Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Redox Biol ; 63: 102741, 2023 07.
Article in English | MEDLINE | ID: mdl-37230004

ABSTRACT

Olanzapine (OLA), a widely used second-generation antipsychotic (SGA), causes weight gain and metabolic alterations when administered orally to patients. Recently, we demonstrated that, contrarily to the oral treatment which induces weight gain, OLA administered via intraperitoneal (i.p.) in male mice resulted in body weight loss. This protection was due to an increase in energy expenditure (EE) through a mechanism involving the modulation of hypothalamic AMPK activation by higher OLA levels reaching this brain region compared to those of the oral treatment. Since clinical studies have shown hepatic steatosis upon chronic treatment with OLA, herein we further investigated the role of the hypothalamus-liver interactome upon OLA administration in wild-type (WT) and protein tyrosine phosphatase 1B knockout (PTP1B-KO) mice, a preclinical model protected against metabolic syndrome. WT and PTP1B-KO male mice were fed an OLA-supplemented diet or treated via i.p. Mechanistically, we found that OLA i.p. treatment induces mild oxidative stress and inflammation in the hypothalamus in a JNK1-independent and dependent manner, respectively, without features of cell dead. Hypothalamic JNK activation up-regulated lipogenic gene expression in the liver though the vagus nerve. This effect concurred with an unexpected metabolic rewiring in the liver in which ATP depletion resulted in increased AMPK/ACC phosphorylation. This starvation-like signature prevented steatosis. By contrast, intrahepatic lipid accumulation was observed in WT mice treated orally with OLA; this effect being absent in PTP1B-KO mice. We also demonstrated an additional benefit of PTP1B inhibition against hypothalamic JNK activation, oxidative stress and inflammation induced by chronic OLA i.p. treatment, thereby preventing hepatic lipogenesis. The protection conferred by PTP1B deficiency against hepatic steatosis in the oral OLA treatment or against oxidative stress and neuroinflammation in the i.p. treatment strongly suggests that targeting PTP1B might be also a therapeutic strategy to prevent metabolic comorbidities in patients under OLA treatment in a personalized manner.


Subject(s)
Fatty Liver , Signal Transduction , Male , Animals , Mice , Olanzapine/metabolism , Signal Transduction/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , AMP-Activated Protein Kinases/metabolism , Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/genetics , Fatty Liver/prevention & control , Mice, Knockout , Inflammation/metabolism , Fatty Acid Synthases/metabolism , Weight Gain , Hypothalamus/metabolism , Mice, Inbred C57BL
2.
Poult Sci ; 101(9): 102034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35926351

ABSTRACT

Fatty liver hemorrhagic syndrome (FLHS) is a chronic hepatic disease which occurs when there is a disorder in lipid metabolism. FLHS is often observed in caged laying hens and characterized by a decrease in egg production and dramatic increase of mortality. Salidroside (SDS) is an herbal drug which has shown numerous pharmacological activities, such as protecting mitochondrial function, attenuating cell apoptosis and inflammation, and promoting antioxidant defense system. We aimed to determine the therapeutic effects of SDS on FLHS in laying hens and investigate the underlying mechanisms through which SDS operates these functions. We constructed oleic acid (OA)-induced fatty liver model in vitro and high-fat diet-induced FLHS of laying hens in vivo. The results indicated that SDS inhibited OA-induced lipid accumulation in chicken primary hepatocytes, increased hepatocyte activity, elevated the mRNA expression of proliferation related genes PCNA, CDK2, and cyclinD1 and increased the protein levels of PCNA and CDK2 (P < 0.05), as well as decreased the cleavage levels of Caspase-9, Caspase-8, and Caspase-3 and apoptosis in hepatocytes (P < 0.05). Moreover, SDS promoted the phosphorylation levels of PDK1, AKT, and Gsk3-ß, while inhibited the PI3K inhibitor (P < 0.05). Additionally, we found that high-fat diet-induced FLHS hens had heavier body weight, liver weight, and abdominal fat weight, and severe steatosis in histology, compared with the control group (Con). However, hens fed with SDS maintained lighter body weight, liver weight, and abdominal fat weight, as well as normal liver without hepatic steatosis. In addition, high-fat diet-induced FLHS hens had high levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) compared to the Con group, however, in the Model+SDS group, the levels of TC, TG, ALT, and AST decreased significantly, whereas the level of superoxide dismutase (SOD) increased significantly (P < 0.05). We also found that SDS significantly decreased the mRNA expression abundance of PPARγ, SCD, and FAS in the liver, as well as increased levels of PPARα and MTTP, and decreased the mRNA expression of TNF-α, IL-1ß, IL-6, and IL-8 in the Model+SDS group (P < 0.05). In summary, this study showed that 0.3 mg/mL SDS attenuated ROS generation, inhibited lipid accumulation and hepatocyte apoptosis, and promoted hepatocyte proliferation by targeting the PI3K/AKT/Gsk3-ß pathway in OA-induced fatty liver model in vitro, and 20 mg/kg SDS alleviated high-fat-diet-induced hepatic steatosis, oxidative stress, and inflammatory response in laying hens in vivo.


Subject(s)
Fatty Liver , Lipid Metabolism Disorders , Abnormalities, Multiple , Animals , Body Weight , Chickens/genetics , Craniofacial Abnormalities , Diet, High-Fat , Dietary Supplements , Fatty Liver/drug therapy , Fatty Liver/genetics , Fatty Liver/veterinary , Female , Glucosides , Glycogen Synthase Kinase 3/metabolism , Growth Disorders , Heart Septal Defects, Ventricular , Hepatocytes/metabolism , Lipid Metabolism , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/veterinary , Liver/metabolism , Phenols , Phosphatidylinositol 3-Kinases/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , Triglycerides/metabolism
3.
J Med Food ; 25(6): 597-606, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35708630

ABSTRACT

Overconsumption of a high caloric diet is associated with metabolic disorders and a heightened risk of diabetes mellitus (DM), hepatic steatosis, and cardiovascular complications. The use of functional food has received much attention as a strategy in the prevention and treatment of metabolic disorders. This present study investigated whether Nil-Surin rice bran hydrolysates (NRH) could prevent or ameliorate the progression of metabolic disorders in rats in which insulin resistance (IR) was induced by a high fat-high fructose diet (HFFD). After 10 weeks of the HFFD, the rats showed elevated fasting blood glucose (FBG), impaired glucose tolerance, dysregulation of adipokine secretion, distorted lipid metabolism such as dyslipidemia, and increased intrahepatic fat accumulation. The IR was significantly attenuated by a daily dose of NRH (100 or 300 mg/kg/day). Doses of NRH rectified adipokine dysregulation by increasing serum adiponectin and improving hyperleptinemia. Interestingly, NRH decreased intrahepatic fat accumulation and improved dyslipidemia as shown by decreased levels of hepatic triglyceride (TG) and serum TG, total cholesterol and low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol. In addition, a modulation of expression of lipid metabolism genes was observed: NRH prevented upregulation of the lipogenesis genes Srebf1 and Fasn. In addition, NRH enhanced the expression of fatty-acid oxidation genes, as evidenced by an increase of Ppara and Cpt1a when compared with the HFFD control group. The activities of NRH in the modulation of lipid metabolism and rectifying the dysregulation of adipokines may result in a decreased risk of DM and hepatic steatosis. Therefore, NRH may be beneficial in ameliorating metabolic disorders in the HFFD model.


Subject(s)
Dyslipidemias , Fatty Liver , Insulin Resistance , Oryza , Adipokines , Animals , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Dyslipidemias/metabolism , Fatty Liver/drug therapy , Fatty Liver/genetics , Fructose/metabolism , Lipid Metabolism , Liver/metabolism , Oryza/metabolism , Rats , Thailand , Triglycerides
4.
Sci Rep ; 12(1): 10105, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710868

ABSTRACT

Melanocortin 4 receptor gene-knockout (MC4R-KO) mice are known to develop obesity with a high-fat diet. Meanwhile, daisaikoto, one of Kampo medicines, is a drug that is expected to have therapeutic effects on obesity. Here, we report the efficacy of daisaikoto in MC4R-KO mice. Eight-week-old MC4R-KO male mice (n = 12) were divided into three groups as follows: the SD group, which is fed with a standard diet; the HFD group, fed a high-fat diet; and the DSK group, fed with a high-fat diet containing 10% of daisaikoto. After the four-week observation period, mice in each group were sacrificed and samples were collected. The body weights at 12 weeks were significantly higher in the HFD group than in the other groups, indicating that daisaikoto significantly reduced body weight gain and fat deposition of the liver. The metabolome analysis indicated that degradation of triglycerides and fatty acid oxidation in the liver were enhanced by daisaikoto administration. In MC4R-KO mice, the cytoplasm and uncoupling protein 1 expression of brown adipose tissue was decreased; however, it was reversed in the DSK group. In conclusion, daisaikoto has potentially improved fatty liver and obesity, making it a useful therapeutic agent for obesity and fatty liver.


Subject(s)
Adipose Tissue, Brown , Fatty Liver , Adipose Tissue/metabolism , Animals , Diet, High-Fat/adverse effects , Drugs, Chinese Herbal , Fatty Liver/drug therapy , Fatty Liver/genetics , Fatty Liver/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Receptor, Melanocortin, Type 4
5.
Hepatology ; 76(4): 951-966, 2022 10.
Article in English | MEDLINE | ID: mdl-35076948

ABSTRACT

BACKGROUND AND AIMS: Aberrant activation of fatty acid synthase (FASN) is a major metabolic event during the development of HCC. We evaluated the therapeutic efficacy of TVB3664, a FASN inhibitor, either alone or in combination, for HCC treatment. APPROACH AND RESULTS: The therapeutic efficacy and the molecular pathways targeted by TVB3664, either alone or with tyrosine kinase inhibitors or the checkpoint inhibitor anti-programmed death ligand 1 antibody, were assessed in human HCC cell lines and multiple oncogene-driven HCC mouse models. RNA sequencing was performed to elucidate the effects of TVB3664 on global gene expression and tumor metabolism. TVB3664 significantly ameliorated the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis. TVB3664 monotherapy showed moderate efficacy in NASH-related murine HCCs, induced by loss of phosphatase and tensin homolog and MET proto-oncogene, receptor tyrosine kinase (c-MET) overexpression. TVB3664, in combination with cabozantinib, triggered tumor regression in this murine model but did not improve the responsiveness to immunotherapy. Global gene expression revealed that TVB3664 predominantly modulated metabolic processes, whereas TVB3664 synergized with cabozantinib to down-regulate multiple cancer-related pathways, especially the AKT/mammalian target of rapamycin pathway and cell proliferation genes. TVB3664 also improved the therapeutic efficacy of sorafenib and cabozantinib in the FASN-dependent c-MYC-driven HCC model. However, TVB3664 had no efficacy nor synergistic effects in FASN-independent murine HCC models. CONCLUSIONS: This preclinical study suggests the limited efficacy of targeting FASN as monotherapy for HCC treatment. However, FASN inhibitors could be combined with other drugs for improved effectiveness. These combination therapies could be developed based on the driver oncogenes, supporting precision medicine approaches for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Fatty Acid Synthase, Type I , Liver Neoplasms , Anilides , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthases/antagonists & inhibitors , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Humans , Liver/drug effects , Liver/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mammals/metabolism , Mice , Phosphoric Monoester Hydrolases/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/metabolism , Pyridines , Sorafenib/pharmacology , TOR Serine-Threonine Kinases , Tensins
6.
J Sci Food Agric ; 101(12): 5038-5048, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33570774

ABSTRACT

BACKGROUND: Polyphenols have the potential to reduce the risk of many metabolic disorders. Lily bulbs are rich in polyphenols; however, their effects on lipid metabolism remain unclear. This study aimed to explore the effects of lily bulbs' polyphenols (LBPs) on oxidative stress and lipid metabolism. RESULTS: A total of 14 polyphenolic compounds in LBPs were identified by high-performance liquid chromatography equipped with diode-array detection mass spectrometry. Total phenolic compound in LBPs was 53.76 ± 1.12 g kg-1 dry weight. In cellular experiments, LBPs attenuated the disruption of mitochondrial membrane potential, impeded reactive oxygen species production, alleviated oxidative stress, and reduced lipid accumulation in oleic acid induced HepG2 cells. In in vivo studies, LBPs significantly inhibited body weight gain, reduced lipid levels in serum and liver, and improved oxidative damage in a dose-dependent manner in mice fed a high-fat diet. Moreover, LBPs ameliorated hepatic steatosis and suppressed the expression of hepatic-lipogenesis-related genes (SREBP-1c, FAS, ACC1, and SCD-1) and promoted lipolysis genes (SRB1 and HL) and lipid oxidation genes (PPARα and CPT-1) in mice fed a high-fat diet. CONCLUSION: It was concluded that LBPs are a potential complementary therapeutic alternative in the development of functional foods to curb obesity and obesity-related diseases, such as metabolic syndrome. © 2021 Society of Chemical Industry.


Subject(s)
Fatty Liver/drug therapy , Lilium/chemistry , Oxidative Stress/drug effects , Plant Extracts/administration & dosage , Plant Roots/chemistry , Polyphenols/administration & dosage , Animals , Diet, High-Fat , Fatty Liver/genetics , Fatty Liver/metabolism , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred ICR , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Reactive Oxygen Species/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
7.
Int J Mol Sci ; 21(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751062

ABSTRACT

Metabolic associated fatty liver disease (MAFLD) due to excess weight and obesity threatens public health worldwide. Gut microbiota dysbiosis contributes to obesity and related diseases. The cholesterol-lowering, anti-inflammatory, and antioxidant effects of wild rice have been reported in several studies; however, whether it has beneficial effects on the gut microbiota is unknown. Here, we show that wild rice reduces body weight, liver steatosis, and low-grade inflammation, and improves insulin resistance in high-fat diet (HFD)-fed mice. High-throughput 16S rRNA pyrosequencing demonstrated that wild rice treatment significantly changed the gut microbiota composition in mice fed an HFD. The richness and diversity of the gut microbiota were notably decreased upon wild rice consumption. Compared with a normal chow diet (NCD), HFD feeding altered 117 operational taxonomic units (OTUs), and wild rice supplementation reversed 90 OTUs to the configuration in the NCD group. Overall, our results suggest that wild rice may be used as a probiotic agent to reverse HFD-induced MAFLD through the modulation of the gut microbiota.


Subject(s)
Dysbiosis/prevention & control , Fatty Liver/prevention & control , Gastrointestinal Microbiome/drug effects , Microbial Consortia/drug effects , Oryza/chemistry , Probiotics/administration & dosage , Animals , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diet, High-Fat/adverse effects , Disease Models, Animal , Dysbiosis/etiology , Dysbiosis/genetics , Dysbiosis/metabolism , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/metabolism , Feces/microbiology , Gastrointestinal Microbiome/physiology , Gene Expression , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Inflammation , Insulin Resistance , Male , Malondialdehyde/blood , Mice , Mice, Inbred C57BL , Microbial Consortia/physiology , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Triglycerides/blood , Weight Gain/drug effects
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165842, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32446740

ABSTRACT

Wilson's disease is an autosomal recessive disease characterized by excess copper accumulated in the liver and brain. It is caused by mutations in the copper transporter gene ATP7B. However, based on the poor understanding of the transcriptional program involved in the pathogenesis of Wilson's disease and the lack of more safe and efficient therapies, the identification of novel pathways and the establishment of complementary model systems of Wilson's disease are urgently needed. Herein, we generated two zebrafish atp7b-mutant lines using the CRISPR/Cas9 editing system, and the mutants developed hepatic and behavioral deficits similar to those observed in humans with Wilson's disease. Interestingly, we found that atp7b-deficient zebrafish embryos developed liver steatosis under low-dose Cu exposure, and behavioral deficits appeared under high-dose Cu exposure. Analyses of publicly available transcriptomic data from ATP7B-knockout HepG2 cells demonstrated that the HIF-1 signaling pathway is downregulated in ATP7B-knockout HepG2 cells compared with wildtype cells following Cu exposure. The HIF-1 signaling pathway was also downregulated in our atp7b-deficient zebrafish mutants following Cu exposure. Furthermore, we demonstrate that activation of the HIF-1 signaling pathway with the chemical compound FG-4592 or DMOG ameliorates liver steatosis and reduces accumulated Cu levels in zebrafish atp7b deficiency models. These findings introduce a novel prospect that modulation of the HIF-1 signaling pathway should be explored as a novel strategy to reduce copper toxicity in Wilson's disease patients.


Subject(s)
Copper-Transporting ATPases/genetics , Fatty Liver/metabolism , Hepatolenticular Degeneration/genetics , Hepatolenticular Degeneration/metabolism , Hypoxia-Inducible Factor 1/metabolism , Liver/metabolism , Signal Transduction/physiology , Zebrafish Proteins/genetics , Animals , CRISPR-Cas Systems , Copper/metabolism , Copper/toxicity , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/pathology , Female , Gene Knockout Techniques , Hep G2 Cells , Hepatocytes/metabolism , Humans , Liver/pathology , Male , Mutation , Zebrafish
9.
Bioorg Chem ; 100: 103914, 2020 07.
Article in English | MEDLINE | ID: mdl-32417523

ABSTRACT

As revealed in previous reports, calycosin is a functional flavonoid characterized with identified pharmacological activities. Most of evidences are used to demonstrate the anti-cancer benefits of calycosin, however, the existing study of anti-fatty liver medicated by calycosin is limitedly reported. Recently, an emerging avenue based on network pharmacology may contribute to excavate the biological targets and molecular mechanisms of calycosin for anti-fatty liver. In confirmatory experiments, the human and animal studies were subjected to verify some of bioinformatic results. Accordingly, bioinformatic data based on network pharmacology suggested that discoverable biotargets of calycosin for anti-fatty liver were aldehyde dehydrogenase (ALDH2), Niemann pick C1 (NPC1), high mobility group protein 1 (HMGB1), bilirubin UDP glucuronosyltransferase 1 (UGT1A1), mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), hydroxytryptamine receptor 2 (HTR2), migration inhibitory factor (MIF), cytochrome P450, family 19A1 (CYP19A1). Furthermore, all significant biological characteristics and mechanisms of to treat fatty liver were revealed in several. In human findings, the blood tests showed changed glucose and lipid contents, elevated insulin resistance and inflammatory stress. And fatty liver sections from patients resulted in negative expressions of ALDH2, NPC1, and positive HMGB1 expression. In a study in vivo, calycosin-treated high fat diet (HFD)-fed mice exhibited reduced liver weights, decreased fasting serum glucose and insulin, liver functional transaminases, blood lipids, metabolic enzymes, and inflammatory cytokines. And the data in gene tests displayed up-regulations of ALDH2, NPC1 mRNAs, and down-regulation of HMGB1 mRNA in calycosin-treated liver samples. Together, the current bioinformatic data demonstrate biological targets, functions and mechanisms of calycosin for anti-fatty liver. Interestingly, these bioinformatic findings can be partially verified with clinical and animal samples.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Fatty Liver/drug therapy , Isoflavones/therapeutic use , Liver/drug effects , Adult , Animals , Computational Biology , Drugs, Chinese Herbal/pharmacology , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Gene Expression Regulation/drug effects , Humans , Isoflavones/pharmacology , Liver/metabolism , Liver/pathology , Male , Mice, Inbred ICR , Protein Interaction Maps/drug effects , Signal Transduction/drug effects
10.
Int J Mol Sci ; 20(18)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491949

ABSTRACT

Obesity characterized by adiposity and ectopic fat accumulation is associated with the development of non-alcoholic fatty liver disease (NAFLD). Treatments that stimulate lipid utilization may prevent the development of obesity and comorbidities. This study evaluated the potential anti-obesogenic hepatoprotective effects of combined treatment with L-carnitine and nicotinamide riboside, i.e., components that can enhance fatty acid transfer across the inner mitochondrial membrane and increase nicotinamide adenine nucleotide (NAD+) levels, which are necessary for ß-oxidation and the TCA cycle, respectively. Ldlr -/-.Leiden mice were treated with high-fat diet (HFD) supplemented with L-carnitine (LC; 0.4% w/w), nicotinamide riboside (NR; 0.3% w/w) or both (COMBI) for 21 weeks. L-carnitine plasma levels were reduced by HFD and normalized by LC. NR supplementation raised its plasma metabolite levels demonstrating effective delivery. Although food intake and ambulatory activity were comparable in all groups, COMBI treatment significantly attenuated HFD-induced body weight gain, fat mass gain (-17%) and hepatic steatosis (-22%). Also, NR and COMBI reduced hepatic 4-hydroxynonenal adducts. Upstream-regulator gene analysis demonstrated that COMBI reversed detrimental effects of HFD on liver metabolism pathways and associated regulators, e.g., ACOX, SCAP, SREBF, PPARGC1B, and INSR. Combination treatment with LC and NR exerts protective effects on metabolic pathways and constitutes a new approach to attenuate HFD-induced obesity and NAFLD.


Subject(s)
Carnitine/pharmacology , Fatty Liver/metabolism , Niacinamide/analogs & derivatives , Obesity/metabolism , Animals , Biomarkers , Disease Models, Animal , Energy Metabolism/drug effects , Fatty Liver/drug therapy , Fatty Liver/genetics , Gene Expression Regulation , Lipid Metabolism/drug effects , Male , Mice , Mice, Knockout , Niacinamide/pharmacology , Obesity/drug therapy , Obesity/genetics , Oxidative Stress , Pyridinium Compounds , Signal Transduction
11.
Biofactors ; 45(6): 930-943, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31454114

ABSTRACT

Attenuation of high-fat diet (HFD)-induced liver steatosis is accomplished by different nutritional interventions. Considering that the n-3 PUFA docosahexaenoic acid (DHA) modulates lipid metabolism and the antioxidant hydroxytyrosol (HT) diminishes oxidative stress underlying fatty liver, it is hypothesized that HFD-induced steatosis is suppressed by DHA and HT co-administration. Male C57BL/6J mice were fed a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks, without and with supplementation of DHA (50 mg/kg/day), HT (5 mg/kg/day) or both. The combined DHA + HT protocol fully prevented liver steatosis and the concomitant pro-inflammatory state induced by HFD, with suppression of lipogenic and oxidative stress signaling, recovery of fatty acid oxidation capacity and enhancement in resolvin availability affording higher inflammation resolution capability. Abrogation of HFD-induced hepatic steatosis by DHA and HT co-administration represents a crucial therapeutic strategy eluding disease progression into stages lacking efficacious handling at present time.


Subject(s)
Docosahexaenoic Acids/pharmacology , Fatty Liver/diet therapy , Inflammation/diet therapy , Phenylethyl Alcohol/analogs & derivatives , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Disease Models, Animal , Drug Synergism , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/pathology , Humans , Inflammation/genetics , Inflammation/pathology , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Mice , Oxidative Stress/drug effects , PPAR alpha/genetics , Phenylethyl Alcohol/pharmacology
12.
Lifestyle Genom ; 12(1-6): 10-17, 2019.
Article in English | MEDLINE | ID: mdl-31454802

ABSTRACT

BACKGROUND/AIMS: The PNPLA3 loss-of-function variant p.I148M is a strong genetic determinant of nonalcoholic fatty liver disease. The PNPLA3 protein functions as an intracellular lipase in the liver, with a greater activity on unsaturated fatty acids. This study aimed to determine whether short-term supplementation with omega-3 fatty acids impacts hepatic steatosis differently in PNPLA3 p.148I wild-type individuals as compared to homozygous carriers of the PNPLA3 p.148M variant. METHODS: Twenty subjects with hepatic steatosis (50% women, age 18-77 years) were included. Ten subjects homozygous for the PNPLA3 148M variant were matched to 10 wild-type individuals. The subjects received 4 g omega-3 fatty acids (1,840 mg eicosapentaenoic acid and 1,520 mg docosahexaenoic acid) a day for 4 weeks. Transient elastography with a controlled attenuation parameter (CAP) was used to quantify liver fat before and after the intervention. Body composition, fibrosis, liver function tests, serum free fatty acids (FFA) and glucose markers were compared. RESULTS: Patients homozygous for the PNPLA3 p.148M variant (risk group) demonstrated no significant changes in CAP compared to baseline (284 ± 55 vs. 287 ± 65 dB/m) as did the control group (256 ± 56 vs. 262 ± 55 dB/m). While serum liver enzyme activities remained unchanged in both groups, the risk group displayed significantly (p = 0.02) lower baseline FFA concentrations (334.5 [range 281.0-431.0] vs. 564.5 [range 509.0-682.0] µmol/L), which markedly increased by 9.1% after the intervention. In contrast, FFA concentrations decreased significantly (p = 0.01) by 28.3% in the wild-type group. CONCLUSIONS: Short-term omega-3 fatty acid supplementation did not significantly alter hepatic steatosis. The nutrigenomic and metabolic effects of omega-3 fatty acids should be investigated further in carriers of the PNPLA3 148M risk variant.


Subject(s)
Fatty Acids, Omega-3/administration & dosage , Fatty Liver/diet therapy , Fatty Liver/genetics , Lipase/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Amino Acid Substitution/genetics , Dietary Supplements , Elasticity Imaging Techniques , Fatty Liver/diagnosis , Fatty Liver/pathology , Female , Genetic Predisposition to Disease , Heterozygote , Homozygote , Humans , Isoleucine/genetics , Loss of Function Mutation/genetics , Male , Methionine/genetics , Middle Aged , Non-alcoholic Fatty Liver Disease/diet therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Proteostasis/genetics , Time Factors , Young Adult
13.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1869-1875, 2019 May.
Article in Chinese | MEDLINE | ID: mdl-31342715

ABSTRACT

To study the effects of ellagic acid(EA)on inflammation and oxidative stress in mice with fatty liver disease induced by AKT gene transfection,the 20 female FVB mice were randomly divided into normal control group,model group and ellagic acid administration group(150,300 mg·kg~(-1)·d~(-1))(n=5).EA experimental groups and model group were using a high pressure into the tail vein transfection plasmid AKT.The next day,EA was started to administered continuously for 5 weeks after the AKT gene transfection,while the model group and the normal control group were given the same amount of saline.After the administration,the liver tissue and serum of mice were taken.HE and oil red O staining were using to observe the histopathological changes in liver;liver function to detect the serum and liver tissue as well as MDA and SOD levels;real-time quantitative PCR(RT-qPCR)was used to measure the mR-NA expression of NF-κB and TNF-α;Western blot and immunohistochemistry were used to measure the expression of NF-κB,TNF-αand COX-2 in liver tissue.RESULTS:: show that after AKT gene transfection,the model group had significant increase in the serum levels of AST,ALT,elevated the levels of MDA and decreased the levels of SOD in serum and liver tissue,aggravated histopathology degeneration and Liver inflammation,and significantly higher expression of NF-κB,TNF-α,IL-6,COX-2 and other inflammatory-related factors in liver tissue.EA administration group significant reductions in the serum levels of AST,ALT,and improved in hepatocyte fatty degeneration and liver inflammation,lower the levels of MDA and increased the levels of SOD in serum and liver tissue,and significant reductions in the expression of NF-κB,TNF-α,IL-6 and COX-2 in liver tissue.These results suggest that EA has obvious anti-inflammatory effect and inhibits oxidative stress and EA has a significant therapeutic effecton AKT gene inducing fatty liver,and the mechanism possibly by inhibiting inflammatory factors of NF-κB,TNF-α,IL-6,COX-2 and anti-oxidative stress-related.


Subject(s)
Ellagic Acid/pharmacology , Fatty Liver/drug therapy , Inflammation/drug therapy , Oxidative Stress , Proto-Oncogene Proteins c-akt/genetics , Animals , Fatty Liver/genetics , Female , Mice , Random Allocation , Transfection
14.
J Food Sci ; 84(7): 1900-1908, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31183867

ABSTRACT

The quality of canola oil is affected by different extraction methods. The effect of cold-pressed canola oil (CPCO) diet and traditional refined bleached deodorized canola oil (RBDCO) diet on lipid accumulation and hepatic steatosis in mice were investigated. The body weight, peroxisome proliferator-activated receptor-α concentration, serum lipid profile, insulin sensitivity, and oxidative stress were increased in mice fed with CPCO diet, which had higher unsaturated fatty acid, tocopherols, phytosterols, and phospholipids but lower saturated fatty acid than RBDCO, after 12 weeks,. Moreover, CPCO significantly increased tocopherols and phytosterols content in liver and reduced liver cholesterol contents and lipid vacuoles accumulation than RBDCO. Also, serum proinflammatory cytokines, 3-hydroxy-3-methylglutary coenzyme A reductase expression level, lipogenic enzymes, and transcriptional factors such as sterol regulatory element-binding proteins 1c, acetyl-CoA carboxylase, and fatty acid synthase in the liver were also markedly downregulated from CPCO diet mice. Overall, CPCO can reduce lipid accumulation and hepatic steatosis by regulating oxidative stress and lipid metabolism in Kun Ming mice compared with RBDCO. PRACTICAL APPLICATION: The results suggested that more bioactive components were contained in cold-pressed canola oil (CPCO) rather than refined bleached deodorized canola oil (RBDCO). CPCO could lower the risk of obesity and hyperlipidemia, reduce lipid accumulation, and prevent hepatic steatosis. It could be considered as a kind of better edible oil than RBDCO.


Subject(s)
Fatty Liver/diet therapy , Lipid Metabolism , Oxidative Stress , Rapeseed Oil/chemistry , Rapeseed Oil/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Cholesterol/metabolism , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Acids/analysis , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/physiopathology , Humans , Insulin Resistance , Lipogenesis , Liver/metabolism , Male , Mice , PPAR alpha/genetics , PPAR alpha/metabolism , Phospholipids/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism
15.
Ann Hepatol ; 18(5): 715-724, 2019.
Article in English | MEDLINE | ID: mdl-31204236

ABSTRACT

INTRODUCTION AND OBJECTIVES: The objectives of this study were to investigate the underlying mechanism of PPARα, LXRα, ChREBP, and SREBP-1c at the level of gene and protein expression with high-energy diets in liver and skeletal muscle. MATERIALS AND METHODS: Metabolic changes with consumption of high fat (Hfat), high sucrose (Hsuc) and high fructose (Hfru) diets were assessed. Levels of mRNA and protein of PPARα, LXRα, ChREBP, and SREBP-1c were investigated. Body weight changes, histological structure of liver and plasma levels of some parameters were also examined. RESULTS: In Hfru group, body weights were higher than other groups (P<0.05). In liver, LXRα levels of Hsuc and Hfru groups were upregulated as 1.87±0.30 (P<0.05) and 2.01±0.29 (P<0.01). SREBP-1c levels were upregulated as 4.52±1.25 (P<0.05); 4.05±1.11 (P<0.05) and 3.85±1.04 (P<0.05) in Hfat, Hsuc, and Hfru groups, respectively. In skeletal muscle, LXRα and SREBP-1c were upregulated as 1.77±0.30 (P<0.05) and 2.71±0.56 (P<0.05), in the Hfru group. Protein levels of ChREBP (33.92±8.84ng/mg protein (P<0.05)) and SREBP-1c (135.16±15.57ng/mg protein (P<0.001)) in liver were higher in Hfru group. In skeletal muscle, LXRα, ChREBP and SREBP-1c in Hfru group were 6.67±0.60, 7.11±1.29 and 43.17±6.37ng/mg, respectively (P<0.05; P<0.01; P<0.05). The rats in Hfru group had the most damaged livers. CONCLUSION: Besides liver, fructose consumption significantly effects skeletal muscle and leads to weight gain, triggers lipogenesis and metabolic disorders.


Subject(s)
Fatty Liver/genetics , Fructose/pharmacology , Gene Expression Regulation , Liver X Receptors/genetics , Muscle, Skeletal/metabolism , Sucrose/pharmacology , Sunflower Oil/pharmacology , Animals , Diet/methods , Disease Models, Animal , Energy Intake , Fatty Liver/metabolism , Fatty Liver/therapy , Lipogenesis/physiology , Liver/metabolism , Liver/pathology , Liver X Receptors/biosynthesis , Male , Muscle, Skeletal/pathology , Rats , Rats, Wistar
16.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1567-1578, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30905785

ABSTRACT

OBJECTIVE: Hypovitaminosis D is common in the obese population and patients suffering from obesity-associated disorders such as type 2 diabetes and fatty liver disease, resulting in suggestions for vitamin D supplementation as a potential therapeutic option. However, the pathomechanistic contribution of the vitamin D-vitamin D receptor (VDR) axis to metabolic disorders is largely unknown. METHODS: We analyzed the pathophysiological role of global and intestinal VDR signaling in diet-induced obesity (DIO) using global Vdr-/- mice and mice re-expressing an intestine-specific human VDR transgene in the Vdr deficient background (Vdr-/- hTg). RESULTS: Vdr-/- mice were protected from DIO, hepatosteatosis and metabolic inflammation in adipose tissue and liver. Furthermore, Vdr-/- mice displayed a decreased adipose tissue lipoprotein lipase (LPL) activity and a reduced capacity to harvest triglycerides from the circulation. Intriguingly, all these phenotypes were partially reversed in Vdr-/- hTg animals. This clearly suggested an intestine-based VDR activity on systemic lipid homeostasis. Scrutinizing this hypothesis, we identified the potent LPL inhibitor angiopoietin-like 4 (Angptl4) as a novel transcriptional target of VDR. CONCLUSION: Our study suggests a VDR-mediated metabolic cross-talk between gut and adipose tissue, which significantly contributes to systemic lipid homeostasis. These results have important implications for use of the intestinal VDR as a therapeutic target for obesity and associated disorders.


Subject(s)
Angiopoietin-Like Protein 4/genetics , Fatty Liver/genetics , Intestinal Mucosa/metabolism , Lipoprotein Lipase/genetics , Liver/metabolism , Receptors, Calcitriol/genetics , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adult , Aged , Angiopoietin-Like Protein 4/metabolism , Animals , Cohort Studies , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Gene Expression Regulation , Humans , Inflammation , Intestinal Mucosa/pathology , Lipid Metabolism/genetics , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/metabolism , Liver/pathology , Male , Mice , Mice, Obese , Mice, Transgenic , Middle Aged , Receptors, Calcitriol/deficiency , Signal Transduction , Transcription, Genetic , Transgenes , Triglycerides/metabolism
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(4): 522-531, 2019 04.
Article in English | MEDLINE | ID: mdl-30630053

ABSTRACT

Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. Overexpression of ApoD in mouse neural tissue induces the development of a non-inflammatory hepatic steatosis in 12-month-old transgenic animals. Previous data indicates that accumulation of arachidonic acid, ApoD's preferential ligand, and overactivation of PPARγ are likely the driving forces in the development of the pathology. However, the lack of inflammation under those conditions is surprising. Hence, we further investigated the apparent repression of inflammation during hepatic steatosis development in aging transgenic animals. The earliest modulation of lipid metabolism and inflammation occurred at 6 months with a transient overexpression of L-PGDS and concomitant overproduction of 15d-PGJ2, a PPARγ agonist. Hepatic lipid accumulation was detectable as soon as 9 months. Inflammatory polarization balance varied in time, with a robust anti-inflammatory profile at 6 months coinciding with 15d-PGJ2 overproduction. Omega-3 and omega-6 fatty acids were preferentially stored in the liver of 12-month-old transgenic mice and resulted in a higher omega-3/omega-6 ratio compared to wild type mice of the same age. Thus, inflammation seems to be controlled by several mechanisms in the liver of transgenic mice: first by an increase in 15d-PGJ2 production and later by a beneficial omega-3/omega-6 ratio. PPARγ seems to play important roles in these processes. The accumulation of several omega fatty acids species in the transgenic mouse liver suggests that ApoD might bind to a broader range of fatty acids than previously thought.


Subject(s)
Apolipoproteins D/genetics , Fatty Acids, Unsaturated/metabolism , Fatty Liver/metabolism , Liver/metabolism , Prostaglandins/metabolism , Animals , Disease Models, Animal , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Fatty Liver/genetics , Male , Mice , Mice, Transgenic , PPAR gamma/metabolism , Prostaglandin D2/analogs & derivatives , Prostaglandin D2/metabolism
18.
J Agric Food Chem ; 67(1): 90-101, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30541285

ABSTRACT

Yellow-soybean-leaf extract includes kaempferol glycosides and pheophorbides that reduce obesity and plasma glucose levels. This study researched the molecular mechanisms underlying the glucose-lowering effect of the extract of black-soybean leaves (EBL), which mainly contains quercetin glycosides and isorhamnetin glycosides, in mice with high-fat-diet (HFD)-induced obesity and diabetes and in HepG2 cells. Twelve weeks of EBL supplementation decreased body weight and fasting glucose, glycated hemoglobin, insulin, triglyceride, and nonesterified fatty acid levels. Histological analyses manifested that EBL suppressed hepatic steatosis. Interestingly, EBL significantly improved plasma adiponectin levels and increased adiponectin-receptor-gene ( AdipoR1 and AdipoR2) expression in the liver. EBL restored the effects of HFD on hepatic AMP-activated protein kinase (AMPK) and on the family of peroxisome proliferator-activated receptors (PPARα, PPARδ, and PPARγ), which are associated with fatty acid metabolism and are downstream of the adiponectin receptors. Hence, EBL effectively diminished hyperglycemia and hepatic steatosis through enhancing adiponectin-induced signaling and AMPK activation in the liver.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fatty Liver/drug therapy , Glycine max/chemistry , Hyperglycemia/drug therapy , Plant Extracts/administration & dosage , Receptors, Adiponectin/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Blood Glucose/metabolism , Body Weight , Fatty Acids, Nonesterified/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Humans , Hyperglycemia/genetics , Hyperglycemia/metabolism , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , PPAR alpha/genetics , PPAR alpha/metabolism , Plant Leaves/chemistry , Receptors, Adiponectin/genetics , Signal Transduction , Triglycerides/metabolism
19.
Int J Mol Sci ; 19(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567368

ABSTRACT

Obesity is prevalent in modern society because of a lifestyle consisting of high dietary fat and sucrose consumption combined with little exercise. Among the consequences of obesity are the emerging epidemics of hepatic steatosis and nonalcoholic fatty liver disease (NAFLD). Sterol regulatory element-binding protein-1c (SREBP-1c) is a transcription factor that stimulates gene expression related to de novo lipogenesis in the liver. In response to a high-fat diet, the expression of peroxisome proliferator-activated receptor (PPAR) γ2, another nuclear receptor, is increased, which leads to the development of NAFLD. ß-Conglycinin, a soy protein, prevents NAFLD induced by diets high in sucrose/fructose or fat by decreasing the expression and function of these nuclear receptors. ß-Conglycinin also improves NAFLD via the same mechanism as for prevention. Fish oil contains n-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. Fish oil is more effective at preventing NAFLD induced by sucrose/fructose because SREBP-1c activity is inhibited. However, the effect of fish oil on NAFLD induced by fat is controversial because fish oil further increases PPARγ2 expression, depending upon the experimental conditions. Alcohol intake also causes an alcoholic fatty liver, which is induced by increased SREBP-1c and PPARγ2 expression and decreased PPARα expression. ß-Conglycinin and fish oil are effective at preventing alcoholic fatty liver because ß-conglycinin decreases the function of SREBP-1c and PPARγ2, and fish oil decreases the function of SREBP-1c and increases that of PPARα.


Subject(s)
Antigens, Plant/therapeutic use , Fatty Liver/diet therapy , Globulins/therapeutic use , PPAR alpha/genetics , PPAR gamma/genetics , Seed Storage Proteins/therapeutic use , Soybean Proteins/therapeutic use , Sterol Regulatory Element Binding Protein 1/genetics , Diet, High-Fat/adverse effects , Fatty Liver/genetics , Fatty Liver/pathology , Fatty Liver/prevention & control , Fish Oils/therapeutic use , Humans , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism
20.
Dis Model Mech ; 11(12)2018 12 18.
Article in English | MEDLINE | ID: mdl-30563851

ABSTRACT

Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a member of the basic helix-loop-helix/PER-ARNT-SIM (bHLH/PAS) transcription factor family. ARNT2 heterodimerizes with several members of the family, including single-minded homolog-1 (SIM1) and neuronal PAS domain protein 4 (NPAS4), primarily in neurons of the central nervous system. We screened 64,424 third-generation germline mutant mice derived from N-ethyl-N-nitrosourea (ENU)-mutagenized great-grandsires for weight abnormalities. Among 17 elevated body weight phenotypes identified and mapped, one strongly correlated with an induced missense mutation in Arnt2 using a semidominant model of inheritance. Causation was confirmed by CRISPR/Cas9 gene targeting to recapitulate the original ENU allele, specifying Arg74Cys (R74C). The CRISPR/Cas9-targeted (Arnt2R74C/R74C) mice demonstrated hyperphagia and increased adiposity as well as hepatic steatosis and abnormalities in glucose homeostasis. The mutant ARNT2 protein showed decreased transcriptional activity when coexpressed with SIM1. These findings establish a requirement for ARNT2-dependent genes in the maintenance of the homeostatic feeding response, necessary for prevention of obesity and obesity-related diseases.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Diabetes Mellitus/genetics , Fatty Liver/genetics , Genetic Predisposition to Disease , Hyperphagia/genetics , Mutation/genetics , Obesity/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Weight , Ethylnitrosourea , Female , Glucose/metabolism , HEK293 Cells , Homeostasis , Homozygote , Humans , Hypothalamus/pathology , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Repressor Proteins/metabolism , Reproducibility of Results , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL