Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
BMC Plant Biol ; 24(1): 309, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649801

ABSTRACT

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT: In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS: This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.


Subject(s)
Diacylglycerol O-Acyltransferase , Diatoms , Nicotiana , Diatoms/genetics , Diatoms/enzymology , Diatoms/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Nicotiana/genetics , Nicotiana/enzymology , Nicotiana/metabolism , Acyl Coenzyme A/metabolism , Plants, Genetically Modified , Triglycerides/biosynthesis , Triglycerides/metabolism , Eicosapentaenoic Acid/biosynthesis , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/metabolism , Metabolic Engineering
2.
Mar Drugs ; 20(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35049923

ABSTRACT

Crypthecodinium cohnii is a marine heterotrophic dinoflagellate that can accumulate high amounts of omega-3 polyunsaturated fatty acids (PUFAs), and thus has the potential to replace conventional PUFAs production with eco-friendlier technology. So far, C. cohnii cultivation has been mainly carried out with the use of yeast extract (YE) as a nitrogen source. In the present study, alternative carbon and nitrogen sources were studied: the extraction ethanol (EE), remaining after lipid extraction, as a carbon source, and dinoflagellate extract (DE) from recycled algae biomass C. cohnii as a source of carbon, nitrogen, and vitamins. In mediums with glucose and DE, the highest specific biomass growth rate reached a maximum of 1.012 h-1, while the biomass yield from substrate reached 0.601 g·g-1. EE as the carbon source, in comparison to pure ethanol, showed good results in terms of stimulating the biomass growth rate (an 18.5% increase in specific biomass growth rate was observed). DE supplement to the EE-based mediums promoted both the biomass growth (the specific growth rate reached 0.701 h-1) and yield from the substrate (0.234 g·g-1). The FTIR spectroscopy data showed that mediums supplemented with EE or DE promoted the accumulation of PUFAs/docosahexaenoic acid (DHA), when compared to mediums containing glucose and commercial YE.


Subject(s)
Biomass , Fatty Acids, Omega-3/biosynthesis , Microalgae/growth & development , Animals , Aquatic Organisms , Culture Media , Microalgae/metabolism , Recycling
3.
Nutrients ; 13(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34836347

ABSTRACT

Concussions and mild traumatic brain injury (m-TBI) have been identified as a consequential public health concern because of their potential to cause considerable impairments in physical, cognitive, behavioral, and social functions. Given their prominent structural and functional roles in the brain, n-3 polyunsaturated fatty acids (PUFA) have been identified as a potentially viable prophylactic agent that may ameliorate the deleterious effects of m-TBI on brain function. The purpose of the present pilot study was to investigate the effect of n-3 PUFA on neurologic function using a weight drop injury (WDI) model. Fat-1 mice, capable of synthesizing n-3 PUFA endogenously from n-6 PUFA, and their wild-type (WT) counterparts, were subjected to a mild low-impact WDI on the closed cranium, and recovery was evaluated using the neurological severity score (NSS) to assess the motor and neurobehavioral outcomes. In comparison to the WT mice, the fat-1 mice had a significantly (p ≤ 0.05) lower NSS at all time points post-WDI, and significantly greater neurological restoration measured as the time to first movement. Overall, these findings demonstrate the protective effect of n-3 PUFA against mild brain injury.


Subject(s)
Behavior, Animal/physiology , Brain Concussion/metabolism , Fatty Acids, Omega-3/biosynthesis , Neuroprotective Agents/metabolism , Skull/injuries , Animals , Brain/metabolism , Brain Concussion/psychology , Disease Models, Animal , Injury Severity Score , Mice , Pilot Projects
4.
Mol Metab ; 54: 101335, 2021 12.
Article in English | MEDLINE | ID: mdl-34530175

ABSTRACT

OBJECTIVE: An increased ω6/ω3-polyunsaturated fatty acid ratio in the current Western diet is regarded as a critical epigenetic nutritional factor in the pathogenesis of several human lifestyle diseases, metabolic syndrome, cardiovascular disease, the central nervous system and the female and male reproductive systems. The impact of nutrient ω3-and ω6-PUFAs in the pathogenesis of dyslipoproteinemia and atherosclerosis has been a topic of intense efforts for several decades. Cellular homeostasis of the ω3-and ω6- PUFA pool is maintained by the synthesis of ω3-and ω6-PUFAs from essential fatty acids (EFA) (linoleic and α-linolenic acid) and their dietary supply. In this study, we used the auxotrophic Δ6-fatty acid desaturase- (FADS2) deficient mouse (fads2-/-), an unbiased model congenial for stringent feeding experiments, to investigate the molecular basis of the proposed protective role of dietary ω3-and ω6-PUFAs (Western diet) in the pathogenesis of multifactorial dyslipoproteinemia and atherosclerosis. We focused on the metabolic axis-liver endoplasmic reticulum (ER), serum lipoprotein system (Lp) and aorta vessel wall. Furthermore, we addressed the impact of the inactivated fads2-locus with inactivated PUFA synthesis on the development and progression of extended atherosclerosis in two different mouse mutants with disrupted cholesterol homeostasis, using the apoe-/- and ldlr-/- mutants and the fads2-/- x apoe-/- and fads2-/- x ldlr-/- double mutants. METHODS: Cohorts of +/+ and fads2-/- mice underwent two long-term dietary regimens: a) a PUFA-free standard chow diet containing only EFAs, essential for viability, and b) a high fat/high cholesterol (HFHC) diet, a mimicry of the human atherogenic "Western" diet. c) To study the molecular impact of PUFA synthesis deficiency on the development and progression of atherosclerosis in the hypercholesterolemic apoe-/- and ldlr-/- mouse models fed PUFA-free regular and sustained HFHC diets, we generated the fads2-/- x apoe-/- and the fads2-/- x ldlr-/- double knockout mutants. We assessed essential molecular, biochemical and cell biological links between the diet-induced modified lipidomes of the membrane systems of the endoplasmic reticulum/Golgi complex, the site of lipid synthesis, the PL monolayer and neutral lipid core of LD and serum-Lp profiles and cellular reactions in the aortic wall. RESULTS: ω3-and ω6-PUFA synthesis deficiency in the fads2-/- mouse causes a) hypocholesterolemia and hypotriglyceridemia, b) dyslipoproteinemia with a shift of high-density lipoprotein (HDL) to very low-density lipoprotein (VLDL)-enriched Lp-pattern and c) altered liver lipid droplet structures. d) Long-term HFHC diet does not trigger atherosclerotic plaque formation in the aortic arc, the thoracic and abdominal aorta of PUFA-deficient fads2-/- mice. Inactivation of the fads2-/- locus, abolishing systemic PUFA synthesis in the fads2-/- x apoe-/- and fads2-/- x ldlr-/- double knockout mouse lines. CONCLUSIONS: Deficiency of ω3-and ω6-PUFA in the fads2-/- mutant perturbs liver lipid metabolism, causes hypocholesterolemia and hypotriglyceridemia and renders the fads2-/- mutant resistant to sustained atherogenic HFHC diet. Neither PUFA-free regular nor long-term HFHC-diet impacts the apoe- and LDL-receptor deficiency-provoked hypercholesterolemia and atherosclerotic plaque formation, size and distribution in the aorta. Our study strongly suggests that the absence of PUFAs as highly vulnerable chemical targets of autoxidation attenuates inflammatory responses and the formation of atherosclerotic lesions. The cumulative data and insight into the molecular basis of the pleiotropic functions of PUFAs challenge a differentiated view of PUFAs as culprits or benefactors during a lifespan, pivotal for legitimate dietary recommendations.


Subject(s)
Atherosclerosis/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-6/biosynthesis , Receptors, LDL/metabolism , Animals , Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Fatty Acid Desaturases/deficiency , Fatty Acid Desaturases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/deficiency
5.
Mar Drugs ; 19(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946805

ABSTRACT

Fish vary in their ability to biosynthesise long-chain polyunsaturated fatty acids (LC-PUFA) depending upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. It has been reported in Solea senegalensis the existence of a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid (DHA) from eicosapentaenoic acid (EPA), which can be modulated by the diet. The present study aims to evaluate the combined effects of the partial replacement of fish oil (FO) with vegetable oils and reduced environmental salinity in the fatty acid composition of relevant body compartments (muscle, hepatocytes and enterocytes), the enzymatic activity over α-linolenic acid (ALA) to form n-3 LC-PUFA through the incubation of isolated hepatocytes and enterocytes with [1-14C] 18:3 n-3, and the regulation of the S. senegalensis fads2 and elovl5 in the liver and intestine. The presence of radiolabelled products, including 18:4n-3, 20:4n-3 and EPA, provided compelling evidence that a complete pathway enabling the biosynthesis of EPA from ALA, establishing S. senegalensis, has at least one Fads2 with ∆6 activity. Dietary composition prevailed over salinity in regulating the expression of fads2, while salinity did so over dietary composition for elovl5. FO replacement enhanced the proportion of DHA in S. senegalensis muscle and the combination with 20 ppt salinity increased the amount of n-3 LC-PUFA in hepatocytes.


Subject(s)
Dietary Fats/metabolism , Ecosystem , Fatty Acids, Omega-3/biosynthesis , Fish Oils/metabolism , Flatfishes/metabolism , Plant Oils/metabolism , Animal Feed , Animals , Aquaculture , Dietary Fats/administration & dosage , Enterocytes/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fish Oils/administration & dosage , Hepatocytes/metabolism , Muscles/metabolism , Plant Oils/administration & dosage , Salinity , Time Factors , Water/chemistry
6.
Mar Drugs ; 18(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271856

ABSTRACT

The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1-50 mM) or urea (1-50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp.


Subject(s)
Aquatic Organisms/metabolism , Fatty Acids, Omega-3/biosynthesis , Lipogenesis , Nitrogen/metabolism , Sodium Nitrite/metabolism , Urea/metabolism , Aquatic Organisms/genetics , Docosahexaenoic Acids/biosynthesis , Fatty Acids, Unsaturated/biosynthesis , Gene Expression Regulation, Enzymologic , Lipogenesis/genetics
7.
Biochimie ; 178: 15-25, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32389760

ABSTRACT

Microalgae are single-cell, photosynthetic organisms whose biodiversity places them at the forefront of biological producers of high-value molecules including lipids and pigments. Some of these organisms particular are capable of synthesizing n-3 very long chain polyunsaturated fatty acids (VLC-PUFAs), known to have beneficial effects on human health. Indeed, VLC-PUFAs are the precursors of many signaling molecules in humans involved in the complexities of inflammatory processes. This mini-review provides an inventory of knowledge on the synthesis of VLC-PUFAs in microalgae and on the diversity of signaling molecules (prostanoids, leukotrienes, SPMs, EFOX, isoprostanoids) that arise in humans from VLC-PUFAs.


Subject(s)
Fatty Acids, Omega-3/biosynthesis , Microalgae/metabolism , Animals , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/biosynthesis , Humans , Inflammation/metabolism , Inflammation/prevention & control , Lipid Metabolism , Oxylipins/metabolism
8.
Sci Rep ; 10(1): 6411, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286383

ABSTRACT

In recent years, researchers have highlighted the role of low cost-efficient agro-industrial by-products used as supplements in algal culture media. The aim of the study was to identify and characterize the basic metabolic pathways in Tetradesmus obliquus cells induced by supplementation with beet molasses in photoheterotrophic and mixotrophic culture conditions. To assess the impact of the nutritional strategy in unicellular algae, growth curves were plotted and lipid, carbohydrate, and protein levels were determined. Fourier Transform Infrared Spectroscopy was applied to measure the Tetradesmus obliquus cell composition. Additionally, the C16-C18 fatty acid profile of Tetradesmus obliquus was determined by gas chromatograph/mass spectrometry. The switch from autotrophy to photoheterotrophy and mixotrophy contributes to shortening of the adaptation growth phase. The highest protein content was obtained in the mixotrophic growth. This study has demonstrated high content of 18:1, cisΔ9, 18:2, cisΔ9,12, ω6, and 18:3, cisΔ9,12,15, ω3 in photoheterotrophic and mixotrophic culture conditions. High levels of proteins and essential fatty acids make Tetradesmus obliquus cell biomass important for human and animals health.


Subject(s)
Agriculture , Biotechnology , Chlorophyceae/physiology , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-6/biosynthesis , Heterotrophic Processes/physiology , Industry , Phototrophic Processes/physiology , Beta vulgaris/chemistry , Biomass , Carbohydrates/analysis , Chlorophyceae/growth & development , Lipids/chemistry , Molasses , Proteins/analysis , Spectroscopy, Fourier Transform Infrared
9.
Prog Lipid Res ; 76: 101008, 2019 10.
Article in English | MEDLINE | ID: mdl-31626820

ABSTRACT

N-3 polyunsaturated fatty acids (PUFA) and the numerous families of lipid mediators derived from them collectively regulate numerous biological processes. The mechanisms by which n-3 PUFA regulate biological processes begins with an understanding of the n-3 biosynthetic pathway that starts with alpha-linolenic acid (18:3n-3) and is commonly thought to end with the production of docosahexaenoic acid (DHA, 22:6n-3). However, our understanding of this pathway is not as complete as previously believed. In the current review we provide a background of the evidence supporting the pathway as currently understood and provide updates from recent studies challenging three central dogma of n-3 PUFA metabolism. By building on nearly three decades of research primarily in cell culture and oral dosing studies, recent evidence presented focuses on in vivo kinetic modelling and compound-specific isotope abundance studies in rodents and humans that have been instrumental in expanding our knowledge of the pathway. Specifically, we highlight three main updates to the n-3 PUFA biosynthesis pathway: (1) DHA synthesis rates cannot be as low as previously believed, (2) DHA is both a product and a precursor to tetracosahexaenoic acid (24:6n-3) and (3) increases in EPA in response to DHA supplementation are not the result of increased retroconversion.


Subject(s)
DNA/biosynthesis , Docosahexaenoic Acids/metabolism , Fatty Acids, Omega-3/biosynthesis , Animals , Humans
10.
Mar Drugs ; 17(5)2019 May 08.
Article in English | MEDLINE | ID: mdl-31072006

ABSTRACT

Lipids used in intravenous nutrition support (i.e., parenteral nutrition) provide energy, building blocks, and essential fatty acids. These lipids are included as emulsions since they need to be soluble in an aqueous environment. Fish oil is a source of bioactive omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid). Lipid emulsions, including fish oil, have been used for parenteral nutrition for adult patients post-surgery (mainly gastrointestinal). This has been associated with alterations in biomarkers of inflammation and immune defense, and in some studies, a reduction in length of intensive care unit and hospital stay. These benefits, along with a reduction in infections, are emphasized through recent meta-analyses. Perioperative administration of fish oil may be superior to postoperative administration, but this requires further exploration. Parenteral fish oil has been used in critically ill adult patients. Here, the influence on inflammatory processes, immune function, and clinical endpoints is less clear. However, some studies found reduced inflammation, improved gas exchange, and shorter length of hospital stay in critically ill patients if they received fish oil. Meta-analyses do not present a consistent picture but are limited by the small number and size of studies. More and better trials are needed in patient groups in which parenteral nutrition is used and where fish oil, as a source of bioactive omega-3 fatty acids, may offer benefits.


Subject(s)
Fat Emulsions, Intravenous/administration & dosage , Fatty Acids, Omega-3/therapeutic use , Fish Oils/therapeutic use , Parenteral Nutrition/methods , Adult , Critical Illness/therapy , Digestive System Surgical Procedures , Docosahexaenoic Acids/biosynthesis , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/biosynthesis , Eicosapentaenoic Acid/therapeutic use , Fatty Acids, Omega-3/biosynthesis , Humans , Inflammation/therapy , Perioperative Care , Randomized Controlled Trials as Topic
11.
Int J Mol Sci ; 20(4)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30769921

ABSTRACT

Palmitic acid metabolism involves delta-9 and delta-6 desaturase enzymes forming palmitoleic acid (9cis-16:1; n-7 series) and sapienic acid (6cis-16:1; n-10 series), respectively. The corresponding biological consequences and lipidomic research on these positional monounsaturated fatty acid (MUFA) isomers are under development. Furthermore, sapienic acid can bring to the de novo synthesis of the n-10 polyunsaturated fatty acid (PUFA) sebaleic acid (5cis,8cis-18:2), but such transformations in cancer cells are not known. The model of Caco-2 cell line was used to monitor sapienic acid supplementation (150 and 300 µM) and provide evidence of the formation of n-10 fatty acids as well as their incorporation at levels of membrane phospholipids and triglycerides. Comparison with palmitoleic and palmitic acids evidenced that lipid remodelling was influenced by the type of fatty acid and positional isomer, with an increase of 8cis-18:1, n-10 PUFA and a decrease of saturated fats in case of sapienic acid. Cholesteryl esters were formed only in cases with sapienic acid. Sapienic acid was the less toxic among the tested fatty acids, showing the highest EC50s and inducing death only in 75% of cells at the highest concentration tested. Two-photon fluorescent microscopy with Laurdan as a fluorescent dye provided information on membrane fluidity, highlighting that sapienic acid increases the distribution of fluid regions, probably connected with the formation of 8cis-18:1 and the n-10 PUFA in cell lipidome. Our results bring evidence for MUFA positional isomers and de novo PUFA synthesis for developing lipidomic analysis and cancer research.


Subject(s)
Colonic Neoplasms/metabolism , Fatty Acids, Omega-3/metabolism , Palmitic Acids/metabolism , Phospholipids/chemistry , Caco-2 Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol Esters/biosynthesis , Cholesterol Esters/chemistry , Cholesterol Esters/metabolism , Colonic Neoplasms/chemistry , Colonic Neoplasms/pathology , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/pharmacology , Fatty Acids, Omega-3/biosynthesis , Humans , Linoleic Acids/chemistry , Linoleic Acids/metabolism , Linoleic Acids/pharmacology , Linoleoyl-CoA Desaturase/chemistry , Microscopy, Fluorescence , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Palmitic Acids/chemistry , Palmitic Acids/pharmacology , Phospholipids/biosynthesis
12.
Carcinogenesis ; 39(11): 1380-1388, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30184109

ABSTRACT

Melanoma has a high propensity to metastasize and exhibits a poor response to classical therapies. Dysregulation of the chemokine receptor gene CXCR4 is associated with melanoma progression, and although n-3 polyunsaturated fatty acids (PUFAs) are known to be beneficial for melanoma prevention, the underlying mechanism of this effect is unclear. Here, we used the n-3 fatty acid desaturase (Fat-1) transgenic mouse model of endogenous n-3 PUFA synthesis to investigate the influence of elevated n-3 PUFA levels in a mouse model of metastatic melanoma. We found that relative to wild-type (WT) mice, Fat-1 mice exhibited fewer pulmonary metastatic colonies and improved inflammatory indices, including reduced serum tumor necrosis factor alpha (TNF-α) levels and pulmonary myeloperoxidase activity. Differential PUFA metabolites in serum were considered a key factor to alter cancer cell travelling to lung, and we found that n-6 PUFAs such as arachidonic acid induced CXCR4 protein expression although n-3 PUFAs such as eicosapentaenoic acid (EPA) decreased CXCR4 levels. In addition, serum levels of the bioactive EPA metabolite, 18-HEPE, were elevated in Fat-1 mice relative to WT mice, and 18-HEPE suppressed CXCR4 expression in B16-F0 cells. Moreover, relative to controls, numbers of pulmonary metastatic colonies were reduced in WT mice receiving intravenous injections either of 18-HEPE or 18-HEPE-pretreated melanoma cells. Our results indicate that 18-HEPE is a potential anticancer metabolite that mediates, at least in part, the preventive effect of n-3 PUFA on melanoma metastasis.


Subject(s)
Cadherins/genetics , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Melanoma, Experimental/pathology , Receptors, CXCR4/metabolism , Animals , Arachidonic Acid/metabolism , Cell Line, Tumor , Chrysenes , Disease Models, Animal , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/genetics , Female , Lung Neoplasms/secondary , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Metastasis/prevention & control , Peroxidase/metabolism , Receptors, CXCR4/genetics , Tumor Necrosis Factor-alpha/blood
13.
J Nutr ; 148(10): 1547-1555, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30204898

ABSTRACT

Background: We previously showed enrichments of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in broiler chicks fed defatted microalgae. Objectives: The aims of this study were to determine 1) if the enrichments affected meat texture and were enhanced by manipulating dietary corn oil, selenium, and vitamin E concentrations and 2) how the enrichments corroborated with hepatic gene expression involved in biosynthesis and oxidation of EPA and DHA. Methods: Day-old hatching Cornish Giant cockerels (n = 216) were divided into 6 groups (6 cages/group and 6 chicks/cage). Chicks were fed 1 of the 6 diets: a control diet containing 4% corn oil, 25 IU vitamin E/kg, and 0.2 mg Se/kg (4CO), 4CO + 10% microalgae (defatted Nannochloropsis oceanica; 4CO+ MA), 4CO+ MA - 2% corn oil (2CO+MA), 2CO+MA + 75 IU vitamin E/kg (2CO+MA+E), 2CO+MA + 0.3 mg Se/kg (2CO+MA+Se), and 2CO+MA+E + 0.3 mg Se/kg (2CO+MA+E+Se). After 6 wk, fatty acid profiles, DHA and EPA biosynthesis and oxidation, gene expression, lipid peroxidation, antioxidant status, and meat texture were measured in liver, muscles, or both. Results: Compared with the control diet, defatted microalgae (4CO+MA) enriched (P < 0.05) DHA and EPA by ≤116 and 24 mg/100 g tissue in the liver and muscles, respectively, and downregulated (41-76%, P < 0.01) hepatic mRNA abundance of 4 cytochrome P450 (CYP) enzymes (CYP2C23b, CYP2D6, CYP3A5, CYP4V2). Supplemental microalgae decreased (50-82%, P < 0.05) lipid peroxidation and improved (16-28%, P < 0.05) antioxidant status in the liver, muscles, or both. However, the microalgae-mediated enrichments in the muscles were not elevated by altering dietary corn oil, vitamin E, or selenium and did not affect meat texture. Conclusion: The microalgae-mediated enrichments of DHA and EPA in the chicken muscles were associated with decreased hepatic gene expression of their oxidation, but were not further enhanced by altering dietary corn oil, vitamin E, or selenium.


Subject(s)
Corn Oil/pharmacology , Fatty Acids, Omega-3/biosynthesis , Meat/analysis , Microalgae , Muscles , Selenium/pharmacology , Vitamin E/pharmacology , Animal Feed , Animals , Antioxidants/pharmacology , Chickens , Diet , Docosahexaenoic Acids/biosynthesis , Eicosapentaenoic Acid/biosynthesis , Fatty Acids, Omega-3/pharmacology , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Muscles/drug effects , Muscles/metabolism
14.
J Nutr Biochem ; 60: 24-34, 2018 10.
Article in English | MEDLINE | ID: mdl-30041049

ABSTRACT

Docosahexaenoic acid (DHA, 22:6n-3) must be consumed in the diet or synthesized from n-3 polyunsaturated fatty acid (PUFA) precursors. However, the effect of dietary DHA on the metabolic pathway is not fully understood. Presently, 21-day-old Long Evans rats were weaned onto one of four dietary protocols: 1) 8 weeks of 2% ALA (ALA), 2) 6 weeks ALA followed by 2 weeks of 2% ALA + 2% DHA (DHA), 3) 4 weeks ALA followed by 4 weeks DHA and 4) 8 weeks of DHA. After the feeding period, 2H5-ALA and 13C20-eicosapentaenoic acid (EPA, 20:5n-3) were co-infused and blood was collected over 3 h for determination of whole-body synthesis-secretion kinetics. The synthesis-secretion coefficient (ml/min, means ± SEM) for EPA (0.238±0.104 vs. 0.021±0.001) and DPAn-3 (0.194±0.060 vs. 0.020±0.008) synthesis from plasma unesterified ALA, and DPAn-3 from plasma unesterified EPA (2.04±0.89 vs. 0.163±0.025) were higher (P<.05) after 2 weeks compared to 8 weeks of DHA feeding. The daily synthesis-secretion rate (nmol/d) of DHA from EPA was highest after 4 weeks of DHA feeding (843±409) compared to no DHA (70±22). Liver gene expression of ELOVL2 and FADS2 were lower (P<.05) after 4 vs. 8 weeks of DHA. Higher synthesis-secretion kinetics after 2 and 4 weeks of DHA feeding suggests an increased throughput of the PUFA metabolic pathway. Furthermore, these findings may lead to novel dietary strategies to maximize DHA levels while minimizing dietary requirements.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Fatty Acids, Omega-3/blood , Alanine/administration & dosage , Alanine/blood , Animals , Carbon Isotopes , Deuterium , Dietary Supplements , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/biosynthesis , Kinetics , Liver/enzymology , Male , RNA, Messenger/analysis , Rats , Rats, Long-Evans , Time Factors
15.
Methods Enzymol ; 605: 3-32, 2018.
Article in English | MEDLINE | ID: mdl-29909829

ABSTRACT

The long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs) EPA (20:5n-3) and DHA (22:6n-3) are widely recognized as beneficial to human health and development. Select lineages of cosmopolitan marine prokaryotic and eukaryotic microorganisms synthesize these compounds via a unique fatty acid synthase/polyketide synthase mechanism that is distinct from the canonical desaturase/elongase-mediated pathway employed by the majority of eukaryotic single-cell microorganisms and metazoans. This "Pfa synthase" mechanism is highly efficient and has been co-opted for the large-scale industrial production of n-3 LC-PUFAs for commercial applications. Both prokaryotic and eukaryotic microbes containing this pathway can be readily isolated from marine environments and maintained in culture under laboratory conditions. Some strains are genetically tractable and have established methods for genetic modification. The discussion and methods presented here should be useful for the exploitation and optimization of n-3 LC-PUFA products from marine microorganisms.


Subject(s)
Aquatic Organisms/metabolism , Fatty Acids, Omega-3/biosynthesis , Industrial Microbiology/methods , Metabolic Engineering/methods , Animal Feed , Aquatic Organisms/genetics , Biosynthetic Pathways/genetics , Dietary Supplements , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Seawater/microbiology
16.
Biochem Pharmacol ; 154: 75-88, 2018 08.
Article in English | MEDLINE | ID: mdl-29679557

ABSTRACT

Acetaminophen (APAP) overdose-induced hepatotoxicity is the most commonly cause of drug-induced liver failure characterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFA) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1)/mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , Caenorhabditis elegans Proteins/biosynthesis , Chemical and Drug Induced Liver Injury/metabolism , Fatty Acid Desaturases/biosynthesis , Fatty Acids, Omega-3/biosynthesis , Animals , Caenorhabditis elegans Proteins/genetics , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/genetics , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic
17.
Am J Pathol ; 188(4): 950-966, 2018 04.
Article in English | MEDLINE | ID: mdl-29571326

ABSTRACT

Resolvin conjugates in tissue regeneration (RCTRs) are new chemical signals that accelerate resolution of inflammation, infection, and tissue regeneration. Herein, using liquid chromatography-tandem mass spectrometry-based metabololipidomics, we identified RCTRs in human spleen, lymph node, bone marrow, and brain. In human spleen incubated with Staphylococcus aureus, endogenous RCTRs were increased along with conversion of deuterium-labeled docosahexaenoic acid, conferring pathway activation. Physical and biological properties of endogenous RCTRs were matched with those prepared by total organic synthesis. The complete stereochemical assignment of bioactive RCTR1 is 8R-glutathionyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, RCTR2 is 8R-cysteinylglycinyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, and RCTR3 is 8R-cysteinyl-7S,17S-dihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid. These stereochemically defined RCTRs stimulated human macrophage phagocytosis, efferocytosis, and planaria tissue generation. Proteome profiling demonstrated that RCTRs regulated both proinflammatory and anti-inflammatory cytokines with human macrophages. In microfluidic chambers, the three RCTRs limited human polymorphonuclear cell migration. In hind-limb ischemia-reperfusion-initiated organ injury, both RCTR2 and RCTR3 reduced polymorphonuclear cell infiltration into lungs. In infectious peritonitis, RCTR1 shortened the resolution intervals. Each RCTR (1 nmol/L) accelerated planaria tissue regeneration by approximately 0.5 days, with direct comparison to both maresin and protectin CTRs. Together, these results identify a new bioactive RCTR (ie, RCTR3) in human tissues and establish the complete stereochemistry and rank-order potencies of three RCTRs in vivo. Moreover, RCTR1, RCTR2, and RCTR3 each exert potent anti-inflammatory and proresolving actions with human leukocytes.


Subject(s)
Fatty Acids, Omega-3/chemistry , Phagocytes/metabolism , Regeneration/physiology , Animals , Chemotaxis , Escherichia coli Infections/pathology , Fatty Acids, Omega-3/biosynthesis , Humans , Inflammation/pathology , Lung Injury/microbiology , Lung Injury/pathology , Macrophages/cytology , Male , Metabolome , Mice , Phagocytes/cytology , Phagocytosis , Planarians/physiology , Proteome/metabolism , Reperfusion Injury/microbiology , Reperfusion Injury/pathology , Spleen/metabolism , Stereoisomerism
18.
Sci Rep ; 7(1): 11658, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912452

ABSTRACT

The present study was intended to explore the effects of endogenously produced ω-3 polyunsaturated fatty acids (PUFAs) on ultraviolet B (UVB)-induced skin inflammation and photocarcinogenesis using hairless fat-1 transgenic mice harboring ω-3 desaturase gene capable of converting ω-6 to ω-3 PUFAs. Upon exposure to UVB irradiation, fat-1 transgenic mice exhibited a significantly reduced epidermal hyperplasia, oxidative skin damage, and photocarcinogenesis as compared to wild type mice. The transcription factor, Nrf2 is a master regulator of anti-inflammatory and antioxidant gene expression. While the protein expression of Nrf2 was markedly enhanced, the level of its mRNA transcript was barely changed in the fat-1 transgenic mouse skin. Topical application of docosahexaenoic acid (DHA), a representative ω-3 PUFA, in wild type hairless mice induced expression of the Nrf2 target protein, heme oxygenase-1 in the skin and protected against UVB-induced oxidative stress, inflammation and papillomagenesis. Furthermore, transient overexpression of fat-1 gene in mouse epidermal JB6 cells resulted in the enhanced accumulation of Nrf2 protein. Likewise, DHA treated to JB6 cells inhibited Nrf2 ubiquitination and stabilized it. Taken together, our results indicate that functional fat-1 and topically applied DHA potentiate cellular defense against UVB-induced skin inflammation and photocarcinogenesis through elevated activation of Nrf2 and upregulation of cytoprotective gene expression.


Subject(s)
Docosahexaenoic Acids/pharmacology , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/biosynthesis , Gene Expression , Radiation-Protective Agents/pharmacology , Transgenes , Ultraviolet Rays/adverse effects , Animals , Biomarkers , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Fatty Acids, Omega-3/genetics , Fibroblasts/metabolism , Mice , Mice, Transgenic , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Oxidative Stress/radiation effects , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
19.
Biotechnol Lett ; 39(11): 1599-1609, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28721583

ABSTRACT

As the global population grows more of our fish and seafood are being farmed. Fish are the main dietary source of the omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, but these cannot be produced in sufficient quantities as are now required for human health. Farmed fish have traditionally been fed a diet consisting of fishmeal and fish oil, rich in n-3 LC-PUFA. However, the increase in global aquaculture production has resulted in these finite and limited marine ingredients being replaced with sustainable alternatives of terrestrial origin that are devoid of n-3 LC-PUFA. Consequently, the nutritional value of the final product has been partially compromised with EPA and DHA levels both falling. Recent calls from the salmon industry for new sources of n-3 LC-PUFA have received significant commercial interest. Thus, this review explores the technologies being applied to produce de novo n-3 LC-PUFA sources, namely microalgae and genetically engineered oilseed crops, and how they may be used in aquafeeds to ensure that farmed fish remain a healthy component of the human diet.


Subject(s)
Fatty Acids, Omega-3/genetics , Genetic Engineering/methods , Microalgae/growth & development , Plants, Genetically Modified/growth & development , Animals , Aquaculture , Fatty Acids, Omega-3/biosynthesis , Fish Oils/biosynthesis , Fish Oils/genetics , Humans , Microalgae/genetics , Microalgae/metabolism , Organisms, Genetically Modified/growth & development , Organisms, Genetically Modified/metabolism , Plant Oils , Plants, Genetically Modified/metabolism
20.
Biochem Biophys Res Commun ; 487(4): 847-855, 2017 06 10.
Article in English | MEDLINE | ID: mdl-28456627

ABSTRACT

Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis.


Subject(s)
Cadherins/metabolism , Colitis/chemically induced , Colitis/prevention & control , Docosahexaenoic Acids/pharmacology , Fatty Acids, Omega-3/biosynthesis , Animals , Docosahexaenoic Acids/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Transgenic , Trinitrobenzenesulfonic Acid
SELECTION OF CITATIONS
SEARCH DETAIL