circumference. Whole exome sequence analysis was performed. RESULTS: The child was found to harbor the R416W mutation, one of the most prevalent mutations in the glial fibrillary acidic protein (GFAP) gene that causes Alexander disease. CONCLUSIONS: Alexander disease should be considered in the differential diagnosis of infantile leukoencephalopathy, even when no macrocephaly is present. Next generation sequencing is a useful aid in unraveling the molecular etiology of leukoencephalopathies.


Subject(s)
Alexander Disease/diagnosis , Alexander Disease/genetics , Exome/genetics , Glial Fibrillary Acidic Protein/genetics , Mitochondrial Diseases/physiopathology , Mutation/genetics , Arginine/genetics , Child, Preschool , Female , Frontal Lobe/pathology , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Tryptophan/genetics , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL