Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.320
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Trop Anim Health Prod ; 56(3): 121, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607462

ABSTRACT

The objective was to evaluate the effect of detoxified castor bean replacing soybean meal in the concentrate diet or as nitrogen organic fertilizer replacing urea on intake and nutrient digestibility, blood parameters and productive performance of sheep finished on irrigated Tamani grass pasture under continuous stocking and variable stocking rate. The treatments were two concentrate diets: standard (ground corn and soybean meal) and alternative diet (ground corn and detoxified castor bean cake), and two nitrogen fertilizers: chemical (urea) and organic (fresh castor bean cake). The randomized complete block design was used in a 2 × 2 factorial arrangement with four replications (500 m² paddocks). Four sheep (2 castrated males and 2 females) were distributed in each experimental unit, totaling 64 animals with an average initial weight of 19.42 ± 3.6 kg. No effects (P > 0.05) were observed on the variables inherent to the evaluation of the pasture. The average stocking rate (SR) among treatments was 85.50 sheep/ha, equivalent to 9.87 Animal Units (AU)/ha. The alternative diet presented lower dry matter digestibility (62.71%), with no negative effects on nutrient intake and kidney parameters. Animals fed the standard and alternative diet showed average daily gain of 103.75 and 86.76 g/day, respectively. A finishing period of up to 100 days is recommended for sheep selected for production systems in semi-arid regions managed intensively on pasture. Detoxified castor bean cake did not alter nutrient intake, liver and kidney parameters of the sheep and can be used in pasture-based sheep farming.


Subject(s)
Fertilizers , Ricinus communis , Animals , Female , Male , Dietary Supplements , Glycine max , Nitrogen , Sheep , Urea
2.
Environ Sci Technol ; 58(16): 6998-7009, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602777

ABSTRACT

Phosphorus (P) is the key in maintaining food security and ecosystem functions. Population growth and economic development have increased the demand for phosphate rocks. China has gradually developed from zero phosphate mining to the world's leading P miner, fertilizer, and agricultural producer since 1949. China released policies, such as designating phosphate rock as a strategic resource, promoting eco-agricultural policies, and encouraging the use of solid wastes produced in mining and the phosphorus chemical industry as construction materials. However, methodological and data gaps remain in the mapping of the long-term effects of policies on P resource efficiency. Here, P resource efficiency can be represented by the potential of the P cycle to concentrate or dilute P as assessed by substance flow analysis (SFA) complemented by statistical entropy analysis (SEA). P-flow quantification over the past 70 years in China revealed that both resource utilization and waste generation peaked around 2015, with 20 and 11 Mt of mined and wasted P, respectively. Additionally, rapidly increasing aquaculture wastewater has exacerbated pollution. The resource efficiency of the Chinese P cycle showed a U-shaped change with an overall improvement of 22.7%, except for a temporary trough in 1975. The driving force behind the efficiency decline was the roaring phosphate fertilizer industry, as confirmed by the sharp increase in P flows for both resource utilization and waste generation from the mid-1960s to 1975. The positive driving forces behind the 30.7% efficiency increase from 1975 to 2018 were the implementation of the resource conservation policy, downstream pollution control, and, especially, the circular agro-food system strategy. However, not all current management practices improve the P resource efficiency. Mixing P industry waste with construction materials and the development of aquaculture to complement offshore fisheries erode P resource efficiency by 2.12% and 9.19%, respectively. With the promotion of a zero-waste society in China, effective P-cycle management is expected.


Subject(s)
Economic Development , Phosphorus , China , Fertilizers , Agriculture
3.
Sci Rep ; 14(1): 9508, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664476

ABSTRACT

Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.


Subject(s)
Chlorophyll , Fertilizers , Humic Substances , Photosynthesis , Setaria Plant , Photosynthesis/drug effects , Setaria Plant/metabolism , Setaria Plant/drug effects , Setaria Plant/growth & development , Chlorophyll/metabolism , Nitrogen/metabolism , Carbon/metabolism
4.
Huan Jing Ke Xue ; 45(5): 2871-2880, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629549

ABSTRACT

Presently, the improvement of soil organic matter is the basis to ensure food security, but the accumulation and transformation characteristics of soil phosphorus (P) as affected by organic matter remain unclear. The accumulation, transformation, and migration characteristics of soil P in different soil layers of vegetable fields were researched under the application of organic materials. Six treatments were set up in the experiment:control (no fertilization), traditional fertilizer application by farmers, biochar, chicken manure, food waste, and straw application. Available phosphorus (Olsen-P), water-soluble phosphorus (CaCl2-P) content, soil phosphorus forms, soil organic matter (SOM), and pH were determined during the pepper harvest period. In the 0-5 cm and 5-10 cm soil layers, the available phosphorus content of traditional fertilization of farmers was higher, and the available phosphorus content of the four organic materials was in the order of straw > biochar > chicken manure > food waste. Compared to that with food waste, the straw and biochar treatments increased soil available phosphorus by 59.6%-67.3% and 29.1%-36.9%, respectively. The straw treatment could easily enhance the soil labile P pool, and soil labile P in the 0-5 cm soil layer increased by 47.3% and 35.1% compared with that under the chicken manure and food waste treatments, respectively. With the increase in soil depth, the proportion of available phosphorus in the chicken manure treatment decreased the least, and available phosphorus of the 20-30 cm soil layer accounted for 55.9% of the topsoil layer but only accounted for 16.0%-34.0% under treatment with the other three materials. Compared with that under the traditional fertilization of farmers, the pH significantly increased by 0.18-0.36 units after the application of organic fertilizer, and the pH of the chicken manure and food waste treatments was significantly higher than that of biochar and straw (P < 0.05). SOM content under the biochar treatment significantly increased by 7.7%-17.6% compared to that under the other three organic materials. Among the four organic materials, the straw treatment boosted the labile P pool the most, which was conducive to the rapid increase in plant-available P. Phosphorus was most likely to migrate downward under the chicken manure treatment. In the field management based on soil fertility enhancement, the application of biochar could not only improve soil pH and SOM but also avoid excessive accumulation of phosphorus in the surface layer, which decreases environmental risks.


Subject(s)
Agriculture , Charcoal , Refuse Disposal , Animals , Phosphorus , Vegetables , Fertilizers , Manure , Soil/chemistry , Chickens
5.
Sci Total Environ ; 926: 172172, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38575019

ABSTRACT

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Subject(s)
Fertilizers , Magnesium , Struvite/chemistry , Magnesium/chemistry , Fertilizers/analysis , Magnesium Oxide , Phosphorus/chemistry , Charcoal/chemistry , Soil/chemistry , Nitrogen/analysis
6.
Zhongguo Zhong Yao Za Zhi ; 49(4): 912-923, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621898

ABSTRACT

With the promotion of chemical fertilizer and pesticide reduction and green production of traditional Chinese medicines, microbial fertilizers have become a hot way to achieve the zero-growth of chemical fertilizers and pesticides, improve the yield and qua-lity of medicinal plants, maintain soil health, and promote the sustainable development of the planting industry of Chinese herbal medicines. Soil conditions and microenvironments are crucial to the growth, development, and quality formation of medicinal plants. Microbial fertilizers, as environmentally friendly fertilizers acting on the soil, can improve soil quality by replenishing organic matter and promoting the metabolism of beneficial microorganisms to improve the yield and quality of medicinal plants. In this regard, understanding the mechanism of microbial fertilizer in regulating the quality formation of medicinal plants is crucial for the development of herbal eco-agriculture. This study introduces the processes of microbial fertilizers in improving soil properties, participating in soil nutrient cycling, enhancing the resistance of medicinal plants, and promoting the accumulation of medicinal components to summarize the mechanisms and roles of bacterial fertilizers in regulating the quality formation of medicinal plants. Furthermore, this paper introduces the application of bacterial fertilizers in medicinal plants and makes an outlook on their development, with a view to providing a scientific basis for using microbial fertilizers to improve the quality of Chinese herbal medicines, improve the soil environment, promote the sustainable development of eco-agriculture of traditional Chinese medicine, and popularize the application of microbial fertilizers.


Subject(s)
Pesticides , Plants, Medicinal , Fertilizers , Agriculture , Soil/chemistry , Bacteria/genetics , Plant Extracts , Soil Microbiology
7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1206-1216, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621967

ABSTRACT

Soil microbiome is a key evaluation index of soil health. Previous studies have shown that organic fertilizer from traditional Chinese medicine(TCM)residues can improve the yield and quality of cultivated traditional Chinese medicinal materials. However, there are few reports on the effects of organic fertilizer from TCM residues on soil microbiome. Therefore, on the basis of evaluating the effects of organic fertilizer from TCM residues on the yield and quality of cultivated Salvia miltiorrhiza, the metagenomic sequencing technique was used to study the effects of organic fertilizer from TCM residues on rhizosphere microbiome community and function of cultivated S. miltiorrhiza. The results showed that:(1) the application of organic fertilizer from TCM residues promoted the growth of S. miltiorrhiza and the accumulation of active components, and the above-ground and underground dry weight and fresh weight of S. miltiorrhiza increased by 371.4%, 288.3%, 313.4%, and 151.9%. The increases of rosmarinic acid and salvianolic acid B were 887.0% and 183.0%.(2)The application of organic fertilizer from TCM residues significantly changed the rhizosphere bacterial and fungal community structures, and the microbial community composition was significantly different.(3)The relative abundance of soil-beneficial bacteria, such as Nitrosospira multiformis, Bacillus subtilis, Lysobacter enzymogenes, and Trichoderma was significantly increased by the application of organic fertilizer from TCM residues.(4)KEGG function prediction analysis showed that metabolism-related microorganisms were more easily enriched in the soil environment after organic fertilizer application. The abundance of functional genes related to nitrification and denitrification could also be increased after the application of organic fertilizer from TCM residues. The results of this study provide guidance for the future application of organic fertilizer from TCM residues in the cultivation of traditio-nal Chinese medicinal materials and enrich the content of green cultivation technology of traditional Chinese medicinal materials.


Subject(s)
Mycobiome , Salvia miltiorrhiza , Soil/chemistry , Salvia miltiorrhiza/chemistry , Fertilizers , Medicine, Chinese Traditional , Bacteria/genetics , Soil Microbiology
8.
Sci Total Environ ; 927: 171982, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575013

ABSTRACT

In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.


Subject(s)
Charcoal , Fertilizers , Fertilizers/analysis , Charcoal/chemistry , Anaerobiosis , Agriculture/methods , Nitrogen/analysis , Potassium/analysis , Phosphorus/analysis , Biofuels
9.
Environ Sci Pollut Res Int ; 31(20): 29017-29032, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561539

ABSTRACT

We used microbiology and molecular biology techniques to screen out high-temperature and low-temperature-resistant saprobiotics for compost and prepared a compound fermentation bacteria agent to rapidly ferment cattle manure into high-quality organic fertilizer in low-temperature season. Conventional composting and high-throughput techniques were used to analyze the changes of physical and chemical indexes and biodiversity in the process of composting, from which high and low-temperature-resistant strains were obtained, and high-temperature and low-temperature-resistant solid composite bactericides were prepared and added to composting to verify the effects of composite bactericides on composting. The conventional composting cycle took 22 days, and the diversity of microflora increased first and then decreased. Composting temperature and microbial population were the key factors for the success or failure of composting. Two strains of high-temperature-resistant bacteria and six strains of low-temperature-resistant bacteria were screened out, and they were efficient in degrading starch, cellulose, and protein. The high-temperature and low-temperature-resistant solid bacterial agent was successfully prepared with adjuvant. The preparation could make the compost temperature rise quickly at low temperature, the high temperature lasted for a long time, the water content, C/N, and organic matter fell quickly, the contents of total phosphorus and total potassium were increased, and the seed germination index was significantly improved. Improve the composting effect. The solid composite bacterial agent can shorten the composting time at low temperature and improve the composting efficiency and quality.


Subject(s)
Composting , Fermentation , Manure , Animals , Cattle , Temperature , Bacteria , Fertilizers
10.
J Environ Manage ; 357: 120606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583387

ABSTRACT

While phosphorus fertilizers contribute to food security, part of the introduced phosphorus dissipates into water bodies leading to eutrophication. At the same time, conventional mineral phosphorus sources are increasingly scarce. Therefore, closing phosphorus cycles reduces pollution while decreasing trade dependence and increasing food security. A major part of the phosphorus loss occurs during food processing. In this article, we combine a systematic literature review with investment and efficiency analysis to investigate the financial feasibility of recovering phosphorus from dairy processing wastewater. This wastewater is particularly rich in phosphorus, but while recovery technologies are readily available, they are rarely adopted. We calculate the Net Present Value (NPV) of investing in phosphorus recycling technology for a representative European dairy processing company producing 100,000 tonnes of milk per year. We develop sensitivity scenarios and adjust the parameters accordingly. Applying struvite precipitation, the NPV can be positive in two scenarios. First, if the phosphorus price is high (1.51 million EUR) or second if phosphorus recovery is a substitute for mandatory waste disposal (1.48 million EUR). However, for a variety of methodological specifications, the NPV is negative, mainly because of high input costs for chemicals and energy. These trade-offs between off-setting pollution and reducing energy consumption imply, that policy makers and investors should consider the energy source for phosphorus recovery carefully.


Subject(s)
Phosphorus , Wastewater , Wastewater/chemistry , Dairying , Waste Disposal, Fluid/methods , Fertilizers , Recycling
11.
Analyst ; 149(9): 2709-2718, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38525956

ABSTRACT

Inorganic fertilizers are routinely used in large scale crop production for the supplementation of nitrogen, phosphorus, and potassium in nutrient poor soil. To explore metabolic changes in tomato plants grown on humic sand under different nutritional conditions, matrix-assisted laser desorption ionization (MALDI) mass spectrometry was utilized for the analysis of xylem sap. Variations in the abundances of metabolites and oligosaccharides, including free N-glycans (FNGs), were determined. Statistical analysis of the sample-related peaks revealed significant differences in the abundance ratios of multiple metabolites, including oligosaccharides, between the control plants, grown with no fertilizers, and plants raised under "ideal" and "nitrogen deficient" nutritional conditions, i.e., under the three treatment types. Among the 36 spectral features tentatively identified as oligosaccharides, the potential molecular structures for 18 species were predicted based on their accurate masses and isotope distribution patterns. To find the spectral features that account for most of the differences between the spectra corresponding to the three different treatments, multivariate statistical analysis was carried out by orthogonal partial least squares-discriminant analysis (OPLS-DA). They included both FNGs and non-FNG compounds that can be considered as early indicators of nutrient deficiency. Our results reveal that the potential nutrient deficiency indicators can be expanded to other metabolites beyond FNGs. The m/z values for 20 spectral features with the highest variable influence on projection (VIP) scores were ranked in the order of their influence on the statistical model.


Subject(s)
Metabolome , Solanum lycopersicum , Metabolome/drug effects , Solanum lycopersicum/chemistry , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Fertilizers , Sand/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Nat Food ; 5(4): 332-339, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528194

ABSTRACT

With the longevity of phosphorus reserves uncertain, distributing phosphorus to meet food production needs is a global challenge. Here we match plant-available soil Olsen phosphorus concentrations to thresholds for optimal productivity of improved grassland and 28 of the world's most widely grown and valuable crops. We find more land (73%) below optimal production thresholds than above. We calculate that an initial capital application of 56,954 kt could boost soil Olsen phosphorus to their threshold concentrations and that 28,067 kt yr-1 (17,500 kt yr-1 to cropland) could maintain these thresholds. Without additional reserves becoming available, it would take 454 years at the current rate of application (20,500 kt yr-1) to exhaust estimated reserves (2020 value), compared with 531 years at our estimated maintenance rate and 469 years if phosphorus deficits were alleviated. More judicious use of phosphorus fertilizers to account for soil Olsen phosphorus can help achieve optimal production without accelerating the depletion of phosphorus reserves.


Subject(s)
Crops, Agricultural , Fertilizers , Phosphorus , Soil , Phosphorus/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fertilizers/analysis , Soil/chemistry , Agriculture/methods
13.
Ecotoxicol Environ Saf ; 274: 116219, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38492483

ABSTRACT

Cadmium (Cd) is one of the most toxic elements in soil, affecting morphological, physiological, and biochemical processes in plants. Mineral plant nutrition was tested as an effective approach to mitigate Cd stress in several crop species. In this regard, the present study aimed to elucidate how different phosphorus (P) fertilization regimes can improve some bio-physiological processes in tomato plants exposed to Cd stress. In a hydroponic experiment, the impact of two phosphorus fertilizer forms (Polyphosphate (poly-P): condensed P-form with 100% polymerization rate and orthophosphate (ortho-P): from orthophosphoric acid) on the photosynthetic activity, plant growth, and nutrient uptake was assessed under three levels of Cd stress (0, 12, and 25 µM of CdCl2). The obtained results confirmed the negative effects of Cd stress on the chlorophyll content and the efficiency of the photosynthesis machinery. The application of poly-P fertilizer significantly improved the chlorophyll stability index (82%) under medium Cd stress (Cd12), as compared to the ortho-P form (55%). The analysis of the chlorophyll α fluorescence transient curve revealed that the amplitude of Cd effect on the different steps of electron transfer between PSII and PSI was significantly reduced under the poly-P fertilization regime compared to ortho-P, especially under Cd12. The evaluation of the RE0/RC parameter showed that the electron flux reducing end electron acceptors at the PSI acceptor side per reaction center was significantly improved in the poly-P treatment by 42% under Cd12 compared to the ortho-P treatment. Moreover, the use of poly-P fertilizer enhanced iron uptake and its stoichiometric homeostasis in the shoot tissue which maintained an adequate absorption of iron under Cd stress conditions. Findings from this study revealed for the first time that inorganic polyphosphate fertilizers can reduce Cd toxicity in tomato plants by enhancing photosynthesis activity, nutrient uptake, plant growth, and biomass accumulation despite the high level of cadmium accumulation in shoot tissues.


Subject(s)
Soil Pollutants , Solanum lycopersicum , Cadmium/analysis , Polyphosphates/pharmacology , Fertilizers/analysis , Photosynthesis , Chlorophyll/analysis , Plants , Iron/analysis , Phosphorus/pharmacology , Fertilization , Soil Pollutants/analysis
14.
J Environ Manage ; 355: 120431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38457890

ABSTRACT

Cover crops (CC) can improve phosphorus (P) cycling by reducing water related P losses and contributing to P nutrition of a rotational crop. This is particularly important in claypan soils with freeze-thaw cycles in early spring in the Midwest U.S. This 4-year study (2019-2022) examined the impact of CC monoculture and mix of CC species on P losses from a fertilizer application, and determined the P balance in soil compared to no cover crop (noCC). The CC mix consisted of wheat (Triticum aestivum L.), radish (Raphanus raphanistrum subsp. Sativus), and turnip (Brassica rapa subsp. Rapa) (3xCCmix) in 2019 and 2021 before corn, and cereal rye (Secale cereale L.) was planted as monoculture before soybean in 2020 and 2022. The 3xCCmix had no effect on total phosphorus (TP) and dissolved reactive phosphorus (PO4-P) concentration or load in 2019 and 2021. Cereal rye reduced TP and PO4-P load 70% and 73%, respectively, compared to noCC. The variation in soil moisture, temperature, and net precipitation from fertilizer application until CC termination affected available soil P pools due to variability in CC species P uptake, residue decomposition, and P loss in surface water runoff. Overall, the P budget calculations showed cereal rye had 2.4 kg ha-1 greater P uptake compared to the 3xCCmix species which also reduced P loss in water and had greater differences in soil P status compared to noCC. This study highlights the benefit of CCs in reducing P loss in surface runoff and immobilizing P through plant uptake. However, these effects were minimal with 3xCCmix species and variability in crop residue decomposition from different CC species could affect overall P-soil balance.


Subject(s)
Agriculture , Phosphorus , Fertilizers , Soil , Crops, Agricultural , Edible Grain , Zea mays , Secale , Water
15.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484684

ABSTRACT

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Subject(s)
Fertilizers , Silicon , Silicon/pharmacology , Soil/chemistry , Biological Transport , Plants/metabolism , Minerals/metabolism
16.
Water Res ; 254: 121372, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430761

ABSTRACT

Watershed water quality modeling is a valuable tool for managing ammonium (NH4+) pollution. However, simulating NH4+ pollution presents unique challenges due to the inherent instability of NH4+ in natural environment. This study modified the widely-used Soil and Water Assessment Tool (SWAT) model to simulate non-point source (NPS) NH4+ processes, specifically incorporating the simulation of land-to-water NH4+ delivery. The Jiulong River Watershed (JRW) is the study area, a coastal watershed in Southeast China with substantial sewage discharge, livestock farming, and fertilizer application. The results demonstrate that the modified model can effectively simulate the NPS NH4+ processes. It is recommended to use multiple sets of observations to calibrate NH4+ simulation to enhance model reliability. Despite constituting a minor proportion (5.6 %), point source inputs significantly contribute to NH4+ load at watershed outlet (32.4∼51.9 %), while NPS inputs contribute 15.3∼17.3 % of NH4+ loads. NH4+ primarily enters water through surface runoff and lateral flow, with negligible leaching. Average NH4+ land-to-water delivery rate is about 2.35 to 2.90 kg N/ha/a. High delivery rates mainly occur at agricultural areas. Notably, proposed NH4+ mitigation measures, including urban sewage treatment enhancement, livestock manure management improvement, and fertilizer application reduction, demonstrate potential to collectively reduce the NH4+ load at watershed outlet by 1/4 to 1/3 and significantly enhance water quality standard compliance frequency. Insights gained from modeling experience in the JRW offer valuable implications for NH4+ modeling and management in regions with similar climates and significant anthropogenic nitrogen inputs.


Subject(s)
Ammonium Compounds , Water Pollutants, Chemical , Fertilizers , Sewage , Reproducibility of Results , Environmental Monitoring/methods , Nitrogen/analysis , Water Quality , China , Rivers , Water Pollutants, Chemical/analysis , Phosphorus/analysis
17.
Sci Total Environ ; 927: 172083, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554957

ABSTRACT

Anaerobic digestion can provide benefits not only from the perspective of renewable energy production but also in the form of fertilization effect and increased retention of C in soils after digestate application. This study consisted of two phases, where the first phase assessed the suitability of carbon-rich co-feedstocks for methane production via laboratory testing. The second phase assessed the balance and stability of C before and after anaerobic digestion by systematic digestate characterization, and by evaluating its carbon retention potential using a modeling approach. The results indicated that pyrolysis chars had a negligible effect on the methane production potential of cattle manure, while wheat straw expectedly increased methane production. Thus, a mixture of cattle manure and wheat straw was digested in pilot-scale leach-bed reactors and compared with undigested manure and straw. Although the total amount of C in the digestate was lower than in the untreated feedstocks, the digestion process stabilized C and was modeled to be more effective in retaining C in the soil than untreated cattle manure and wheat straw. In addition, digestion converted 23-27 % of the C into valuable methane, increasing the valorization of the total C in the feedstock. Considering anaerobic digestion processes as a strategy to optimize both carbon and nutrient valorization provides a more holistic approach to addressing climate change and improving soil health.


Subject(s)
Carbon , Fertilizers , Manure , Methane , Methane/analysis , Fertilizers/analysis , Carbon/analysis , Anaerobiosis , Animals , Cattle , Soil/chemistry , Triticum
18.
J Environ Qual ; 53(3): 314-326, 2024.
Article in English | MEDLINE | ID: mdl-38453693

ABSTRACT

Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al2(SO4)3·18H2O), gypsum (CaSO4·2H2O), or Epsom salt (MgSO4·7H2O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha-1) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO3) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.


Subject(s)
Alum Compounds , Calcium Sulfate , Phosphorus , Soil , Calcium Sulfate/chemistry , Calcium Sulfate/analysis , Soil/chemistry , Phosphorus/analysis , Phosphorus/chemistry , Alum Compounds/chemistry , Fertilizers/analysis , Manure/analysis , Agriculture/methods
19.
Sci Total Environ ; 927: 171642, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38479518

ABSTRACT

Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg-1 as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.


Subject(s)
Ammonia , Archaea , Bacteria , Nitrogen , Oryza , Oxidation-Reduction , Phosphorus , Soil Microbiology , Soil , Archaea/metabolism , China , Bacteria/metabolism , Ammonia/metabolism , Soil/chemistry , Animals , Fishes , Fertilizers/analysis , Agriculture/methods
20.
PLoS One ; 19(3): e0295391, 2024.
Article in English | MEDLINE | ID: mdl-38457380

ABSTRACT

Although maize is sensitive to zinc (Zn) deficiencies, the responses of maize cultivars to the foliar application of Zn sulfate (ZnSO4) may vary significantly. Here, we quantified the responses of grain yields and nitrogen (N), phosphorus (P), and potassium (K) absorption to ZnSO4 using 22 modern maize cultivars. The results revealed that 40.9% of the cultivars were not affected by foliar ZnSO4, whereas only 45.5% of the cultivars responded positively to ZnSO4, which was evidenced by increased grain numbers and shortened bald tip lengths. The impact of Zn fertilizer might be manifested in the dry biomass, from the 8-leaf stage (BBCH 18). For Zn-deficiency resistant cultivars, the foliar application of ZnSO4 enhanced N accumulation by 44.1%, while it reduced P and K absorption by 13.6% and 23.7%, respectively. For Zn-deficiency sensitive maize cultivars, foliar applied ZnSO4 improved the accumulation of N and K by 27.3% and 25.0%, respectively; however, it lowered their utilization efficiency. Hence, determining the optimized application of Zn fertilizer, while avoiding Zn toxicity, should not be based solely on the level of Zn deficiency in the soil, but also, take into consideration the sensitivity of some cultivars to Zn, Furthermore, the supplementation of Zn-deficiency sensitive maize cultivars with N and K is key to maximizing the benefits of Zn fertilization.


Subject(s)
Zinc Sulfate , Zinc , Zinc Sulfate/pharmacology , Zinc/analysis , Zea mays , Fertilizers , Triticum , Minerals , Soil , Edible Grain/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL