Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Kidney Int ; 105(5): 927-929, 2024 May.
Article in English | MEDLINE | ID: mdl-38642991

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria is an autosomal recessive phosphate-wasting disorder, associated with kidney and skeletal pathologies, which is caused by pathogenic variants of SLC34A3. In this issue, Zhu et al. describe a pooled analysis of 304 individuals carrying SLC34A3 variants. Their study underscores the complexity of hereditary hypophosphatemic rickets with hypercalciuria, as kidney and bone phenotypes generally do not coexist, heterozygous carriers of SLC34A3 variants also can be affected, and the response to oral phosphate supplementation is dependent on the genetic status.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Precision Medicine , Mutation , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Phosphates
2.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101876, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365463

ABSTRACT

Vitamin D is mainly produced in the skin (cholecalciferol) by sun exposure while a fraction of it is obtained from dietary sources (ergocalciferol). Vitamin D is further processed to 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D (calcitriol) in the liver and kidneys, respectively. Calcitriol is the active form which mediates the actions of vitamin D via vitamin D receptor (VDR) which is present ubiquitously. Defect at any level in this pathway leads to vitamin D deficient or resistant rickets. Nutritional vitamin D deficiency is the leading cause of rickets and osteomalacia worldwide and responds well to vitamin D supplementation. Inherited disorders of vitamin D metabolism (vitamin D-dependent rickets, VDDR) account for a small proportion of calcipenic rickets/osteomalacia. Defective 1α hydroxylation of vitamin D, 25 hydroxylation of vitamin D, and vitamin D receptor result in VDDR1A, VDDR1B and VDDR2A, respectively whereas defective binding of vitamin D to vitamin D response element due to overexpression of heterogeneous nuclear ribonucleoprotein and accelerated vitamin D metabolism cause VDDR2B and VDDR3, respectively. Impaired dietary calcium absorption and consequent calcium deficiency increases parathyroid hormone in these disorders resulting in phosphaturia and hypophosphatemia. Hypophosphatemia is a common feature of all these disorders, though not a sine-qua-non and leads to hypomineralisation of the bone and myopathy. Improvement in hypophosphatemia is one of the earliest markers of response to vitamin D supplementation in nutritional rickets/osteomalacia and the lack of such a response should prompt evaluation for inherited forms of rickets/osteomalacia.


Subject(s)
Familial Hypophosphatemic Rickets , Osteomalacia , Rickets , Vitamin D Deficiency , Humans , Calcitriol , Receptors, Calcitriol , Osteomalacia/drug therapy , Osteomalacia/etiology , Osteomalacia/metabolism , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Rickets/drug therapy , Rickets/etiology , Vitamin D/therapeutic use , Vitamin D/metabolism , Vitamins
3.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Article in English | MEDLINE | ID: mdl-38364990

ABSTRACT

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/drug therapy , Hypercalciuria/diagnosis , Hypercalciuria/drug therapy , Hypercalciuria/genetics , Kidney/metabolism , Phosphates , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
4.
Calcif Tissue Int ; 114(3): 255-266, 2024 03.
Article in English | MEDLINE | ID: mdl-38226986

ABSTRACT

X-linked hypophosphatemia (XLH) is the most common monogenetic cause of chronic hypophosphatemia, characterized by rickets and osteomalacia. Disease manifestations and treatment of XLH patients in the Netherlands are currently unknown. Characteristics of XLH patients participating in the Dutch observational registry for genetic hypophosphatemia and acquired renal phosphate wasting were analyzed. Eighty XLH patients, including 29 children, were included. Genetic testing, performed in 78.8% of patients, showed a PHEX mutation in 96.8%. Median (range) Z-score for height was - 2.5 (- 5.5; 1.0) in adults and - 1.4 (- 3.7; 1.0) in children. Many patients were overweight or obese: 64.3% of adults and 37.0% of children. All children received XLH-related medication e.g., active vitamin D, phosphate supplementation or burosumab, while 8 adults used no medication. Lower age at start of XLH-related treatment was associated with higher height at inclusion. Hearing loss was reported in 6.9% of children and 31.4% of adults. Knee deformities were observed in 75.0% of all patients and osteoarthritis in 51.0% of adult patients. Nephrocalcinosis was observed in 62.1% of children and 33.3% of adults. Earlier start of XLH-related treatment was associated with higher risk of nephrocalcinosis and detection at younger age. Hyperparathyroidism longer than six months was reported in 37.9% of children and 35.3% of adults. This nationwide study confirms the high prevalence of adiposity, hearing loss, bone deformities, osteoarthritis, nephrocalcinosis and hyperparathyroidism in Dutch XLH patients. Early start of XLH-related treatment appears to be beneficial for longitudinal growth but may increase development of nephrocalcinosis.


Subject(s)
Familial Hypophosphatemic Rickets , Hearing Loss , Hyperparathyroidism , Hypophosphatemia , Nephrocalcinosis , Osteoarthritis , Child , Adult , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/diagnosis , Nephrocalcinosis/genetics , Nephrocalcinosis/complications , Fibroblast Growth Factors/genetics , Hypophosphatemia/epidemiology , Hypophosphatemia/genetics , Phosphates , Hyperparathyroidism/complications , Obesity/complications , Hearing Loss/complications , Hearing Loss/drug therapy
5.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101844, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38044258

ABSTRACT

Syndromes of inherited fibroblast growth factor 23 (FGF-23) excess encompass a wide spectrum that includes X-linked hypophosphataemia (XLH), autosomal dominant and recessive forms of rickets as well as various syndromic conditions namely fibrous dysplasia/McCune Albright syndrome, osteoglophonic dysplasia, Jansen's chondrodysplasia and cutaneous skeletal hypophosphataemia syndrome. A careful attention to patient symptomatology, family history and clinical features, supported by appropriate laboratory tests will help in making a diagnosis. A genetic screen may be done to confirm the diagnosis. While phosphate supplements and calcitriol continue to be the cornerstone of treatment, in recent times burosumab, the monoclonal antibody against FGF-23 has been approved for the treatment of children and adults with XLH. While health-related outcomes may be improved by ensuring adherence and compliance to prescribed treatment with a smooth transition to adult care, bony deformities may persist in some, and this would warrant surgical correction.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Adult , Child , Humans , Antibodies, Monoclonal/therapeutic use , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/drug therapy , Fibroblast Growth Factor-23 , Phosphates/metabolism
6.
Front Endocrinol (Lausanne) ; 14: 1251718, 2023.
Article in English | MEDLINE | ID: mdl-38116308

ABSTRACT

A Chinese family was identified to have two patients with rickets, an adult female and a male child (proband), both exhibiting signs related to X-linked hypophosphatemic rickets (XLH). Gene sequencing analysis revealed a deletion of adenine at position 1985 (c.1985delA) in the PHEX-encoding gene. To investigate the relationship between this mutation and the pathogenicity of XLH, as well as analyze the effects of different dosages of PHEX gene mutations on clinical phenotypes, we developed a rat model carrying the PHEX deletion mutation. The CRISPR/Cas9 gene editing technology was employed to construct the rat model with the PHEX gene mutation (c.1985delA). Through reproductive procedures, five genotypes of rats were obtained: female wild type (X/X), female heterozygous (-/X), female homozygous wild type (-/-), male wild type (X/Y), and male hemizygous (-/Y). The rats with different genotypes underwent analysis of growth, serum biochemical parameters, and bone microstructure. The results demonstrated the successful generation of a stable rat model inheriting the PHEX gene mutation. Compared to the wild-type rats, the mutant rats displayed delayed growth, shorter femurs, and significantly reduced bone mass. Among the female rats, the homozygous individuals exhibited the smallest body size, decreased bone mass, shortest femur length, and severe deformities. Moreover, the mutant rats showed significantly lower blood phosphorus concentration, elevated levels of FGF23 and alkaline phosphatase, and increased expression of phosphorus regulators. In conclusion, the XLH rat model with the PHEX gene mutation dosage demonstrated its impact on growth and development, serum biochemical parameters, and femoral morphology.


Subject(s)
Familial Hypophosphatemic Rickets , Animals , Female , Male , Rats , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/diagnosis , Genotype , Mutation , Pedigree , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Phosphorus
7.
JCI Insight ; 8(24)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37943605

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Osteomalacia , Animals , Mice , Calcification, Physiologic/genetics , Extracellular Matrix Proteins/metabolism , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factors , Hypophosphatemia/genetics , Mice, Knockout , Minerals/metabolism , Osteomalacia/genetics , Osteomalacia/metabolism
8.
Horm Metab Res ; 55(10): 653-664, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37813097

ABSTRACT

X-linked hypophosphatemia (XLH) associated with short stature during childhood are mostly referred to the hospital and diagnosed as vitamin D deficiency rickets and received vitamin D before adulthood. A case is presented with clinical features of hypophosphatemia from childhood who did not seek medical care for diagnosis and treatment, nor did his mother or two brothers, who have short statures, bone pain, and fractures. The patient was assessed for sociodemographic, hematological, and biochemical parameters together with a genetic assessment. A DEXA scan and X-ray were done to determine the abnormalities and deformities of joints and bones despite clinical examination by an expert physician. All imaging, laboratory parameters, and the genetic study confirmed the diagnosis of XLH. A detailed follow-up of his condition was performed after the use of phosphate tablets and other treatments. X-linked hypophosphatemia needs a good assessment, care, and follow up through a complementary medical team including several specialties. Phosphate tablets in adulthood significantly affects clinical and physical improvement and prevention of further skeletal abnormality and burden on daily activity. The patients should be maintained with an adequate dose of phosphate for better patient compliance. More awareness is needed in society and for health professionals when conducting medical checkups during the presence of stress fractures, frequent dental and gum problems, rickets, short stature, or abnormality in the skeleton or walking to think of secondary causes such as hypophosphatemia. Further investigations including a visit to a specialist is imperative to check for the primary cause of these disturbances.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Adult , Humans , Male , Bone and Bones , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/drug therapy , Hypophosphatemia/complications , Hypophosphatemia/drug therapy , Hypophosphatemia/genetics , Phosphates/therapeutic use , Vitamin D/therapeutic use
9.
Eur J Pediatr ; 182(11): 5191-5202, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37707589

ABSTRACT

To assess the long-term efficacy of burosumab for pediatric patients with X-linked hypophosphatemia, focusing on linear growth. This multi-center retrospective study included 35 pediatric patients who began treatment with burosumab between January 2018 and January 2021. We collected clinical data, anthropometric measurements, laboratory results, and Rickets Severity Score (RSS), from 2 years prior to treatment initiation and up to 4 years after. Burosumab was initiated at a mean age of 7.5 ± 4.4 years (range 0.6-15.9), with a mean initial dose of 0.8 ± 0.3 mg/kg, which was subsequently increased to 1.1 ± 0.4 mg/kg. The patients were followed for 2.9 ± 1.4 years (range 1-4) after initiating burosumab. Serum phosphorus levels increased from 2.7 ± 0.8 mg/dl at burosumab initiation to 3.4 ± 0.6 mg/dl after 3 months and remained stable (p < 0.001). Total reabsorption of phosphorus increased from 82.0 ± 6.8 to 90.1 ± 5.3% after 12 months of treatment (p = 0.041). The RSS improved from 1.7 ± 1.0 at burosumab initiation to 0.5 ± 0.6 and 0.3 ± 0.6 after 12 and 24 months, respectively (p < 0.001). Both height z-score and weight z-score improved from burosumab initiation to the end of the study: from - 2.07 ± 1.05 to - 1.72 ± 1.04 (p < 0.001) and from - 0.51 ± 1.12 to - 0.11 ± 1.29 (p < 0.001), respectively. Eight children received growth hormone combined with burosumab treatment. Height z-score improved among those who received growth hormone (from - 2.33 ± 1.12 to - 1.94 ± 1.24, p = 0.042) and among those who did not (from - 2.01 ± 1.01 to - 1.66 ± 1.01, p = 0.001). CONCLUSION:  Burosumab treatment in a real-life setting improved phosphate homeostasis and rickets severity and enhanced linear growth. WHAT IS KNOWN: • Compared to conventional therapy, burosumab treatment has been shown to increase serum phosphate levels and reduce the severity of rickets. • The effect of burosumab on growth is still being study. WHAT IS NEW: • Height z-score improved between the start of burosumab treatment and the end of the study (-2.07 ± 1.05 vs. -1.72 ± 1.04, p < 0.001). • Eight children received burosumab combined with growth hormone treatment without side effects during the concomitant treatments.


Subject(s)
Familial Hypophosphatemic Rickets , Child , Humans , Infant , Child, Preschool , Adolescent , Familial Hypophosphatemic Rickets/drug therapy , Antibodies, Monoclonal/therapeutic use , Retrospective Studies , Phosphorus/therapeutic use , Growth Hormone/therapeutic use , Phosphates
10.
Clin Med (Lond) ; 23(4): 420-422, 2023 07.
Article in English | MEDLINE | ID: mdl-37524410

ABSTRACT

Abnormalities associated with phosphate metabolism can lead to thoracic deformities that result in respiratory failure, which is conventionally managed by means of supplemental oxygenation, positive airway pressure and physiotherapy. However, when these measures fail, the clinician faces a dilemma, since many patients cannot tolerate a major surgical procedure. A minimally invasive technique, insertion of an endobronchial stent, might offer a solution.


Subject(s)
Familial Hypophosphatemic Rickets , Respiratory Insufficiency , Rickets, Hypophosphatemic , Humans , Familial Hypophosphatemic Rickets/complications , Rickets, Hypophosphatemic/complications , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Stents/adverse effects
11.
J Clin Endocrinol Metab ; 109(1): 293-302, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37497620

ABSTRACT

CONTEXT: Burosumab is approved for the treatment of X-linked hypophosphatemia (XLH). OBJECTIVE: To assess the efficacy and safety of burosumab in XLH patients, we conducted a systematic review and meta-analysis. METHODS: We searched PubMed, the Cochrane Library, Embase, ClinicalTrials.gov, and Web of Science for studies on the use of burosumab in patients with XLH. Meta-analysis of randomized controlled trials (RCTs) and single-arm trials (SATs) was done to explore burosumab treatment on the efficacy and safety of XLH. RESULTS: Of the 8 eligible articles, 5 were from RCTs and 3 were from SATs. Compared with the control group in RCTs, serum phosphorus level was significantly increased in the burosumab group (0.52 mg/dL, 95% CI 0.24-0.80 mg/dL). A meta-analysis of the burosumab arms in all trials revealed significant increase in serum phosphorus levels (0.78 mg/dL, 95% CI 0.61-0.96 mg/dL), TmP/GFR (0.86 mg/dL, 95% CI 0.60-1.12 mg/dL), and 1,25-dihydroxyvitamin D level (13.23 pg/mL, 95% CI 4.82-21.64 pg/mL) as well. Changes in secondary events also validated the effects of burosumab treatment. Compared with the control group, in RCTs, the safety profile of burosumab is not much different from the control group. Data of the single-arm combined group demonstrated the incidence of any treatment emergency adverse event (TEAE) and the related TEAE rate were high, but the severity of most adverse events is mild to moderate, and the rate of serious TEAE is low. CONCLUSION: This study suggests that burosumab can be an option for patients with XLH and did not significantly increase the incidence of adverse events.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Humans , Antibodies, Monoclonal/adverse effects , Fibroblast Growth Factors , Phosphorus , Hypophosphatemia/chemically induced
12.
Rev Med Suisse ; 19(823): 770-775, 2023 Apr 19.
Article in French | MEDLINE | ID: mdl-37133959

ABSTRACT

Hypophosphatemia is common and may be overlooked due to its asymptomatic nature or non-specific symptoms. Two main mechanisms are at its origin: a shift towards the intracellular sector and an increase in urinary phosphate excretion. A measurement of the urinary phosphate reabsorption threshold allows a diagnostic orientation. Alongside common forms of parathyroid hormone-dependent hypophosphatemia, one should not ignore rare FGF23-mediated forms, in particular X-linked hypophosphatemic rickets. The treatment, above all etiological, also includes the administration of phosphate and, in the event of an excess of FGF23, supplementation with calcitriol. In cases of oncogenic osteomalacia and X-linked hypophosphatemic rickets, the use of burosumab, an anti-FGF23 antibody, must be considered.


L'hypophosphatémie est fréquente. Pourtant, elle peut parfois être méconnue de par son caractère asymptomatique ou ses symptômes non spécifiques. Deux grands mécanismes sont à son origine : un shift vers le secteur intracellulaire et une augmentation de l'excrétion urinaire de phosphate. Une mesure du seuil de réabsorption urinaire de phosphate permet une orientation diagnostique. À côté de formes communes d'hypophosphatémies parathormone-dépendantes, il ne faut pas méconnaître des formes rares FGF23 médiées, en particulier le rachitisme hypophosphatémique lié à l'X. Le traitement, avant tout étiologique comporte aussi l'administration de phosphate et lors d'un excès de FGF23, une supplémentation en calcitriol. En cas d'ostéomalacie oncogénique et de rachitisme hypophosphatémique lié à l'X, l'emploi de burosumab, anticorps anti-FGF23, doit être considéré.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Humans , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/etiology , Familial Hypophosphatemic Rickets/therapy , Fibroblast Growth Factors , Hypophosphatemia/diagnosis , Hypophosphatemia/etiology , Phosphates , Calcitriol
13.
Pediatr Nephrol ; 38(11): 3845-3848, 2023 11.
Article in English | MEDLINE | ID: mdl-37052691

ABSTRACT

BACKGROUND: Fractional tubular reabsorption of phosphate (TRP) has been used for over 60 years to establish the existence of renal phosphate loss. It is a parameter of corrected volume per decilitre of glomerular filtration rate (GFR). Later, a mass parameter per dl GFR called TP/GFR (tubular PO4 reabsorption per dl GFR) was devised which some authors have sought to substitute for TRP. The aim of the present work is to attempt to demonstrate that TRP and TP/GFR are similar parameters and, in certain aspects, TRP is more effective for diagnosis. METHODS: Data were gathered on the metabolism of phosphate corresponding to a group of healthy children without hypophosphatemia (n = 47), a group of patients with idiopathic hypercalciuria (n = 27), and ten patients diagnosed with X-linked hypophosphatemia (XLH). The TRP, the TP/GFR, and the percent tubular reabsorption of phosphate were calculated. RESULTS: All the patients with XLH presented TRP values lower than 95 ml/dl GFR and of TP/GFR equal to or lower than 2.8 mg/dl GFR. In the total sample, a direct correlation was observed between TRP and TP/GFR (r = 0.65; p = 0.01). The TRP and the percent tubular reabsorption of phosphate values were the same in the three groups (r = 1; p = 0.01). CONCLUSIONS: TRP and TP/GFR are similar parameters. TRP is more effective than TP/GFR given that in renal hypophosphatemia it is always below 95% and above 95% in reduced phosphatemia and normal kidney proximal tubular function. There is no solid reason for using TP/GFR rather than TRP. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Child , Humans , Familial Hypophosphatemic Rickets/diagnosis , Glomerular Filtration Rate , Hypophosphatemia/diagnosis , Hypophosphatemia/etiology , Kidney/metabolism , Kidney Tubules/metabolism , Phosphates/metabolism
14.
J Intern Med ; 293(6): 753-762, 2023 06.
Article in English | MEDLINE | ID: mdl-36999651

ABSTRACT

BACKGROUND: Chronic hypophosphatemia can result from a variety of acquired disorders, such as malnutrition, intestinal malabsorption, hyperparathyroidism, vitamin D deficiency, excess alcohol intake, some drugs, or organ transplantation. Genetic disorders can be a cause of persistent hypophosphatemia, although they are less recognized. We aimed to better understand the prevalence of genetic hypophosphatemia in the population. METHODS: By combining retrospective and prospective strategies, we searched the laboratory database of 815,828 phosphorus analyses and included patients 17-55 years old with low serum phosphorus. We reviewed the charts of 1287 outpatients with at least 1 phosphorus result ≤2.2 mg/dL. After ruling out clear secondary causes, 109 patients underwent further clinical and analytical studies. Among them, we confirmed hypophosphatemia in 39 patients. After excluding other evident secondary causes, such as primary hyperparathyroidism and vitamin D deficiency, we performed a molecular analysis in 42 patients by sequencing the exonic and flanking intronic regions of a panel of genes related to rickets or hypophosphatemia (CLCN5, CYP27B1, dentin matrix acidic phosphoprotein 1, ENPP1, FAM20C, FGFR1, FGF23, GNAS, PHEX, SLC34A3, and VDR). RESULTS: We identified 14 index patients with hypophosphatemia and variants in genes related to phosphate metabolism. The phenotype of most patients was mild, but two patients with X-linked hypophosphatemia (XLH) due to novel PHEX mutations had marked skeletal abnormalities. CONCLUSION: Genetic causes should be considered in children, but also in adult patients with hypophosphatemia of unknown origin. Our data are consistent with the conception that XLH is the most common cause of genetic hypophosphatemia with an overt musculoskeletal phenotype.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Humans , Prospective Studies , Retrospective Studies , Hypophosphatemia/genetics , Hypophosphatemia/complications , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/metabolism , Phosphorus , Fibroblast Growth Factors
15.
J Pediatr Orthop ; 43(6): 379-385, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36952253

ABSTRACT

PURPOSE: Patients with X-linked hypophosphatemic rickets (XLH) often develop coronal plane knee deformities despite medical treatment. Hemiepiphysiodesis is an effective way to correct coronal plane knee deformities in skeletally immature patients, but a full understanding of the rate of angular correction after hemiepiphysiodesis in XLH patients, compared with idiopathic cases is lacking. METHODS: We retrospectively reviewed charts of 24 XLH patients and 37 control patients without metabolic bone disease who underwent hemiepiphysiodesis. All patients were treated with standard-of-care medical therapy (SOC=active vitamin D and phosphate salt supplementation) in our clinical research center and had a minimum of 2-year follow-up after hemiepiphysiodesis. Demographic data as well as complications, repeat procedures, or recurrence/overcorrection were recorded. Standing lower extremity radiographs were evaluated before the surgical intervention and at subsequent hardware removal or skeletal maturity, whichever came first. Mean axis deviation, knee zone, mechanical lateral distal femoral angle (mLDFA), and medial proximal tibial angle were measured on each radiograph. The rate of angular correction was calculated as the change in mLDFA and medial proximal tibial angle over the duration of treatment. RESULTS: The magnitude of the initial deformity of the distal femur was greater in XLH patients as compared with control for varus (XLH mLDFA 97.7 +/- 4.9 vs. Control mLDFA 92.0 +/- 2.0 degrees) and valgus (XLH mLDFA 78.7 +/- 6.2 vs. Controls mLDFA 83.6 +/- 3.2 degrees). The rate of correction was dependent on age. When correcting for age, XLH patients corrected femoral deformity at a 15% to 36% slower rate than control patients for the mLDFA (>3 y growth remaining XLH 0.71 +/- 0.46 vs. control 0.84 +/- 0.27 degrees/month, <3 y growth remaining XLH 0.37 +/- 0.33 vs. control 0.58 +/- 0.41 degrees/month). No significant differences were seen in the rate of proximal tibia correction. XLH patients were less likely to end treatment in zone 1 (55.0% XLH vs. 77.8% control). XLH patients had longer treatment times than controls (19.5 +/- 10.7 vs. 12.6 +/- 7.0 mu, P value <0.001), a higher average number of secondary procedures than controls (1.33 +/- 1.44 vs. 0.62 +/- 0.92 number of procedures), a higher rate of overcorrection than controls (29.2% vs. 5.4%), and a higher rate of subsequent corrective osteotomy than controls (37.5% vs. 8.1%). There was no significant difference in the rate of complications between groups (8.3% vs. 5.4%). CONCLUSIONS: Patients with XLH undergoing hemiepiphysiodesis have a 15% to 36% slower rate of femoral deformity correction that results in longer treatment times, a higher likelihood to undergo more secondary procedures, and a lower likelihood to reach neutral mechanical alignment. SIGNIFICANCE: This study provides important information to guide the timing and treatment of patients with XLH and coronal plane knee deformities. In addition, results from this study can be educational for families and patients with respect to anticipated treatment times, success rates of the procedure, complication rate, and likelihood of needing repeat procedures.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Familial Hypophosphatemic Rickets/surgery , Retrospective Studies , Tibia/surgery , Lower Extremity , Femur/surgery , Knee Joint/diagnostic imaging , Knee Joint/surgery , Knee Joint/abnormalities
16.
Calcif Tissue Int ; 112(4): 483-492, 2023 04.
Article in English | MEDLINE | ID: mdl-36705686

ABSTRACT

Alopecia in hereditary vitamin D resistant rickets (HVDRR) has some correlation with severe rickets and poor overall response. However, these observations are based on small series. Hence, we aim to assess the genotypic spectrum of HVDRR and its correlation with alopecia and clinical response. Seven genetically-proven HVDDR patients from five unrelated families and 119 probands from systematic review were analysed retrospectively for phenotypic and genotypic data and overall response to therapy. In our cohort mean age at rickets onset was 12 (± 3.4) months. Alopecia was present in all patients but one. All patients had poor overall response to oral high-dose calcium and calcitriol and most required intravenous calcium. Genetic analyses revealed four novel variants. On systematic review, alopecia was present in majority (81.5%) and preceded the onset of rickets. Patients with alopecia had higher serum calcium (7.6 vs.6.9 mg/dl, p = 0.008), lower 1, 25(OH)2 D (200 vs.320 pg/ml, p = 0.03) and similar overall response to oral therapy (28.7% vs. 35.3%, p = 0.56). Alopecia was present in 51.4% of non-truncating (NT) ligand-binding domain (LBD) variants, whereas it was universal in truncating LBD and all DNA binding-domain (DBD) variants. Overall response to oral therapy was highest in LBD-NT (46.4%) as compared to 7.6% in LBD-truncating and 19% in DBD-NT variants. Among LBD-NT variants, those affecting RXR heterodimerization, but not those affecting ligand affinity, were associated with alopecia. Both alopecia and overall response have genotypic correlation. Age at diagnosis and overall response to oral therapy were similar between patients with and without alopecia in genetically proven HVDRR.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Infant , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/complications , Receptors, Calcitriol/genetics , Calcium , Ligands , Retrospective Studies , Alopecia/genetics , Alopecia/complications , Alopecia/drug therapy , Mutation , Vitamin D/therapeutic use
17.
Bone ; 166: 116598, 2023 01.
Article in English | MEDLINE | ID: mdl-36341949

ABSTRACT

Cutaneous skeletal hypophosphatemia syndrome (CSHS) is an ultra-rare mosaic disorder manifesting as skeletal dysplasia and FGF23-mediated hypophosphatemia, with some experiencing extra-osseous/extra-cutaneous manifestations, including both benign and malignant neoplasms. Like other disorders of FGF23-mediated hypophosphatemia including X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO), patients with CSHS have low serum phosphorus and active 1,25-dihydroxyvitamin D levels. Current treatment options for patients with CSHS include multiple daily doses of oral phosphorus and one or more daily doses of active vitamin D analog to correct the deficits. Recently, the fully human monoclonal antibody against FGF23 burosumab received US approval for the treatment of XLH and TIO, two rare diseases characterized by FGF23-mediated hypophosphatemia leading to rickets and osteomalacia. Given the similarities between the pathobiologies of these disorders and CSHS, we investigated the impact of burosumab on two patients, one pediatric and one adult, with CSHS who participated in separate, but similarly designed trials. In both the pediatric and adult patients, burosumab therapy was well-tolerated and contributed to clinically meaningful improvements in disease outcomes including normalization of phosphorus metabolism and markers of bone health, and improvements in skeletal abnormalities, fractures, and physical function. Reported adverse events were minimal, with only mild injection site reactions attributed to burosumab therapy. Together, these findings suggest that burosumab therapy is a promising therapeutic option for patients with CSHS.


Subject(s)
Antibodies, Monoclonal, Humanized , Hypophosphatemia , Adult , Child , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/metabolism , Fibroblast Growth Factors/metabolism , Hypophosphatemia/drug therapy , Osteomalacia/drug therapy , Phosphorus , Antibodies, Monoclonal, Humanized/therapeutic use
18.
Bone ; 167: 116602, 2023 02.
Article in English | MEDLINE | ID: mdl-36347435

ABSTRACT

OBJECTIVE: Autosomal dominant hypophosphatemic rickets (ADHR) is a rare disease caused by activating mutations in fibroblast growth factor 23 (FGF23) gene. With FGF23 activation, ADHR is a good model to explore the effects of FGF23 on skeletal development and mineralization. However, the bone microarchitecture of ADHR patients is poorly investigated. This study aims to illustrate the bone properties of ADHR patients and clarify the effect of FGF23 on load bearing and non-load bearing bone. METHODS: Bone microarchitectures of 11 ADHR subjects and sex- and age-matched healthy controls were analyzed by HR-pQCT. The effect of FGF23 mutations on load bearing and non-load bearing bone was explored by comparison of bone microarchitecture in distal radius and distal tibia. The BMD, bone microarchitecture and bone strength were compared between 7 ADHR patients and 7 age- and sex-matched XLH patients. RESULTS: Among 11 subjects with FGF23 mutations, 10 patients presented with obvious symptoms, five of which had received 1-3 years of iron supplement, neutral phosphate, and calcitriol treatments. The symptomatic patients presented with low bone density and fractures in X rays, with decreased Z score of aBMD (L1-L4: -1.3 ± 1.4, femoral neck: -2.1 ± 1.8, total hip: -1.85 ± 1.6). Compared with controls, HR-pQCT analysis of 5 untreated ADHR patients showed increased total area (+61.6 %, p = 0.03) and cortical perimeter (+17.2 %, p = 0.03) in distal radius. No significant differences were found in other parameters in distal radius. In distal tibia, the patients presented obvious defects in cancellous bone, with decreased trabecular vBMD (-62.9 %, p = 0.003), trabecular BV/TV (-48.7 %, p = 0.003) and trabecular number (-42.2 %, p = 0.001). The trabecular separation (+113.3 %, p = 0.007) and trabecular network inhomogeneity (+226.7 %, p = 0.001) were accordingly increased. In addition to another 5 treated patients, the bone microarchitecture changes revealed similar pattern, but the increase of total area and cortical perimeter in distal radius was no longer statistically significant. The non-symptomatic ADHR patient demonstrated slightly decreased total vBMD, trabecular vBMD and trabecular BV/TV in distal tibia. The changing pattern of bone geometry and microarchitecture of ADHR patients were similar to XLH patients but showed less deficit and stronger bone strength. CONCLUSION: ADHR patients presented increased total area and cortical perimeter in distal radius, and obvious defect in cancellous bone in distal tibia. FGF23 have impairment effect on trabecular bone especially in weight bearing site.


Subject(s)
Bone Density , Familial Hypophosphatemic Rickets , Humans , Bone Density/genetics , Bone and Bones/diagnostic imaging , Familial Hypophosphatemic Rickets/diagnostic imaging , Familial Hypophosphatemic Rickets/genetics , Tomography, X-Ray Computed , Radius/diagnostic imaging , Tibia/diagnostic imaging , Absorptiometry, Photon
19.
Pediatr Nephrol ; 38(3): 697-704, 2023 03.
Article in English | MEDLINE | ID: mdl-35758999

ABSTRACT

BACKGROUND: The underlying mechanisms of obesity in X-linked hypophosphatemia (XLH) are not known. We aimed to evaluate whether FGF21, an endocrine FGF involved in the regulation of carbohydrate-lipid metabolism, could be involved. METHODS: We performed a prospective multicenter cross-sectional study comparing FGF23, Klotho, and FGF21 levels in teenagers with XLH compared to healthy controls (VITADOS cohort) after matching for age, gender, and puberty. Non-parametric tests were performed (results presented as median (min-max)). RESULTS: A total of 40 XLH teenagers (n = 20 Standard Of Care, SOC, n = 20 burosumab) were included. While patients receiving burosumab displayed increased BMI as compared to patients receiving SOC, systolic blood pressure expressed as percentile was progressively and significantly lower when comparing the three groups: 77 (4-99) in SOC, 47 (9-98) in burosumab, and 28 (1-94) in controls (p = 0.007). When compared to patients receiving SOC, patients receiving burosumab displayed significantly increased phosphate and 1,25(OH)2D levels. We found increased Klotho levels in patients receiving burosumab. No differences were found for either carbohydrate-lipid biomarkers or FGF21 between the three groups. A total of 21 XLH patients (53%) had insulin resistance (HOMA > 2.4, N = 10 SOC, N = 11 burosumab). CONCLUSION: FGF21 does not explain obesity/overweight in XLH. Of note, this study was performed in France in 2018-2019, early after the approval authorizing burosumab only in case of severe XLH despite SOC. As such, the data on systolic blood pressure highlighting a possible impact of burosumab to decrease blood pressure as well as increase Klotho levels deserve further studies given their potential effect on long-term cardiovascular risk. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Familial Hypophosphatemic Rickets , Hypertension , Hypophosphatemia , Adolescent , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/drug therapy , Antibodies, Monoclonal , Cross-Sectional Studies , Prospective Studies , Hypertension/drug therapy , Fibroblast Growth Factors/metabolism , Obesity
20.
Horm Res Paediatr ; 96(6): 590-598, 2023.
Article in English | MEDLINE | ID: mdl-35235937

ABSTRACT

BACKGROUND: Several novel treatment options have recently become available in childhood bone diseases. The purpose of this article is to provide an update on some of the therapeutic agents used in the treatment of pediatric osteoporosis, X-linked hypophosphatemic rickets, and achondroplasia (ACH). SUMMARY: Vitamin D3 and Ca supplementation remains the basis of childhood osteoporosis treatment. Bisphosphonate (BP) therapy is the main antiresorptive therapeutic option, while denosumab, a human monoclonal IgG2 antibody with high affinity and specificity for a primary regulator of bone resorption - RANKL, represents a possible alternative. Its potent inhibition of bone resorption and turnover process leads to continuous increase of bone mineral density throughout the treatment also in the pediatric population. With a half-life much shorter than BPs, its effects are rapidly reversible upon discontinuation. Safety and dosing concerns in children remain. Novel treatment options have recently become available in two rare bone diseases. Burosumab, a monoclonal antibody against FGF-23, has been approved for the treatment of children with X-linked hypophosphatemic rickets older than 1 year. It presents an effective, more etiology-based treatment for rickets compared to conventional therapy, without the need for multiple daily oral phosphate supplementation. Its long-term efficacy and safety are currently being investigated. After years of anticipation, a novel treatment option for ACH has become available. C-type natriuretic peptide analog vosoritide effectively increases proportional growth and has a reasonable safety profile in children >2 years. Its effect on other features of the disease and the final height is yet to be determined. Several other treatment options for ACH exploring different therapeutic approaches are currently being investigated. KEY MESSAGES: Denosumab is effective in the treatment of childhood-onset osteoporosis; however, further studies are necessary to determine the optimal treatment protocol. Burosumab is more etiology-based and convenient in comparison to conventional treatment of X-linked hypophospha--temic rickets in children and adults. Vosoritide importantly changes the natural course of achondroplasia, at least in the short term.


Subject(s)
Achondroplasia , Bone Resorption , Familial Hypophosphatemic Rickets , Osteoporosis , Adult , Humans , Child , Denosumab/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Bone Density , Bone Resorption/drug therapy , Achondroplasia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL