Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Plant Physiol Biochem ; 206: 108279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128226

ABSTRACT

Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.


Subject(s)
Fallopia multiflora , Stilbenes , Fallopia multiflora/genetics , Fallopia multiflora/chemistry , Anthraquinones/analysis , Plant Tubers/chemistry , Soil , Hydrogen-Ion Concentration
2.
J Pharm Biomed Anal ; 166: 406-420, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30711810

ABSTRACT

Relationships among Fallopia multiflora (Thunb.) Haraldson., F. multiflora var. angulata (S. Y. Liu) H. J. Yan, Z. J. Fang & Shi Xiao Yu., and F. multiflora var. ciliinervis (Nakai) Yonekura & H. Ohashi. were determined based on macroscopic and microscopic morphology, molecular phylogeny, and chemical analysis. The macroscopic and microscopic morphologies of root tubers or rhizomes, stems, and leaves were compared among the three taxa. The content of 11 chemical components (catechin, polydatin, stilbene glucoside, emodin, emodin-8-O-ß-D-glucopyranoside, rhein, chrysophanol, aloe-emodin, quercetin, physcion, and resveratrol) in the three taxa was determined by HPLC, and the chemical diversity was further evaluated by principal component and hierarchical cluster analyses. Molecular phylogenies were mapped using two chloroplast markers (matK and the psbA-trnH intergenic region) and a nuclear ribosomal marker [internal transcribed spacer 2 (ITS2) region]. Analyses of macroscopic and microscopic morphological characteristics revealed that the subterranean organs of F. multiflora and F. multiflora var. angulata are root tubers, whereas those of F. multiflora var. ciliinervis are rhizomes. In the phylogenetic trees, F. multiflora and F. multiflora var. angulata were clustered into a clade based on the combine matK + psbA-trnH sequence, with neighbour-joining, maximum likelihood, and Bayesian inference bootstrap support values of 99, 85, and 0.99, respectively. In addition, there were obvious differences in the chemical compositions of F. multiflora, F. multiflora var. angulata and F. multiflora var. ciliinervis. The root tubers of F. multiflora contain higher levels of stilbene glucoside and catechin, but lower levels of polydatin and anthraquinone compounds. In contrast to F. multiflora, the rhizomes of F. multiflora var. ciliinervis contain higher levels of polydatin and anthraquinone compounds, but lack stilbene glucoside. The content of all 11 assessed components was lower in F. multiflora var. angulata than in F. multiflora and F. multiflora var. cillinervis. Principal component and hierarchical cluster analyses revealed that F. multiflora and F. multiflora var. angulata individuals were clustered into a single clade, whereas F. multiflora var. ciliinervis individuals were clustered into a single clade separate from that containing F. multiflora and F. multiflora var. angulata individuals. On the basis of the results of our morphological, molecular phylogeny, and chemical analyses, we tentatively conclude that F. multiflora var. ciliinervis is an independent species, whereas F. multiflora var. angulata should be considered as a variety of F. multiflora.


Subject(s)
DNA, Plant , Drugs, Chinese Herbal/analysis , Fallopia multiflora/anatomy & histology , Fallopia multiflora/chemistry , Chromatography, High Pressure Liquid , Cluster Analysis , Fallopia multiflora/classification , Fallopia multiflora/genetics , Limit of Detection , Medicine, Chinese Traditional , Microscopy, Polarization , Photomicrography , Phylogeny , Principal Component Analysis , Sequence Analysis, DNA , Species Specificity
3.
Mol Biol Rep ; 43(4): 323-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26902862

ABSTRACT

Identification of plant species is important for standardizing herbal medicine. Cynanchum wilfordii (Baekshuoh in Korean) and Polygonum multiflorum (Hashuoh in Korean) are important oriental medicinal herbs in Korea, Japan, and China. Cynanchum auriculatum is a faster growing and more productive plant than C. wilfordii; and, it is not recognized as a medicinal plant in the Korean Pharmacopoeia. C. wilfordii, P. multiflorum, and C. auriculatum are often misidentified in the Korean herbal medicine marketplace due to their morphological similarities and similar names. In this study, we investigated molecular authentication of these three medicinal plants using DNA sequences in the TrnL-F chloroplast intergenic region. Specific species identification was achieved by detecting allelic variations of single nucleotide polymorphisms (SNPs) using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and high resolution melting curve analysis. Our results demonstrate that the intraspecific genetic distance between C. wilfordii and C. auriculatum is relatively low. We also developed a quantitative PCR assay using species-specific TrnL-F primers, which allowed us to estimate the ratio of C. wilfordii and C. auriculatum using varying ratios of mixed genomic DNA template from the two species. Additionally, to identify species in hybrid plants produced by cross-fertilization, we analyzed nuclear ribosomal DNA internal transcribed spacer regions in C. wilfordii and C. auriculatum by ARMS-PCR. Our results indicate that SNP-based molecular markers, usable to barcode tools could provide efficient and rapid authentication of these closely related medicinal plant species, and will be useful for preventing the distribution of products contaminated with adulterants.


Subject(s)
Cynanchum/genetics , DNA Barcoding, Taxonomic , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Fallopia multiflora/genetics , Polymorphism, Single Nucleotide , Base Sequence , Cynanchum/classification , DNA, Chloroplast/genetics , Fallopia multiflora/classification , Molecular Sequence Data , Plants, Medicinal/classification , Plants, Medicinal/genetics , Real-Time Polymerase Chain Reaction , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL