Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.280
Filter
Add more filters

Publication year range
1.
Chin J Nat Med ; 22(4): 341-355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658097

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.


Subject(s)
Aporphines , Cell Proliferation , Synoviocytes , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Cell Proliferation/drug effects , Synoviocytes/drug effects , Rats , Humans , Th17 Cells/drug effects , Th17 Cells/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Aporphines/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Male , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Fibroblasts/drug effects , Collagen , Apoptosis/drug effects , Cell Line
2.
Int J Biol Macromol ; 268(Pt 2): 131365, 2024 May.
Article in English | MEDLINE | ID: mdl-38583829

ABSTRACT

Wounds are considered one of the most critical medical conditions that must be managed appropriately due to the psychological and physical stress they cause for patients, as well as creating a substantial financial burden on patients and global healthcare systems. Nowadays, there is a growing interest in developing nanofiber mats loaded with varying plant extracts to meet the urgent need for advanced wound ressings. This study investigated the development and characterization of poly(lactic acid) (PLA)/ poly(ethylene glycol) (PEG) nanofiber membranes incorporated with Ora-pro-nóbis (OPN; 12.5, 25, and 50 % w/w) by the solution-blow-spinning (SBS) technique. The PLA/PEG and PLA/PEG/OPN nanofiber membranes were characterized by scanning electron microscopy (SEM), thermal properties (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), contact angle measurements and water vapor permeability (WVTR). In addition, the mats were analyzed for swelling properties in vitro cell viability, and fibroblast adhesion (L-929) tests. SEM images showed that smooth and continuous PLA/PEG and PLA/PEG/OPN nanofibers were obtained with a diameter distribution ranging from 171 to 1533 nm. The PLA/PEG and PLA/PEG/OPN nanofiber membranes showed moderate hydrophobicity (~109-120°), possibly preventing secondary injuries during dressing removal. Besides that, PLA/PEG/OPN nanofibers exhibited adequate WVTR, meeting wound healing requirements. Notably, the presence of OPN gave the PLA/PEG membranes better mechanical properties, increasing their tensile strength (TS) from 3.4 MPa (PLA/PEG) to 5.3 MPa (PLA/PEG/OPN), as well as excellent antioxidant properties (Antioxidant activity with approximately 45 % oxidation inhibition). Therefore, the nanofiber mats based on PLA/PEG, especially those incorporated with OPN, are promising options for use as antioxidant dressings to aid skin healing.


Subject(s)
Bandages , Membranes, Artificial , Nanofibers , Plant Extracts , Polyesters , Polyethylene Glycols , Polyethylene Glycols/chemistry , Polyesters/chemistry , Nanofibers/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Mice , Permeability , Cell Survival/drug effects , Spectroscopy, Fourier Transform Infrared , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line , Wound Healing/drug effects , Fibroblasts/drug effects
3.
J Nat Med ; 78(3): 732-740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38592349

ABSTRACT

Three new biflavonoids (1-3) and two known flavonoids (4, 5) were isolated from Xylia kerrii collected in Thailand. Compounds 1-5 showed selective cytotoxicity against the rheumatoid fibroblast-like synovial MH7A cell line, and these compounds showed weak cytotoxicity against the human lung synovial fibroblast WI-38 VA13 sub 2 RA cell line. Notably, compound 1 was highly selective toward MH7A cells with an IC50 value of 6.9 µM, whereas the IC50 value for WI-38 VA13 sub 2 RA cells was > 100 µM. The western blotting analysis of MH7A cells treated with compound 1 showed increased CDKN2A /p16INK4A and caspase-8 levels.


Subject(s)
Arthritis, Rheumatoid , Biflavonoids , Fibroblasts , Plant Extracts , Plant Leaves , Humans , Fibroblasts/drug effects , Arthritis, Rheumatoid/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Cell Line , Biflavonoids/pharmacology , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Thailand , Synovial Membrane/drug effects , Molecular Structure
4.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Article in English | MEDLINE | ID: mdl-38433304

ABSTRACT

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Contraction , Myocytes, Cardiac , Tissue Engineering , Humans , Myocytes, Cardiac/metabolism , Cells, Cultured , Induced Pluripotent Stem Cells/metabolism , Calcium Signaling , Time Factors , Excitation Contraction Coupling , Fibroblasts/metabolism , Gene Expression Regulation , Electric Stimulation Therapy/instrumentation , Heart Failure/physiopathology , Heart Failure/therapy , Heart Failure/metabolism
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474135

ABSTRACT

Nucleotides, glycosaminoglycans, and omega-3 essential fatty acids (O3s) could be used for improving skin health, although their modes of action, alone or in combination, are not yet fully understood. To gain some insight into these mechanisms, we performed two in vitro tests and one in vivo pilot trial. The effects on human dermal fibroblast proliferation and migration were evaluated with the following compounds and combinations: 0.156 mg/mL O3s, 0.0017 mg/mL hyaluronic acid (HA), 0.0004 mg/mL dermatan sulfate (DS), 0.0818 mg/mL nucleotides, and [O3s + HA + DS] and [O3s + HA + DS + nucleotides] at the same concentrations. In both in vitro assays, adding nucleotides to [O3s + HA + DS] provided significant improvements. The resulting combination [O3s + HA + DS + nucleotides] was then tested in vivo in dogs with atopic dermatitis by oral administration of a supplement providing a daily amount of 40 mg/kg nucleotides, 0.9 mg/kg HA, 0.18 mg/kg DS, 53.4 mg/kg EPA, and 7.6 mg/kg DHA. After 30 days, the pruritus visual analog scale (pVAS) score was significantly reduced, and no adverse effects were observed. In conclusion, the combination of nucleotides plus glycosaminoglycans and O3s could serve as a useful therapeutic alternative in skin health applications.


Subject(s)
Dermatitis, Atopic , Dog Diseases , Fatty Acids, Omega-3 , Humans , Animals , Dogs , Dermatitis, Atopic/drug therapy , Saccharomyces cerevisiae , Dog Diseases/drug therapy , Pruritus/drug therapy , Fatty Acids, Omega-3/therapeutic use , Glycosaminoglycans/therapeutic use , Hyaluronic Acid/therapeutic use , Cell Proliferation , Fibroblasts
6.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474467

ABSTRACT

Isoflavones, belonging to polyphenolic compounds, show structural similarity to natural estrogens, and in this context, they have been extensively studied. Some of them are also applied as cosmetic additives; however, little is known regarding their effects on skin cells. In this investigation, common isoflavones, including genistein, daidzein, glycitein, formononetin, and biochanin A, as well as coumestrol, were evaluated for antioxidant activity and their impact on human skin fibroblasts and keratinocytes. Antioxidant effects were assessed using DPPH, ABTS, and FRAP tests, and the ability to scavenge reactive oxygen species (ROS) was tested in cells with H2O2-provoked oxidative stress. The impact on the activity of antioxidant enzymes (SOD, CAT, GSH) and lipid peroxidation (MDA) was also explored. As shown by Alamar Blue and neutral red uptake assays, the compounds were not toxic within the tested concentration range, and formononetin and coumestrol even demonstrated a stimulatory effect on cells. Coumestrol and biochanin A demonstrated significant antioxidative potential, leading to a significant decrease in ROS in the cells stimulated by H2O2. Furthermore, they influenced enzyme activity, preventing depletion during induced oxidative stress, and also reduced MDA levels, demonstrating protection against lipid peroxidation. In turn, genistein, daidzein, and glycitein exhibited low antioxidant capacity.


Subject(s)
Genistein , Isoflavones , Humans , Genistein/pharmacology , Coumestrol , Reactive Oxygen Species , Phytoestrogens , Antioxidants , Hydrogen Peroxide , Isoflavones/chemistry , Oxidative Stress , Keratinocytes , Fibroblasts
7.
Vet Res Commun ; 48(3): 1659-1670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467911

ABSTRACT

Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin that exerts its toxic effects through various damage mechanisms such as oxidative stress, endoplasmic reticulum stress (ERS), mitochondrial damage, cell cycle arrest, and apoptosis. At present, there are few studies on drugs that can rescue ZEA-induced chicken embryonic fibroblasts damage. Forsythoside A (FA) is one of effective ingredients of traditional Chinese medicine that plays a role in various biological functions, but its antitoxin research has not been investigated so far. In this study, in vitro experiments were carried out. Chicken embryo fibroblast (DF-1) cells was used as the research object to select the appropriate treatment concentration of ZEA and examined reactive oxygen species (ROS), mitochondrial membrane potential, ERS and apoptosis to investigate the effects and mechanisms of FA in alleviating ZEA-induced cytotoxicity in DF-1 cells. Our results showed that ZEA induced ERS and activated the unfolded protein response (UPR) leading to apoptosis, an apoptotic pathway characterized by overproduction of Lactate dehydrogenase (LDH), Caspase-3, and ROS and loss of mitochondrial membrane potential. We also demonstrated that FA help to prevent ERS and attenuated ZEA-induced apoptosis in DF-1 cells by reducing the level of ROS, downregulating GRP78, PERK, ATF4, ATF6, JNK, IRE1, ASK1, CHOP, BAX expression, and up-regulating Bcl-2 expression. Our results provide a basis for an in-depth study of the mechanism of toxic effects of ZEA on chicken cells and the means of detoxification, which has implications for the treatment of relevant avian diseases.


Subject(s)
Endoplasmic Reticulum Stress , Fibroblasts , Zearalenone , Animals , Endoplasmic Reticulum Stress/drug effects , Fibroblasts/drug effects , Chick Embryo , Zearalenone/toxicity , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Cell Line , Chickens , Estrogens, Non-Steroidal/toxicity , Estrogens, Non-Steroidal/pharmacology
8.
Phytomedicine ; 128: 155318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493719

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is an escalating global health issue, characterized by rising rates of morbidity and mortality annually. Consequently, further investigation of potential damage mechanisms and potential preventive strategies for PF are warranted. Specnuezhenide (SPN), a prominent secoiridoid compound derived from Ligustrum lucidum Ait, exhibits anti-inflammatory and anti-oxidative capacities, indicating the potential therapeutic actions on PF. However, the underlying mechanisms of SPN on PF remain unclear. PURPOSE: This work was aimed at investigating the protective actions of SPN on PF and the potential mechanism. METHODS: In vivo, mice were administrated with bleomycin (BLM) to establish PF model. PF mice were treated with SPN (45/90 mg/kg) by gavage. In vitro, we employed TGF-ß1 (10 ng/mL)-induced MLE-12 and PLFs cells, which then were treated with SPN (5, 10, 20 µM). DARTS assay, biofilm interference experiment and molecular docking were performed to investigate the molecular target of SPN. RESULTS: In vivo, we found SPN treatment improved survival rate, alleviated pathological changes through reducing BLM-induced extracellular matrix (ECM) deposition, as well as BLM-induced epithelial-mesenchymal transition (EMT). In vitro, SPN inhibited EMT and lung fibroblast transdifferentiation. Mechanistically, SPN activated the AMPK protein to decrease the abnormally high level of PD-L1. Furthermore, the compound C, known as an AMPK inhibitor, exhibited a significant hindrance to the inhibition of SPN on TGF-ß1-caused fibroblast transdifferentiation and proliferation. This outcome could be attributed to the fact that compound C could eliminate the inhibitory effects of SPN on PD-L1 expression. Interestingly, DARTS assay, biofilm interference experiment and molecular docking results all indicated that SPN could bind to AMPK, which suggested that SPN might be a potential agonist targeting AMPK protein. CONCLUSION: Altogether, the results in our work illustrated that SPN promoted AMPK-dependent reduction of PD-L1 protein, contributing to the inhibition of fibrosis progression. Thus, SPN may represent a potential AMPK agonist for PF treatment.


Subject(s)
B7-H1 Antigen , Bleomycin , Molecular Docking Simulation , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Mice , B7-H1 Antigen/metabolism , AMP-Activated Protein Kinases/metabolism , Male , Disease Models, Animal , Mice, Inbred C57BL , Cell Line , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Lung/drug effects , Lung/pathology , Transforming Growth Factor beta1/metabolism
9.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473700

ABSTRACT

Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.


Subject(s)
Solanum lycopersicum , Mice , Animals , Humans , Keratinocytes , Wound Healing , Fibroblasts/metabolism , Cell Movement , Cell Proliferation , Plant Extracts/metabolism
10.
Chem Biol Drug Des ; 103(3): e14472, 2024 03.
Article in English | MEDLINE | ID: mdl-38458967

ABSTRACT

Brucine is a weak alkaline indole alkaloid with wide pharmacological activities and has been identified to protect against rheumatoid arthritis (RA) process. Circular RNAs (circRNAs) are also reported to be involved in the pathogenesis of RA. Here, we aimed to probe the role and mechanism of Brucine and circ_0139658 in RA progression. The fibroblast-like synoviocytes of RA (RA-FLSs) were isolated for functional analysis. Cell proliferation, apoptosis, invasion, migration, as well as inflammatory response were evaluated by CCK-8 assay, EdU assay, flow cytometry, transwell assay, and ELISA analysis, respectively. qRT-PCR and western blotting analyses were utilized to measure the levels of genes and proteins. The binding between miR-653-5p and circ_0139658 or Yin Yang 1 (YY1), was verified using dual-luciferase reporter and RNA pull-down assays. Brucine suppressed the proliferation, migration, and invasion of RA-FLSs, and alleviated inflammation by reducing the release of pro-inflammatory factors and macrophage M1 polarization. RA-FLSs showed increased circ_0139658 and YY1 levels and decreased miR-653-5p levels. Circ_0139658 is directly bound to miR-653-5p to regulate YY1 expression. Brucine treatment suppressed circ_0139658 and YY1 expression but increased YY1 expression in RA-FLSs. Functionally, circ_0139658 overexpression reversed the suppressing effects of Brucine on RA-FLS dysfunction and inflammation. Moreover, circ_0139658 silencing alleviated the dysfunction and inflammation in RA-FLSs, which were reverted by YY1 overexpression. Brucine suppressed the proliferation, migration, invasion, and inflammation in RA-FLSs by decreasing YY1 via circ_0139658/miR-653-5p axis.


Subject(s)
Arthritis, Rheumatoid , MicroRNAs , Strychnine/analogs & derivatives , Synoviocytes , Humans , Synoviocytes/metabolism , Synoviocytes/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Fibroblasts/metabolism , Cell Proliferation , Cells, Cultured , Apoptosis , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
11.
BMC Complement Med Ther ; 24(1): 110, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448883

ABSTRACT

BACKGROUND: Phytochemicals have become a growing source of alternative medicine in developing countries due to the poor prognosis, high cost of conventional pharmaceuticals, and undesirable effects associated with mainstream cancer treatment. OBJECTIVE: This study was aimed at investigating the anticancer effect of some selected Nigerian medicinal plants used in cancer treatment. These include ethanol extracts of Dialium guineense root (DGR), Dialium guineense leaves (DGL), Jateorhiza macrantha leaves (JML), Musanga cecropioides leaves (MCL), Musanga cecropioides stembark (MCSB), Piptadeniastrum africanum stembark (PASB), Piptadeniastrum africanum root (PAR), Pupalia lappacea flower tops (PLF), Raphiostylis beninensis root (RBR), Raphiostylis beninensis leaves (RBL), Ritchiea capparoides leaves (RCL), Ritchiea capparoides stembark (RCSB), and Triplochiton scleroxylon stembark (TSB). METHODS: The cytotoxic activity of the extracts was examined using a brine shrimp lethality assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against three cancer cell lines, including MCF-7, HUH-7, and HeLa. The selectivity of all extracts towards cancer cells was investigated using normal lung fibroblasts (MRC-5). Cell migration and colony-forming assays of active extracts against MCF-7 cells were also performed. Additionally, the total polyphenolic contents of the active extracts were estimated using standard methods. RESULTS: The extract of PASB had the highest cytotoxicity (LC50 = 1.58 µg/mL) on the brine shrimps compared to vincristine sulphate (LC50 = 2.24 µg/mL). In the cell viability assay, all the extracts produced significant (p < 0.05) growth inhibitory effects against all cell lines tested in a dose-dependent manner. All extracts were selective to cancer cells at varying degrees. Worth mentioning are the extracts of MCL, DGR, RBR, and PASB, which exhibited 14-, 7-, 6- and 2-fold selectivity toward MCF-7 cancer cells relative to normal lung fibroblast (MRC-5), respectively. These four extracts also significantly inhibited cell migration and colony formation in MCF-7-treated cells in dose-dependent manners. Considerable amounts of phenolics, flavonoids, and proanthocyanidins were detected in all extracts evaluated. CONCLUSION: These findings advocate the continued development of MCL, DGR, RBR, and PASB as potential chemotherapeutic agents.


Subject(s)
Fabaceae , Plants, Medicinal , Uterine Cervical Neoplasms , Female , Humans , Animals , Uterine Cervical Neoplasms/drug therapy , Liver , Cell Movement , Fibroblasts , Artemia
12.
ACS Biomater Sci Eng ; 10(3): 1364-1378, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38330438

ABSTRACT

Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.


Subject(s)
Actins , Cytoskeleton , Actins/chemistry , Cell Movement/physiology , Fibroblasts
13.
Phytomedicine ; 126: 155450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368794

ABSTRACT

BACKGROUND: Shen Shuai Ⅱ Recipe (SSR) is clinically used to treat chronic kidney diseases (CKDs) with remarkable efficacy and safety. In earlier research, we found the anti-inflammatory, antioxidant, and mitochondrial protective properties of SSR in hypoxic kidney injury model, which is closely related to its renal protection. Further work is needed to understand the underlying molecular mechanisms. PURPOSE: Further investigation of the mechanisms of action of SSR against renal interstitial fibrosis (RIF) building on previous research leads. METHODS: Rats receiving CKD model surgery were given with Fenofibrate or SSR once a day for eight weeks. In vitro, the NRK-52E cells were treated with SSR in the presence or absence of 10 µM Sc75741, 0.5 µM PMA, or 1 µM fenofibrate under 1% O2. The effects of SSR on NF-κB/NLRP3 inflammatory cascade, secretion of pro-inflammatory cytokines, fatty acid oxidation (FAO), and renal tubular injury were determined by immunoblotting, luminex liquid suspension chip assay, transmission electron microscopy, and Oil red O staining. Next, we delivered PPARα-interfering sequences to kidney tissue and NRK-52E cells by adeno-associated virus (AAV) injection and siRNA transfection methods. Finally, we evaluated the effect of renal tubular cells on fibroblast activation by co-culture method. RESULTS: SSR attenuated the release of IL-18, VEGF, and MCP1 cytokines, inhibited the activation of NF-κB/NLRP3 cascade, increased the PPARα, CPT-1α, CPT-2, ACADL, and MCAD protein expression, and improved the lipid accumulation. Further studies have demonstrated that one of the ways in which SSR suppresses the inflammatory response to protect renal tubular cells is through the restoration of PPARα-mediated FAO. In addition, by means of co-culture ways, the results demonstrated that SSR attenuated secretion of inflammatory mediators in NRK-52E cells by PPARα/NF-κB/NLRP3 pathway, thereby inhibiting renal fibroblast activation. CONCLUSION: SSR inhibits RIF by suppressing inflammatory response of hypoxia-exposed RTECs through PPARα-mediated FAO.


Subject(s)
Fenofibrate , Renal Insufficiency, Chronic , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , PPAR alpha/metabolism , NF-kappa B/metabolism , Fenofibrate/metabolism , Fenofibrate/pharmacology , Kidney , Inflammation/metabolism , Cytokines/metabolism , Fatty Acids/metabolism , Fibrosis , Fibroblasts/metabolism
14.
Clin Rheumatol ; 43(3): 959-969, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38305937

ABSTRACT

OBJECTIVE: Fibroblast-like synoviocytes (FLS) play a critical role on the exacerbation and deterioration of rheumatoid arthritis (RA). Aberrant activation of FLS pyroptosis signaling is responsible for the hyperplasia of synovium and destruction of cartilage of RA. This study investigated the screened traditional Chinese medicine berberine (BBR), an active alkaloid extracted from the Coptis chinensis plant, that regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis. METHODS: First, BBR was screened using a high-throughput drug screening strategy, and its inhibitory effect on RA-FLS was verified by in vivo and in vitro experiments. Second, BBR was intraperitoneally administrated into the collagen-induced arthritis rat model, and the clinical scores, arthritis index, and joint HE staining were evaluated. Third, synovial tissues of CIA mice were collected, and the expression of NLRP3, cleaved-caspase-1, GSDMD-N, Mst1, and YAP was detected by Western blot. RESULTS: The administration of BBR dramatically alleviated the severity of collagen-induced arthritis rat model with a decreased clinical score and inflammation reduction. In addition, BBR intervention significantly attenuates several pro-inflammatory cytokines (interleukin-1ß, interleukin-6, interleukin-17, and interleukin-18). Moreover, BBR can reduce the pyroptosis response (caspase-1, NLR family pyrin domain containing 3, and gasdermin D) of the RA-FLS in vitro, activating the Hippo signaling pathway (Mammalian sterile 20-like kinase 1, yes-associated protein, and transcriptional enhanced associate domains) so as to inhibit the pro-inflammatory effect of RA-FLS. CONCLUSION: These results support the role of BBR in RA and may have therapeutic implications by directly repressing the activation, migration of RA-FLS, which contributing to the attenuation of the progress of CIA. Therefore, targeting PU.1 might be a potential therapeutic approach for RA. Besides, BBR inhibited RA-FLS pyroptosis by downregulating of NLRP3 inflammasomes (NLRP3, caspase-1) and eased the pro-inflammatory activities via activating the Hippo signaling pathway, thereby improving the symptom of CIA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Berberine , Rats , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/metabolism , Synovial Membrane/metabolism , Caspases/metabolism , Caspases/pharmacology , Caspases/therapeutic use , Fibroblasts/metabolism , Cells, Cultured , Cell Proliferation , Mammals
15.
Food Funct ; 15(4): 1884-1898, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38328833

ABSTRACT

Photoaging is widely regarded as the most significant contributor to skin aging damage. It is triggered by prolonged exposure to ultraviolet (UV) light and typically manifests as dryness and the formation of wrinkles. Nutritional intervention is a viable strategy for preventing and treating skin photoaging. In previous studies, we demonstrated that α-ionone had ameliorating effects on photoaging in both epidermal keratinocytes and dermal fibroblasts. Here, we investigated the potential anti-photoaging effects of dietary α-ionone using a UVB-irradiated male C57BL/6N mouse model. Our findings provided compelling evidence that dietary α-ionone alleviates wrinkle formation, skin dryness, and epidermal thickening in chronic UVB-exposed mice. α-Ionone accumulated in mouse skin after 14 weeks of dietary intake of α-ionone. α-Ionone increased collagen density and boosted the expression of collagen genes, while attenuating the UVB-induced increase of matrix metalloproteinase genes in the skin tissues. Furthermore, α-ionone suppressed the expression of senescence-associated secretory phenotypes and reduced the expression of the senescence marker p21 and DNA damage marker p53 in the skin of UVB-irradiated mice. Transcriptome sequencing results showed that α-ionone modifies gene expression profiles of skin. Multiple pathway enrichment analyses on both the differential genes and the entire genes revealed that α-ionone significantly affects multiple physiological processes and signaling pathways associated with skin health and diseases, of which the p53 signaling pathway may be the key signaling pathway. Taken together, our findings reveal that dietary α-ionone intervention holds promise in reducing the risks of skin photoaging, offering a potential strategy to address skin aging concerns.


Subject(s)
Norisoprenoids , Skin Aging , Male , Mice , Animals , Tumor Suppressor Protein p53/metabolism , Mice, Inbred C57BL , Skin , Collagen/metabolism , Dietary Supplements , Ultraviolet Rays/adverse effects , Mice, Hairless , Fibroblasts
16.
Genes (Basel) ; 15(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38397163

ABSTRACT

Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor ß1 (TGF-ß1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFßR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.


Subject(s)
Aldehydes , Cyclopentane Monoterpenes , Phenols , Phenylethyl Alcohol/analogs & derivatives , Plant Oils , Vascular Endothelial Growth Factor A , Humans , Olive Oil/pharmacology , Plant Oils/analysis , Biomarkers , Antigens, Differentiation , Cell Proliferation , Fibroblasts , Gene Expression
17.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396933

ABSTRACT

Bioinert materials such as the zirconium dioxide and aluminum oxide are widely used in surgery and dentistry due to the absence of cytotoxicity of the materials in relation to the surrounding cells of the body. However, little attention has been paid to the study of metabolic processes occurring at the implant-cell interface. The metabolic activity of mouse 3T3 fibroblasts incubated on yttrium-stabilized zirconium ceramics cured with aluminum oxide (ATZ) and stabilized zirconium ceramics (Y-TZP) was analyzed based on the ratio of the free/bound forms of cofactors NAD(P)H and FAD obtained using two-photon microscopy. The results show that fibroblasts incubated on ceramics demonstrate a shift towards the free form of NAD(P)H, which is observed during the glycolysis process, which, according to our assumptions, is related to the porosity of the surface of ceramic structures. Consequently, despite the high viability and good proliferation of fibroblasts assessed using an MTT test and a scanning electron microscope, the cells are in a state of hypoxia during incubation on ceramic structures. The FLIM results obtained in this work can be used as additional information for scientists who are interested in manufacturing osteoimplants.


Subject(s)
Bone-Implant Interface , NAD , Zirconium , Animals , Mice , Aluminum Oxide , Ceramics/chemistry , Fibroblasts/metabolism , Materials Testing , NAD/metabolism , Surface Properties , Yttrium , Zirconium/chemistry
18.
Photobiomodul Photomed Laser Surg ; 42(2): 140-147, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38393824

ABSTRACT

Objective: The objective of this study is to evaluate the potential effects of photobiomodulation (PBM) on cell proliferation and extracellular matrix production of human fibroblasts (FN1) cultured in 2D. Background: Patients with healing difficulties suffer injuries that take time to recover. In addition, aging can be seen in our faces daily when we look in the mirror; in both situations, collagen production is reduced. Fibroblasts act in the beginning and at the end of the inflammation phase, signaling to immune agents, and platelets, and producing collagen, coordinating repair. PBM increases cell viability, proliferation, and mRNA production. Methods: Human fibroblasts were irradiated three times after cell seed (after 24, 48, and 72 h) using a gallium-aluminum arsenideGaAlAs low-level laser (LLL). Cell viability, proliferative response, synthesis of collagen types I and III, and soluble collagen production were analyzed. The statistical significance of differences between groups was determined using unpaired one-way analysis of variance (ANOVA) p < 0.05. Results: PBM increased significantly the number of fibroblasts, and the production of collagen types I (Col I) and III (Col III), after three sessions of LLL with 2.5 J per session, every 24 h, for 3 consecutive days; total energy delivered after 72 h is 7.5 J. Conclusions: This energy density of LLL increases fibroblast proliferation and collagen production in vitro without side effects.


Subject(s)
Low-Level Light Therapy , Humans , Collagen/metabolism , Extracellular Matrix/metabolism , Cell Proliferation , Fibroblasts/metabolism
19.
Aging Cell ; 23(4): e14093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287646

ABSTRACT

Vitamin D3 replacement in older insufficient adults significantly improves their antigen-specific varicella zoster virus (VZV) cutaneous immunity. However, the mechanisms involved in this enhancement of cutaneous immunity are not known. Here, we show for the first time that vitamin D3 blocks the senescence-associated secretory phenotype (SASP) production by senescent fibroblasts by partially inhibiting the p38 MAPK pathway. Furthermore, transcriptomic analysis of skin biopsies from older subjects after vitamin D3 supplementation shows that vitamin D3 inhibits the same inflammatory pathways in response to saline as the specific p38 inhibitor, losmapimod, which also enhances immunity in the skin of older subjects. Vitamin D3 supplementation therefore may enhance immunity during ageing in part by blocking p38 MAPK signalling and in turn inhibit SASP production from senescent cells in vivo.


Subject(s)
Cellular Senescence , Cholecalciferol , Adult , Humans , Aged , Cellular Senescence/genetics , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Aging , Fibroblasts/metabolism , Inflammation Mediators/metabolism , Immunity
20.
J Ethnopharmacol ; 324: 117763, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38253274

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sri Lankan traditional medicine uses Vernonia zeylanica and Mallotus repandus broadly for the treatment of a multitude of disease conditions, including wound healing. AIM OF THE STUDY: We aimed to scientifically validate the safety and efficacy of wound healing of an aqueous distillate of Vernonia zeylanica and Mallotus repandus (ADVM) mature leaves, tested on primary human dermal fibroblasts. MATERIALS AND METHODS: Human dermal fibroblasts isolated from clinical waste from circumcision surgery were characterized by flowcytometry and trilineage differentiation. The MTT dye reduction assay, and the ex vivo wound healing scratch assay established wound healing properties of ADVM using the primary human dermal fibroblast cell line. Upregulation of genes associated with wound healing (MMP3, COL3A1, TGFB1, FGF2) were confirmed by RT qPCR. GC-MS chromatography evaluated the phytochemical composition of ADVM. RESULTS: Compared to the synthetic stimulant, ß fibroblast growth factor, ADVM at 0.25% concentration on the primary dermal fibroblast cell line exhibited significant ex vivo, (i) 1.7-fold % cell viability (178.7% vs 304.3 %, p < 0.001), (ii) twofold greater % wound closure (%WC) potential (47.74% vs 80.11%, p < 0.001), and (iii) higher rate of % WC (3.251 vs 3.456 % WC/h, p < 0.05), sans cyto-genotoxicity. Up regulated expression of FGF2, TGFB1, COL3A1 and MMP3, genes associated with wound healing, confirmed effective stimulation of pathways of the three overlapping phases of wound healing (P < 0.05). GC-MS profile of ADVM characterized four methyl esters, which may be posited as wound healing phytochemicals. CONCLUSIONS: Exceeding traditional medicine claims, the exvivo demonstration of rapid skin regeneration, reiterated by upregulated expression of genes related to wound healing pathways, sans cytotoxicity, propounds ADVM, cued from traditional medicine, as a potential safe and effective natural stimulant for rapid wound-healing. Additionally, it may serve as an effective proliferative stimulant of dermal fibroblasts for cell therapy, with potential in reparative and regenerative therapy of skin disorders.


Subject(s)
Mallotus Plant , Vernonia , Male , Humans , Matrix Metalloproteinase 3/metabolism , Fibroblast Growth Factor 2/metabolism , Plant Extracts/chemistry , Wound Healing , Skin , Medicine, Traditional , Fibroblasts
SELECTION OF CITATIONS
SEARCH DETAIL