Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
BMC Plant Biol ; 24(1): 320, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654155

ABSTRACT

BACKGROUND: As a newly class of endogenous phytohormones, strigolactones (SLs) regulate crop growth and yield formation by interacting with other hormones. However, the physiological mechanism of SLs affect the yield by regulating the balance of endogenous hormones of Tartary buckwheat is still unclear. RESULTS: In this study, a 2-year field experiment was conducted on Tartary buckwheat (Jinqiao 2) to study the effects of different concentrations (0, 10, and 20 µmol/L) of artificial synthetic analogs of SLs (rac-GR24) and inhibitor of SL synthesis (Tis-108) on the growth, endogenous-hormone content, and yield of Tartary buckwheat. The main-stem branch number, grain number per plant, grain weight per plant, and yield of Tartary buckwheat continuously decreased with increased rac-GR24 concentration, whereas the main-stem diameter and plant height initially increased and then decreased. Rac-GR24 treatment significantly increased the content of SLs and abscisic acid (ABA) in grains, and it decreased the content of Zeatin (Z) + Zeatin nucleoside (ZR). Conversely, Tis-108 treatment decreased the content of SLs and ABA but increased the content of Z + ZR. Results of correlation analysis showed that the content of ABA and SLs, the ratio of SLs/(Z + ZR), SLs/ABA, and ABA/(Z + ZR) were significantly negatively correlated with the yield of Tartary buckwheat, and that Z + ZR content was significantly positively correlated with the yield. Regression analysis further showed that ABA/ (Z + ZR) can explain 58.4% of the variation in yield. CONCLUSIONS: In summary, by adjusting the level of endogenous SLs in Tartary buckwheat, the balance of endogenous hormones in grains can be changed, thereby exerting the effect on yield. The results can provide a new agronomic method for the high-yield cultivation of Tartary buckwheat.


Subject(s)
Fagopyrum , Lactones , Plant Growth Regulators , Fagopyrum/drug effects , Fagopyrum/growth & development , Fagopyrum/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Lactones/metabolism , Heterocyclic Compounds, 3-Ring/metabolism , Abscisic Acid/metabolism
2.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216414

ABSTRACT

Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, fatty acids, bioactive compounds, dietary fibre, fagopyrins, vitamins and minerals. It is gaining increasing attention due to its health-promoting properties. Buckwheat is widely susceptible to in vitro conditions which are used to study plantlet regeneration, callus induction, organogenesis, somatic embryogenesis, and the synthesis of phenolic compounds. This review summarises the development of buckwheat in in vitro culture and describes protocols for the regeneration of plantlets from various explants and differing concentrations of plant growth regulators. It also describes callus induction protocols as well as the role of calli in plantlet regeneration. Protocols for establishing hairy root cultures with the use of Agrobacterium rhizogens are useful in the synthesis of secondary metabolites, as well as protocols used for transgenic plants. The review also focuses on the future prospects of buckwheat in tissue culture and the challenges researchers are addressing.


Subject(s)
Fagopyrum/growth & development , Fagopyrum/metabolism , Phenols/metabolism , Plant Growth Regulators/metabolism
3.
Sci Rep ; 12(1): 257, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997114

ABSTRACT

Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.


Subject(s)
Crop Production , Crops, Agricultural/radiation effects , Fagopyrum/radiation effects , Light , Lighting/instrumentation , Photosynthesis/radiation effects , Secondary Metabolism/radiation effects , Biomass , Chlorophyll A/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fagopyrum/growth & development , Fagopyrum/metabolism , Kinetics , Phenols/metabolism
4.
Mol Biol Rep ; 48(5): 4341-4350, 2021 May.
Article in English | MEDLINE | ID: mdl-34097202

ABSTRACT

Tartary buckwheat is a kind of plant which can be used as medicine as well as edible. Abscisic acid (ABA) signaling plays an important role in the response of plants such as tartary buckwheat to drought and other stress. However, there are not many studies on tartary buckwheat by ABA treatment. In this study, the germination, root length, stoma, and anthocyanin accumulation of tartary buckwheat were all significantly affected by ABA. ABA signaling is important for plants to respond to drought and other stresses, the bZIP gene family is an important member of the ABA signaling pathway. Through the analysis of the origin relationship between tartary buckwheat bZIP family and its related species, 19 bZIP genes in tartary buckwheat were found to be relatively conserved, which laid a foundation for further study of bZIP family. The qRT-PCR results showed that most of the group members were induced by ABA treatment, including 0, 15, 30, 50, 70 µM ABA and 0, 0.5, 2, 4, 8, 16, 24 h ABA treatment. These results suggested that ABA could affect the growth and development of tartary buckwheat, and FtbZIPs might have different functions in the response of tartary buckwheat to drought. This study will be helpful to further analyze the genetic breeding and economic value of tartary buckwheat resistance.


Subject(s)
Abscisic Acid/pharmacology , Fagopyrum/drug effects , Fagopyrum/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Abscisic Acid/metabolism , Anthocyanins/metabolism , Droughts , Fagopyrum/growth & development , Fagopyrum/metabolism , Germination/drug effects , Phylogeny , Plant Breeding , Signal Transduction/drug effects
5.
BMC Plant Biol ; 21(1): 206, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33931042

ABSTRACT

BACKGROUND: Tartary buckwheat is an important minor crop species with high nutritional and medicinal value and is widely planted worldwide. Cultivated Tartary buckwheat plants are tall and have hollow stems that lodge easily, which severely affects their yield and hinders the development of the Tartary buckwheat industry. METHODS: Heifeng No. 1 seeds were treated with ethylmethanesulfonate (EMS) to generate a mutant library. The dwarf mutant ftdm was selected from the mutagenized population, and the agronomic characteristics giving rise to the dwarf phenotype were evaluated. Ultra-fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was performed to determine the factors underlying the different phenotypes between the wild-type (WT) and ftdm plants. In addition, RNA sequencing (RNA-seq) was performed via the HiSeq 2000 platform, and the resulting transcriptomic data were analysed to identify differentially expressed genes (DEGs). Single-nucleotide polymorphism (SNP) variant analysis revealed possible sites associated with dwarfism. The expression levels of the potential DEGs between the WT and ftdm mutant were then measured via qRT-PCR and fragments per kilobase of transcript per million mapped reads (FPKM). RESULT: The plant height (PH) of the ftdm mutant decreased to 42% of that of the WT, and compared with the WT, the mutant and had a higher breaking force (BF) and lower lodging index (LI). Lower GA4 and GA7 contents and higher contents of jasmonic acid (JA), salicylic acid (SA) and brassinolactone (BR) were detected in the stems of the ftdm mutant compared with the WT. Exogenous application of GAs could not revert the dwarfism of the ftdm mutant. On the basis of the transcriptomic analysis, 146 homozygous SNP loci were identified. In total, 12 DEGs with nonsynonymous mutations were ultimately identified, which were considered potential candidate genes related to the dwarf trait. When the sequences of eight genes whose expression was downregulated and four genes whose expression was upregulated were compared, SKIP14, an F-box protein whose sequence is 85% homologous to that of SLY1 in Arabidopsis, presented an amino acid change (from Ser to Asn) and was expressed at a lower level in the stems of the ftdm mutant compared with the WT. Hence, we speculated that this amino acid change in SKIP14 resulted in a disruption in GA signal transduction, indirectly decreasing the GA content and downregulating the expression of genes involved in GA biosynthesis or the GA response. Further studies are needed to determine the molecular basis underlying the dwarf phenotype of the ftdm mutant. CONCLUSION: We report a Tartary buckwheat EMS dwarf mutant, ftdm, suitable for high-density planting and commercial farming. A significant decrease in GA4 and GA7 levels was detected in the ftdm mutant, and 12 DEGs expressed in the stems of the ftdm mutant were selected as candidates of the dwarfing gene. One nonsynonymous mutation was detected in the SKIP14 gene in the ftdm mutant, and this gene had a lower transcript level compared with that in the WT.


Subject(s)
Fagopyrum/genetics , Gene Expression Regulation, Plant , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Transcriptome , Fagopyrum/anatomy & histology , Fagopyrum/growth & development , Gene Expression Profiling , Mutation , Phenotype , Plant Stems/anatomy & histology , Plant Stems/genetics , Plant Stems/growth & development , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, RNA
6.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800930

ABSTRACT

Common buckwheat (Fagopyrum esculentum Moench), a pseudocereal crop, produces a large number of flowers, but this does not guarantee high seed yields. This species demonstrates strong abortion of flowers and embryos. High temperatures during the generative growth phase result in an increase in the degeneration of embryo sacs. The aim of this study was to investigate proteomic changes in flowers and leaves of two common buckwheat accessions with different degrees of heat tolerance, Panda and PA15. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyze the proteome profiles. Analyses were conducted for flower buds, open flowers capable of fertilization, and wilted flowers, as well as donor leaves, i.e., those growing closest to the inflorescences. High temperature up-regulated the expression of 182 proteins. The proteomic response to heat stress differed between the accessions and among their organs. In the Panda accession, we observed a change in abundance of 17, 13, 28, and 11 proteins, in buds, open and wilted flowers, and leaves, respectively. However, in the PA15 accession there were 34, 21, 63, and 21 such proteins, respectively. Fifteen heat-affected proteins were common to both accessions. The indole-3-glycerol phosphate synthase chloroplastic-like isoform X2 accumulated in the open flowers of the heat-sensitive cultivar Panda in response to high temperature, and may be a candidate protein as a marker of heat sensitivity in buckwheat plants.


Subject(s)
Fagopyrum/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Proteome , Thermotolerance/genetics , Electrophoresis, Gel, Two-Dimensional , Fagopyrum/embryology , Fagopyrum/genetics , Fagopyrum/growth & development , Heat-Shock Response/genetics , Hot Temperature , Indole-3-Glycerol-Phosphate Synthase/biosynthesis , Indole-3-Glycerol-Phosphate Synthase/genetics , Methionine Adenosyltransferase/biosynthesis , Methionine Adenosyltransferase/genetics , Plant Proteins/biosynthesis , Plant Proteins/genetics , Tandem Mass Spectrometry , Up-Regulation
7.
J Sci Food Agric ; 101(14): 6104-6116, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33908040

ABSTRACT

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is a traditional edible and medicinal crop and has been praised as one of the green foods for humans in the 21st century. However, its production and promotion are restricted by the low yields of current varieties. The interaction of genotype and environment could lead to inconsistent phenotypic performance of genotypes across different environments. Climate change has intensified these effects and poses a substantial threat to crop production. RESULTS: In the present study, the effects of meteorological factors on the phenotypic traits of 200 Tartary buckwheat landraces across four macro-environments were investigated. Overall, the phenotypic performance of these Tartary buckwheat landraces was markedly varied across the different environments. Also, the average daily temperature and precipitation had relatively higher impacts on phenotypic performance. The results also revealed the negative impacts of relative humidity on the yield-related traits. Twenty-five Tartary buckwheat landraces were ultimately identified as having good overall phenotypic performance and high yield stability. CONCLUSION: Understanding the impacts of meteorological factors on the phenotypic performance of crops can guide appropriate measures and facilitate germplasm selection for yield enhancement in the context of climate change. The landraces selected comprehensively in this study could be used as parents or intermediate materials for breeding high-quality Tartary buckwheat varieties in the future. The methods used could also be extended to other crops for breeding and germplasm innovation. © 2021 Society of Chemical Industry.


Subject(s)
Fagopyrum/growth & development , Ecosystem , Environment , Meteorological Concepts , Phenotype , Rain/chemistry , Temperature
8.
Int J Biol Macromol ; 179: 542-549, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33716128

ABSTRACT

At present, the yield of common buckwheat, which is mainly grown in northern Shaanxi of China, is low and the grain quality is poor. Nitrogen is an important nutrient for the growth of common buckwheat, and appropriate nitrogen application can improve the grain quality. Nitrogen fertilizer could alter the starch granule morphology shapes and the granule size distribution. With increasing nitrogen levels, branch number, flower clusters number, grain number per plant, contents of protein and fat, size distribution of "C" granules, and percentages of light transmittance significantly increased, whereas amylose content and retrogradation decreased. All the samples displayed typical A-type X-ray diffraction patterns. Starch showed higher pasting temperature and gelatinization enthalpy but lower trough and final viscosities under high nitrogen levels. These results suggested N2 treatment was more suitable for common buckwheat growth, principal components and correlation analysis revealed that nitrogen fertilizer significantly affected the physicochemical properties of common buckwheat starches.


Subject(s)
Fagopyrum , Fertilizers/analysis , Nitrogen/metabolism , Starch/chemistry , China , Edible Grain/chemistry , Edible Grain/growth & development , Fagopyrum/chemistry , Fagopyrum/growth & development
9.
BMC Plant Biol ; 21(1): 132, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750309

ABSTRACT

BACKGROUND: Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS: In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS: Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.


Subject(s)
Fagopyrum/growth & development , Fagopyrum/genetics , MicroRNAs/physiology , RNA, Messenger/physiology , RNA, Plant/physiology , Seeds/growth & development , Evolution, Molecular , Gene Expression Profiling , Ligase Chain Reaction , MicroRNAs/genetics , Phylogeny , Plant Development/genetics , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Seeds/genetics
10.
BMC Plant Biol ; 21(1): 18, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407135

ABSTRACT

BACKGROUND: Common buckwheat (2n = 2x = 16) is an outcrossing pseudocereal whose seeds contain abundant nutrients and potential antioxidants. As these beneficial compounds are damaged by preharvest sprouting (PHS) and PHS is likely to increase with global warming, it is important to find efficient ways to develop new PHS-tolerant lines. However, genetic loci and selection markers associated with PHS in buckwheat have not been reported. RESULTS: By next-generation sequencing (NGS) of whole-genome of parental lines, we developed a genome-wide set of 300 markers. By NGS- based bulked segregant analysis (NGS-BSA), we developed 100 markers linked to PHS tolerance. To confirm the effectiveness of marker development from NGS-BSA data, we developed 100 markers linked to the self-compatibility (SC) trait from previous NGS-BSA data. Using these markers, we developed genetic maps with AmpliSeq technology, which can quickly detect polymorphisms by amplicon-based multiplex targeted NGS, and performed quantitative trait locus (QTL) analysis for PHS tolerance in combination with NGS-BSA. QTL analysis detected two major and two minor QTLs for PHS tolerance in a segregating population developed from a cross between the PHS-tolerant 'Kyukei 29' and the self-compatible susceptible 'Kyukei SC7'. We found different major and minor QTLs in other segregating populations developed from the PHS-tolerant lines 'Kyukei 28' and 'NARO-FE-1'. Candidate markers linked to PHS developed by NGS-BSA were located near these QTL regions. We also investigated the effectiveness of markers linked to these QTLs for selection of PHS-tolerant lines among other segregating populations. CONCLUSIONS: We efficiently developed genetic maps using a method combined with AmpliSeq technology and NGS-BSA, and detected QTLs associated with preharvest sprouting tolerance in common buckwheat. This is the first report to identify QTLs for PHS tolerance in buckwheat. Our marker development system will accelerate genetic research and breeding in common buckwheat.


Subject(s)
Fagopyrum/growth & development , Fagopyrum/genetics , Genetic Markers , Germination/genetics , High-Throughput Nucleotide Sequencing , Seedlings/growth & development , Seedlings/genetics , Chromosome Mapping/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Genes, Plant , Genetic Variation , Genome, Plant , Genotype , Magnoliopsida/genetics , Magnoliopsida/growth & development , Plant Breeding/methods , Quantitative Trait Loci , Selection, Genetic
11.
Int J Biol Macromol ; 171: 435-447, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33434548

ABSTRACT

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an economical crop with excellent edible, nutritional, and medicinal values. However, the production of Tartary buckwheat is very low and it is urgent to breed high-yield varieties for satisfying the increasing market demand. Heterotrimeric G-protein signaling involves in the regulation of agronomical traits and fruit development in several plant species. In this study, fifteen genes involved in G-protein signaling were characterized in Tartary buckwheat and their potential roles in fruit development were revealed by expression analysis. The exon-intron organization and conserved motif of Tartary buckwheat G-protein signaling genes were similar to those in other dicot plants. All these genes were ubiquitously and differently expressed in five tissues. The expression patterns of Tartary buckwheat G-protein signaling genes in fruit suggested they may play important roles in the fruit at early development stage, which was supported by meta-analysis of G-protein signaling genes' expression in the fruits from different species. Furthermore, we found the expression of G-protein signaling genes in fruit showed high correlation with 178 transcription factors, which indicated a transcriptional regulatory loop moderating G-protein signaling genes' expression during fruit development. This paper provides new insights into the physiological functions of G-protein signaling in fruit.


Subject(s)
Fagopyrum/genetics , Fruit/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genome-Wide Association Study , Heterotrimeric GTP-Binding Proteins/genetics , Plant Proteins/genetics , Amino Acid Sequence , Ananas/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Conserved Sequence , Fagopyrum/growth & development , Fagopyrum/metabolism , Fragaria/genetics , Fruit/genetics , Gene Expression Profiling , Heterotrimeric GTP-Binding Proteins/physiology , Solanum lycopersicum/genetics , Multigene Family , Organ Specificity , Phylogeny , Plant Proteins/physiology , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/physiology , Zea mays/genetics
12.
Food Chem ; 335: 127653, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32739818

ABSTRACT

Buckwheat is a gluten-free crop under the family Polygonaceae abundant with beneficial phytochemicals that provide significant health benefits. It is cultivated and adapted in diverse ecological zones all over the world. Recently its popularity is expanding as a nutrient-rich healthy food with low-calories. The bioactive compounds in buckwheat are flavonoids (i.e., rutin, quercetin, orientin, isoorientin, vitexin, and isovitexin), fatty acids, polysaccharides, proteins, and amino acids, iminosugars, dietary fiber, fagopyrins, resistant starch, vitamins, and minerals. Buckwheat possesses high nutritional value due to these bioactive compounds. Additionally, several essential bioactive factors that have long been gaining interest because these compounds are beneficial for healing and preventing several human diseases. The present review demonstrates an overview of the recent researches regarding buckwheat phytochemicals and particularly focusing on the distinct function of bioactive components with their health benefits.


Subject(s)
Fagopyrum/chemistry , Plant Extracts/chemistry , Apigenin/analysis , Fagopyrum/growth & development , Flavonoids , Glucosides , Humans , Nutritive Value , Phytochemicals/chemistry , Quercetin/analysis , Rutin/analysis , Seeds/genetics
13.
Food Chem ; 343: 128549, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33189480

ABSTRACT

Whole grains and pulses are rich in nutrients but often avoided by individuals with gastrointestinal disorders, due to high levels of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This study investigated the impact of malting as delivery-system for endogenous enzymes. Malts from barley and wheat (naturally high in fructans), lentils and chickpeas (high in galactooligosaccharides), oat and buckwheat (low in FODMAPs) were produced. While barley and wheat malts had slightly elevated fructan-levels, in oat malt 0.8 g/100 g DM fructans were de novo synthesized. In lentils and chickpeas galactooligosaccharides diminished by 80-90%. Buckwheat did not contain any FODMAPs commonly investigated, but fagopyritols which may have a similar physiological effect. Also fagopyritols were degraded. While malted pulses and buckwheat are directly suitable for low FODMAP applications, using the combined approach of malting and fermentation, malted cereals could contribute to high nutritional values of such products.


Subject(s)
Disaccharides/metabolism , Edible Grain/metabolism , Food Handling/methods , Fructans/metabolism , Monosaccharides/metabolism , Oligosaccharides/metabolism , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Cicer/growth & development , Cicer/metabolism , Disaccharides/analysis , Fagopyrum/growth & development , Fagopyrum/metabolism , Fructans/analysis , Germination , Lens Plant/growth & development , Lens Plant/metabolism , Monosaccharides/analysis , Oligosaccharides/analysis , Triticum/growth & development , Triticum/metabolism
14.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255746

ABSTRACT

Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.


Subject(s)
Fagopyrum/genetics , Flowers/genetics , Reproduction/genetics , Seeds/genetics , Fagopyrum/growth & development , Flowers/growth & development , Gene Expression Regulation, Plant , Pollination/genetics , Seasons , Seeds/growth & development
15.
J Agric Food Chem ; 68(50): 14758-14767, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33264023

ABSTRACT

Global climate change and the industrial revolution have increased the concentration of tropospheric ozone, a photochemical air pollutant that can negatively affect plant growth and crop production. In the present study, we investigated the effects of O3 on the metabolites and transcripts of tartary buckwheat. A total of 36 metabolites were identified by gas chromatography coupled with time-of-flight mass spectrometry, and principal component analysis was performed to verify the metabolic differences between nontreated and O3-treated tartary buckwheat. The content of threonic acid increased after 2 days of the O3 treatment, whereas it decreased after 4 days of exposure, after which it gradually increased until the eighth day of exposure. In addition, the levels of most metabolites decreased significantly after the O3 treatment. On the contrary, the levels of two anthocyanins, cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside, increased more than 11.36- and 11.43-fold, respectively, after the O3 treatment. To assess the effect of O3 on the genomic level, we analyzed the expression of anthocyanin biosynthesis pathway genes in O3-treated and nontreated buckwheat using quantitative real-time reverse transcription polymerase chain reaction (PCR). We found that the expression of all anthocyanin pathway genes increased significantly in the O3-treated buckwheat compared to that in the nontreated buckwheat. Altogether, our results suggested that O3 affected the transcripts and metabolites of tartary buckwheat, which would eventually cause phenotypic changes in plants.


Subject(s)
Fagopyrum/drug effects , Fagopyrum/metabolism , Ozone/pharmacology , Plant Proteins/genetics , Anthocyanins/agonists , Anthocyanins/analysis , Anthocyanins/metabolism , Fagopyrum/genetics , Fagopyrum/growth & development , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism
16.
J Plant Physiol ; 251: 153222, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32634749

ABSTRACT

In the context of ongoing climate change, expected temperature rise may significantly limit plant growth and productivity of crop species. In this study, we investigated the effects of a sub-optimal temperature on buckwheat, a pseudocereal known for its nutraceutical advantages. Two buckwheat species differing by their reproduction method, namely Fagopyrum esculentum and Fagopyrum tataricum were grown at 21 °C and 27 °C in growth chambers. High temperature increased leaf production mainly in F. tataricum but decreased leaf area in both species. Water and photosynthesis-related parameters were affected by high temperature but our results suggested that although transpiration rate was increased, adaptive mechanisms were developed to limit the negative impact on photosynthesis. High temperature mainly affected the reproductive stage. It delayed flowering time but boosted inflorescence and flower production. Nevertheless, flower and seed abortions were observed in both species at 27 °C. Regarding flower fertility, heat affected more the female stage than the male stage and reduced the stigma receptivity. Pollen production increased with temperature in F. esculentum while it decreased in F. tataricum. Such discrepancy could be related to the self-incompatibility of F. esculentum. Both species increased their antioxidant production under high temperature to limit oxidative stress and antioxidant capacity was higher in the inflorescences than in the leaves. Total flavonoid content was particularly increased in the leaves of F. esculentum and in the inflorescences of F. tataricum. Altogether, our results showed that even if high temperature may negatively affect reproduction in buckwheat, it improves its antioxidant content.


Subject(s)
Antioxidants/metabolism , Fagopyrum/physiology , Thermotolerance , Fagopyrum/growth & development , Hot Temperature , Reproduction , Species Specificity
17.
PLoS One ; 15(5): e0232453, 2020.
Article in English | MEDLINE | ID: mdl-32369501

ABSTRACT

Soil-based microorganisms assume a direct and crucial role in the promotion of soil health, quality and fertility, all factors known to contribute heavily to the quality and yield of agricultural products. Cover cropping, used in both traditional and organic farming, is a particularly efficient and environmentally favorable tool for manipulating microbiome composition in agricultural soils and has had clear benefits for soil quality and crop output. Several long-term investigations have evaluated the influence of multi-mix (multiple species) cover crop treatments on soil health and microbial diversity. The present study investigated the short-term effects of a seven species multi-mix cover crop treatment on soil nutrient content and microbial diversity, compared to a single-mix cover crop treatment and control. Analysis of 16S sequencing data of isolated soil DNA revealed that the single-mix cover crop treatment decreased overall microbial abundance and diversity, whereas the control and multi-mix treatments altered the overall microbial composition in similar fluctuating trends. Furthermore, we observed significant changes in specific bacteria belonging to the phyla Acidobacteria, Actinobacteria, Planctomycetes, Proteobacteria and Verrucombicrobia for all treatments, but only the single-mix significantly decreased in abundance of the selected bacteria over time. Our findings indicate that the control and multi-mix treatments are better at maintaining overall microbial composition and diversity compared to the single-mix. Further study is required to elucidate the specific difference between the treatment effect of the multi-mix treatment and the control, given that their microbial composition changes over time were similar but they diverge into two populations of unique bacterial types by the end of this short-term study.


Subject(s)
Crops, Agricultural/growth & development , Microbiota , Soil Microbiology , Agriculture/methods , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , DNA, Bacterial/genetics , Fabaceae/growth & development , Fagopyrum/growth & development , Microbiota/genetics , Nitrogen/analysis , Phylogeny , Poaceae/growth & development , RNA, Ribosomal, 16S/genetics , Soil/chemistry
18.
Genes (Basel) ; 11(4)2020 04 23.
Article in English | MEDLINE | ID: mdl-32340240

ABSTRACT

As a highly nutritious crop, Tartary buckwheat (Fagopyrum tartaricum) strongly adapts and grows in adverse environments and is widely grown in Asia. However, its flour contains a large proportion of the hull that adheres to the testa layer of the groats and is difficult to be removed in industrial processing. Fortunately, rice-Tartary, with the loose and non-adhering hull, provides potentiality of improving Tartary buckwheat that can dehull easily. Here, we performed high-throughput sequencing for two parents (Tartary buckwheat and rice-Tartary) and two pools (samples from the F2 population) and obtained 101 Gb raw sequencing data for further analysis. Sequencing reads were mapped to the reference genome of Tartary buckwheat, and a total of 633,256 unique SNPs and 270,181 unique indels were found in these four samples. Then, based on the Bulked Segregant Analysis (BSA), we identified a candidate genetic region, containing 45 impact SNPs/indels and 36 genes, that might underly non-adhering hull of rice-Tartary and should have value for breeding easy dehulling Tartary buckwheat.


Subject(s)
Fagopyrum/genetics , Food Hypersensitivity/genetics , Gene Expression Regulation, Plant , Genetic Loci , Oryza/genetics , Plant Proteins/genetics , Tracheophyta/genetics , Adaptation, Physiological , Fagopyrum/growth & development , Gene Expression Profiling , Genome, Plant , Oryza/growth & development , Tracheophyta/growth & development
19.
Food Chem ; 321: 126741, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32276146

ABSTRACT

Buckwheat sprouts (BS) becomes popular due to its' health-promoting properties as food product. The effects of fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum on antioxidant and hypolipidemic activities as well as functional composition in common BS cultivated in maifanite mineral water were investigated here. DPPH and ·OH results showed higher antioxidant potential in fermented BS compared to unfermented BS, due to the higher rutin, orientin, isoorientin, vitexin, isovitexin, and total phenolic and flavonoid contents. The S. cerevisiae-fermented BS also exhibited 113% and 110% higher DPPH and ·OH scavenging activities than the L. plantarum-fermented BS, respectively. In hyperlipidemic mice, blood lipid parameters were improved as dose-dependent manner when supplemented the food with S. cerevisiae-fermented BS. Fermented BS also restored liver antioxidant levels significantly. The fermented BS had greater effect on different parameters than those of unfermented BS. Therefore, fermentation is a valuable method to enhance the bioactive potential of BS.


Subject(s)
Antioxidants/analysis , Fagopyrum/chemistry , Fagopyrum/growth & development , Fermented Foods/analysis , Mineral Waters , Animals , Antioxidants/pharmacology , Apigenin/analysis , Fagopyrum/metabolism , Fermentation , Flavonoids/analysis , Glucosides/analysis , Hyperlipidemias/diet therapy , Lactobacillus plantarum , Male , Mice , Phenols/analysis , Rutin/analysis , Saccharomyces cerevisiae , Seedlings/growth & development
20.
Theor Appl Genet ; 133(5): 1641-1653, 2020 May.
Article in English | MEDLINE | ID: mdl-32152716

ABSTRACT

Common buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is an annual crop that is cultivated widely around the world and contains an abundance of nutrients and bioactive compounds. However, the yield of buckwheat is low compared to that of other major crops, and it contains proteins that cause allergic reactions in some people. Much research has aimed to improve or eliminate these undesirable traits, and some major advances have recently been made. Here, we review recent advances in buckwheat breeding materials, tools, and methods, including the development of self-compatible lines, genetic maps, a buckwheat genome database, and an efficient breeding strategy. We also describe emerging breeding methods for high-value lines.


Subject(s)
Fagopyrum/growth & development , Fagopyrum/genetics , Genome, Plant , Genomics/methods , Plant Breeding/standards , Plants, Genetically Modified/genetics , Seeds/genetics , Phenotype , Plants, Genetically Modified/growth & development , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL