Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Front Immunol ; 12: 748519, 2021.
Article in English | MEDLINE | ID: mdl-34777360

ABSTRACT

Inherited defects that abrogate the function of the adenosine deaminase (ADA) enzyme and consequently lead to the accumulation of toxic purine metabolites cause profound lymphopenia and severe combined immune deficiency. Additionally, neutropenia and impaired neutrophil function have been reported among ADA-deficient patients. However, due to the rarity of the disorder, the neutrophil developmental abnormalities and the mechanisms contributing to them have not been characterized. Induced pluripotent stem cells (iPSC) generated from two unrelated ADA-deficient patients and from healthy controls were differentiated through embryoid bodies into neutrophils. ADA deficiency led to a significant reduction in the number of all early multipotent hematopoietic progenitors. At later stages of differentiation, ADA deficiency impeded the formation of granulocyte colonies in methylcellulose cultures, leading to a significant decrease in the number of neutrophils generated from ADA-deficient iPSCs. The viability and apoptosis of ADA-deficient neutrophils isolated from methylcellulose cultures were unaffected, suggesting that the abnormal purine homeostasis in this condition interferes with differentiation or proliferation. Additionally, there was a significant increase in the percentage of hyperlobular ADA-deficient neutrophils, and these neutrophils demonstrated significantly reduced ability to phagocytize fluorescent microspheres. Supplementing iPSCs and methylcellulose cultures with exogenous ADA, which can correct adenosine metabolism, reversed all abnormalities, cementing the critical role of ADA in neutrophil development. Moreover, chemical inhibition of the ribonucleotide reductase (RNR) enzyme, using hydroxyurea or a combination of nicotinamide and trichostatin A in iPSCs from healthy controls, led to abnormal neutrophil differentiation similar to that observed in ADA deficiency, implicating RNR inhibition as a potential mechanism for the neutrophil abnormalities. In conclusion, the findings presented here demonstrate the important role of ADA in the development and function of neutrophils while clarifying the mechanisms responsible for the neutrophil abnormalities in ADA-deficient patients.


Subject(s)
Adenosine Deaminase/physiology , Agammaglobulinemia/immunology , Induced Pluripotent Stem Cells/cytology , Neutrophils/cytology , Severe Combined Immunodeficiency/immunology , Adenosine Deaminase/genetics , Cells, Cultured , Embryoid Bodies/cytology , Fibroblasts/enzymology , Granulocytes/cytology , Humans , Hydroxamic Acids/pharmacology , Hydroxyurea/pharmacology , Infant , Male , Mutation, Missense , Myelopoiesis , Niacinamide/pharmacology , Point Mutation , Ribonucleotide Reductases/antagonists & inhibitors
2.
Biomed Pharmacother ; 129: 110427, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32574974

ABSTRACT

Triptolide is a multi-functional natural small molecular compound extracted from a traditional Chinese medicinal herb. Triptolide and its derivatives exhibit cytotoxicity through inducing DNA damage, therefore increasing sensitivity to DNA-damage based chemotherapy or radiotherapy in different types of cells. However, the regulatory mechanism of genotoxicity by triptolide, and the loss of genome integrity induced by triptolide are not fully understood. Here, we measured the effects of triptolide on genome integrity in a human fibroblast line HCA2-hTERT using the neutral comet assay. We demonstrated that treating cells with triptolide induced genomic instability in HCA2-hTERT cells. Furthermore, we observed the accumulation of γH2AX foci in triptolide treated cells than control cells at 24 h post ionizing radiation. Further mechanistic studies indicated that triptolide inhibited the enzymatic activity of DNA-PKcs, the critical nonhomologous end joining factor. In vitro kinase activity assays showed that triptolide suppressed the kinase activity of DNA-PKcs and molecular docking also predicted a potential interaction between triptolide and DNA-PKcs. As a consequence, we found that triptolide treatment enhanced the interaction between DNA-PKcs and KU80 and hampered the following recruitment of 53BP1. Altogether, our finding provides a new perspective about the toxicity of triptolide in non-cancer cells and highlights the necessity of taking genome effects of triptolide and its derivatives into consideration in the future clinical and research applications.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair/drug effects , DNA-Activated Protein Kinase/antagonists & inhibitors , Diterpenes/toxicity , Fibroblasts/drug effects , Genomic Instability/drug effects , Phenanthrenes/toxicity , Protein Kinase Inhibitors/pharmacology , Cell Line , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Epoxy Compounds/toxicity , Fibroblasts/enzymology , Fibroblasts/pathology , Histones/metabolism , Humans , Ku Autoantigen/metabolism , Phosphorylation , Telomerase/genetics , Telomerase/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
3.
Nat Cell Biol ; 22(4): 412-424, 2020 04.
Article in English | MEDLINE | ID: mdl-32203415

ABSTRACT

Although the transition metal copper (Cu) is an essential nutrient that is conventionally viewed as a static cofactor within enzyme active sites, a non-traditional role for Cu as a modulator of kinase signalling is emerging. Here, we found that Cu is required for the activity of the autophagic kinases ULK1 and ULK2 (ULK1/2) through a direct Cu-ULK1/2 interaction. Genetic loss of the Cu transporter Ctr1 or mutations in ULK1 that disrupt the binding of Cu reduced ULK1/2-dependent signalling and the formation of autophagosome complexes. Increased levels of intracellular Cu are associated with starvation-induced autophagy and are sufficient to enhance ULK1 kinase activity and, in turn, autophagic flux. The growth and survival of lung tumours driven by KRASG12D is diminished in the absence of Ctr1, is dependent on ULK1 Cu binding and is associated with reduced levels of autophagy and signalling. These findings suggest a molecular basis for exploiting Cu-chelation therapy to prevent autophagy signalling to limit proliferation and improve patient survival in cancer.


Subject(s)
Adenocarcinoma of Lung/genetics , Autophagy-Related Protein-1 Homolog/genetics , Autophagy/genetics , Copper/metabolism , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Lung Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Adenocarcinoma of Lung/enzymology , Adenocarcinoma of Lung/pathology , Amino Acid Sequence , Animals , Autophagosomes/enzymology , Autophagy-Related Protein 5/deficiency , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Copper Transporter 1/deficiency , Copper Transporter 1/genetics , Fibroblasts/enzymology , Fibroblasts/pathology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/deficiency , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Xenograft Model Antitumor Assays
4.
Biomed Pharmacother ; 118: 109367, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31545276

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a known intractable chronic inflammatory disease of synovial joints characterized by hyperplasia and consecutive inflammation with a high prevalence.Guizhi-Shaoyao-Zhimu (GSZD) is the first choice for clinical treatment of RA in Chinese traditional medicine. This study is aimed to explore the possible pharmacological mechanisms of anti-arthritic effect of GSZD. METHODS: Type II collagen-induced arthritis (CIA) rat model was used to study the anti-arthritic activity of GSZDin vivo, and toe swelling & arthritis score, serum levels of cytokines, and pathological examinations were carried out. In vitro, TNF-α induced MH7A cells were used to study the possible mechanisms of GSZD. The anti-proliferative effects of GSZD were determined by MMT assay, and pro-apoptotic activity of GSZD in MH7A cells was determined by flow cytometry analysis & DAPI staining. Furthermore, the adhesive and invasive abilities of MH7A cells were determined using cell adhesion and transwell assays. MMPs levels were determined by ELISA assays, and mRNA expressions of Caspase-3, -9, Bax, SOCS1, Bcl-2, JAK2, STAT-3 and -5 were determined using qRT-PCR analysis. Besides, the major chemical components in GSZD were analyzed by HPLC-QqQ-MS analysis. RESULTS: Our results showed GSZD reduced the toe swelling & arthritis score, and serum levels of TNF-α, IL-1ß, IL-6 & IL-17a in CIA rats; pathological examination results indicated GSZD improved ankle joint injury in CIA rats.In vitro, GSZD showed significant anti-proliferative and pro-apoptotic effects on TNF-α stimulated MH7A cells. After GSZD treatment, the adhesive and invasive abilities of MH7A cells were reduced, and secretions of MMPs, IL-6 and IL-8 were also reduced. GSZD decreased the releases of TNF-α and IL-1ß in LPS stimulated RAW 264.7 cells. Further studies showed GSZD up-regulated mRNA expressions of Caspase-3, -9, Bax, and SOCS1, whereas down-regulated mRNA expressions of Bcl-2, JAK2, STAT3 and STAT5. Besides, 13 major chemical components were identified in GSZD extracts through HPLC-QqQ-MS analysis. CONCLUSION: Our results suggested GSZD possesses an anti-rheumatic effect on CIA rats, and the possible mechanism is related to inhibiting inflammatory response, inhibiting invasion and migration of synovial fibroblasts, and inducing apoptosis in synovial fibroblasts.


Subject(s)
Apoptosis , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cell Movement , Drugs, Chinese Herbal/therapeutic use , Fibroblasts/pathology , Inflammation/drug therapy , Synovial Membrane/pathology , Animals , Ankle/pathology , Apoptosis/drug effects , Arthritis, Experimental/complications , Arthritis, Experimental/diagnostic imaging , Cell Adhesion/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen Type II , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Fibroblasts/drug effects , Fibroblasts/enzymology , Humans , Inflammation/complications , Inflammation/pathology , Inflammation Mediators/metabolism , Joints/drug effects , Joints/pathology , Matrix Metalloproteinases/metabolism , Mice , Neoplasm Invasiveness , RAW 264.7 Cells , Rats, Wistar , Synovial Membrane/drug effects , Wound Healing/drug effects , X-Ray Microtomography
5.
Biomed Pharmacother ; 112: 108669, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30784938

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal lung disease with a poor prognosis and limited treatment options. The incidence of IPF increases with age, and the mechanisms related to aging such as cellular senescence have been strongly implicated in disease pathology. Therefore, a better understanding of fibroblasts senescence might provide a new therapeutic strategy to prevent and treat pulmonary fibrosis. In this study, we aimed to explore the effects of citrus alkaline extracts (CAE) on the fibroblasts senescence, and elucidate the underlying mechanism to ameliorate pulmonary fibrosis. We demonstrated that CAE mitigated the collagen deposition by the initial early treatment, suggesting a potential preventive effect of CAE on pulmonary fibrosis. The expression of senescence biomarkers P16INK4a and P21, concomitant with down-regulation of the myofibroblasts marker α-SMA, and the number of senescence-associated ß-galactosidase (SA-ß-Gal) positive cells were decreased by CAE treatment, indicating a significant inhibitory effect of CAE on fibroblast senescence. Additionally, CAE down-regulated the expression of the senescence-associated secretory phenotype (SASP) in etoposide-induced senescent fibroblasts. Further studies indicated that COX-2 activation was required for CAE to inhibit the lung fibroblast senescence through a P53-dependent pathway. Results showed that the anti-senescence effect of CAE was abrogated when COX-2 was knocked down or inhibited by COX-2 inhibitor NS-398 or indomethacin in lung fibroblasts. Meanwhile, the anti-fibrotic and anti-senescence effect of CAE were abolished due to disruption of COX-2 in vivo. Collectively, our results provided a novel insight into the potential mechanism of CAE to inhibit the fibroblasts activation through preventing cellular senescence.


Subject(s)
Cellular Senescence/drug effects , Citrus , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Plant Extracts/therapeutic use , Animals , Cells, Cultured , Cellular Senescence/physiology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Fibroblasts/enzymology , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/pathology , Mice , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Random Allocation
6.
Mol Neurobiol ; 56(5): 3638-3656, 2019 May.
Article in English | MEDLINE | ID: mdl-30173408

ABSTRACT

Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.


Subject(s)
Iron/metabolism , Mutation/genetics , Pantothenate Kinase-Associated Neurodegeneration/drug therapy , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenic Acid/therapeutic use , Cell Death/drug effects , Cell Shape/drug effects , Coenzyme A/metabolism , Energy Metabolism/drug effects , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/pathology , Fibroblasts/ultrastructure , Gene Expression Regulation, Enzymologic/drug effects , Humans , Lipid Peroxidation/drug effects , Lipofuscin/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Pantothenate Kinase-Associated Neurodegeneration/pathology , Pantothenic Acid/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Carbonylation/drug effects
7.
J Agric Food Chem ; 66(28): 7504-7513, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29931974

ABSTRACT

Commercial dietary supplements of calcium pyruvate claim to be beneficial for losing weight, increasing muscle endurance, and regulating metabolism. Most industrial preparations have some impurities, including parapyruvate. Parapyruvate is an inhibitor of the α-ketoglutarate dehydrogenase complex (KGDHC). However, the effect and mechanism of parapyruvate on cell senescence and the content of parapyruvate in the dietary supplements of calcium pyruvate are unknown. In this study, we prepared pure parapyruvate with a purity of 99.8 ± 0.1% and investigated its ability to inhibit KGDHC activity and affect fibroblast senescence. Parapyruvate dose-dependently decreased KGDHC activity, with an IC50 of 4.13 mM and induced Hs68 cell senescence. Calcium ions, a KGDHC activator, antagonized the senescent effects of parapyruvate. The parapyruvate content was 1.4 ± 0.1% to 10.6 ± 0.2% in five brands of calcium pyruvate supplements. In this study, we showed that parapyruvate strongly induces Hs68 cell senescence by inhibiting KGDHC activity. Because of its KGDHC inhibition activity, the parapyruvate content should be an important issue for the food safety of calcium pyruvate supplements.


Subject(s)
Aging/drug effects , Dietary Supplements/analysis , Drug Contamination , Fibroblasts/cytology , Fibroblasts/drug effects , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Pyruvic Acid/pharmacology , Cell Line , Dietary Supplements/adverse effects , Fibroblasts/chemistry , Fibroblasts/enzymology , Humans , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/metabolism , Pyruvic Acid/chemistry
8.
Sci Rep ; 8(1): 1165, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348607

ABSTRACT

Mitochondrial complex I (CI) deficiency is the most frequent cause of oxidative phosphorylation (OXPHOS) disorders in humans. In order to benchmark the effects of CI deficiency on mitochondrial bioenergetics and dynamics, respiratory chain (RC) and endoplasmic reticulum (ER)-mitochondria communication, and superoxide production, fibroblasts from patients with mutations in the ND6, NDUFV1 or ACAD9 genes were analyzed. Fatty acid metabolism, basal and maximal respiration, mitochondrial membrane potential, and ATP levels were decreased. Changes in proteins involved in mitochondrial dynamics were detected in various combinations in each cell line, while variable changes in RC components were observed. ACAD9 deficient cells exhibited an increase in RC complex subunits and DDIT3, an ER stress marker. The level of proteins involved in ER-mitochondria communication was decreased in ND6 and ACAD9 deficient cells. |ΔΨ| and cell viability were further decreased in all cell lines. These findings suggest that disruption of mitochondrial bioenergetics and dynamics, ER-mitochondria crosstalk, and increased superoxide contribute to the pathophysiology in patients with ACAD9 deficiency. Furthermore, treatment of ACAD9 deficient cells with JP4-039, a novel mitochondria-targeted reactive oxygen species, electron and radical scavenger, decreased superoxide level and increased basal and maximal respiratory rate, identifying a potential therapeutic intervention opportunity in CI deficiency.


Subject(s)
Acyl-CoA Dehydrogenases/genetics , Electron Transport Complex I/deficiency , Fibroblasts/enzymology , Mitochondrial Diseases/genetics , NADH Dehydrogenase/genetics , Reactive Oxygen Species/metabolism , Acyl-CoA Dehydrogenases/deficiency , Adenosine Triphosphate/agonists , Adenosine Triphosphate/biosynthesis , Electron Transport/drug effects , Electron Transport/genetics , Electron Transport Complex I/genetics , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Fibroblasts/drug effects , Fibroblasts/pathology , Free Radical Scavengers/pharmacology , Gene Expression , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology , NADH Dehydrogenase/deficiency , Nitrogen Oxides/pharmacology , Oxidative Phosphorylation/drug effects , Primary Cell Culture , Reactive Oxygen Species/antagonists & inhibitors
9.
J Cell Mol Med ; 22(3): 1601-1613, 2018 03.
Article in English | MEDLINE | ID: mdl-29265583

ABSTRACT

Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of the mitochondrial enzyme, methylmalonyl-CoA mutase (MCM). The main treatments for MMA patients are dietary restriction of propiogenic amino acids and carnitine supplementation. Liver or combined liver/kidney transplantation has been used to treat those with the most severe clinical manifestations. Thus, therapies are necessary to help improve quality of life and prevent liver, renal and neurological complications. Previously, we successfully used the TAT-MTS-Protein approach for replacing a number of mitochondrial-mutated proteins. In this targeted system, TAT, an 11 a.a peptide, which rapidly and efficiently can cross biological membranes, is fused to a mitochondrial targeting sequence (MTS), followed by the mitochondrial mature protein which sends the protein into the mitochondria. In the mitochondria, the TAT-MTS is cleaved off and the native protein integrates into its natural complexes and is fully functional. In this study, we used heterologous MTSs of human, nuclear-encoded mitochondrial proteins, to target the human MCM protein into the mitochondria. All fusion proteins reached the mitochondria and successfully underwent processing. Treatment of MMA patient fibroblasts with these fusion proteins restored mitochondrial activity such as ATP production, mitochondrial membrane potential and oxygen consumption, indicating the importance of mitochondrial function in this disease. Treatment with the fusion proteins enhanced cell viability and most importantly reduced MMA levels. Treatment also enhanced albumin and urea secretion in a CRISPR/Cas9-engineered HepG2 MUT (-/-) liver cell line. Therefore, we suggest using this TAT-MTS-Protein approach for the treatment of MMA.


Subject(s)
Adenosine Triphosphate/biosynthesis , Fibroblasts/enzymology , Gene Products, tat/genetics , Methylmalonyl-CoA Mutase/genetics , Mitochondria/enzymology , Recombinant Fusion Proteins/genetics , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Metabolism, Inborn Errors/therapy , CRISPR-Cas Systems , Escherichia coli/genetics , Escherichia coli/metabolism , Fibroblasts/pathology , Gene Expression , Gene Products, tat/metabolism , Genetic Therapy/methods , Hep G2 Cells , Humans , Liver/enzymology , Liver/pathology , Membrane Potential, Mitochondrial , Methylmalonic Acid/metabolism , Methylmalonyl-CoA Mutase/metabolism , Mitochondria/pathology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Diseases/therapy , Plasmids/chemistry , Plasmids/metabolism , Primary Cell Culture , Protein Engineering/methods , Protein Sorting Signals/genetics , Recombinant Fusion Proteins/metabolism , Transfection
10.
Photochem Photobiol ; 94(2): 370-377, 2018 03.
Article in English | MEDLINE | ID: mdl-29164624

ABSTRACT

Sorbus commixta is a traditional oriental medicinal plant that grows in East Asian countries such as Korea, Japan and China. The twig of S. commixta has been considered valuable for centuries to treat diseases including asthma, cough and other bronchial disorders. However, the effect of S. commixta twig extract on human skin has not been investigated well. The present study aimed at assessing the antiphotoaging effect of S. commixta twig ethanol extract (STE) on ultraviolet B (UVB)-induced matrix metalloproteinase (MMP) levels and its underlying mechanism in human dermal fibroblasts. In this study, we found that STE (12.5-50 µg mL-1 ) treatment significantly inhibited UVB-induced MMP-1, MMP-2 and MMP-3 expression, concomitant with a downregulation of intracellular ROS generation. These effects might be associated with a STE-induced inhibition of the mitogen-activated protein kinase (MAPK) pathway. Furthermore, STE also downregulated UVB-induced c-Fos expression in a concentration-dependent manner, but had no inhibitory effect on c-Jun phosphorylation. Taken together, these results indicate that STE may be an antiphotoaging agent and that its effect may occur via its inhibition of MMPs expression and MAPK pathway activation.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Matrix Metalloproteinase Inhibitors/pharmacology , Radiation-Protective Agents/pharmacology , Skin/enzymology , Skin/radiation effects , Sorbus/chemistry , Ultraviolet Rays/adverse effects , Cells, Cultured , Dose-Response Relationship, Drug , Fibroblasts/enzymology , Fibroblasts/radiation effects , Humans , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism
11.
J Med Chem ; 60(23): 9462-9469, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29112434

ABSTRACT

The highly stereocontrolled de novo synthesis of l-NBDNJ (the unnatural enantiomer of the iminosugar drug Miglustat) and a preliminary evaluation of its chaperoning potential are herein reported. l-NBDNJ is able to enhance lysosomal α-glucosidase levels in Pompe disease fibroblasts, either when administered singularly or when coincubated with the recombinant human α-glucosidase. In addition, differently from its d-enantiomer, l-NBDNJ does not act as a glycosidase inhibitor.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Enzyme Activation/drug effects , Fibroblasts/drug effects , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/metabolism , 1-Deoxynojirimycin/chemical synthesis , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , Allosteric Regulation/drug effects , Cell Line , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fibroblasts/enzymology , Fibroblasts/metabolism , Glycogen Storage Disease Type II/enzymology , Glycogen Storage Disease Type II/metabolism , Humans , Lysosomes/drug effects , Lysosomes/enzymology , Lysosomes/metabolism , Models, Molecular , Stereoisomerism
12.
Biomed Pharmacother ; 95: 1119-1128, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28922731

ABSTRACT

Fibroblast is believed to be the primary effector in idiopathic pulmonary fibrosis (IPF), a progressive lung disorder characterized by aberrant tissue remodeling and the formation of fibroblastic foci. Due to the complicated etiology and mechanism, there are few effective drugs for this fatal disease. Shikonin (SHI), which is the major ingredient isolated from the plant Lithospermum Erythrorhizon, has long been used as traditional medicine for many diseases including inflammation and cancer. The roles of SHI in attenuating skin scar and renal fibrosis by reducing TGFß1-stimulated fibroblast activation are also reported. But whether SHI works on IPF which exhibits both inflammatory and carcinoma-like features remains unknown. In this study, using isolated pulmonary fibroblasts, we demonstrated that SHI inhibited the proliferation, migration of fibroblasts, enhanced cell apoptosis and led to cell cycle arrest at G1 and G2/M phase. Moreover, SHI reduced the production of α-SMA, fibronectin, collagen I and III in response to TGF-ß induction in pulmonary fibroblasts, and all of these gene production is the key component of extracellular matrix for tissue remodeling for IPF. The phosphorylation of Akt was down-regulated, p53 increased, the mRNA levels of p21 and p27 enhanced after SHI treatments. The phosphorylation of both p38 MAPK and Akt stimulated by TGF-ß was reduced after SHI treatments. Collectively, these data indicate that SHI has a strong cytotoxicity in pulmonary fibroblast via inhibiting Akt activation signaling pathway, and attenuates TGF-ß induced extracellular matrix genes production in pulmonary fibroblasts via modulating the activities of p38 MAPK and Akt. SHI might serve as a therapeutically candidate for IPF patients.


Subject(s)
Fibroblasts/cytology , Fibroblasts/enzymology , Lung/cytology , MAP Kinase Signaling System/drug effects , Naphthoquinones/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Male , Mice, Inbred C57BL , Transforming Growth Factor beta1/pharmacology
13.
Biochem J ; 474(20): 3403-3420, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28827282

ABSTRACT

Glycogen storage disorders (GSDs) are caused by excessive accumulation of glycogen. Some GSDs [adult polyglucosan (PG) body disease (APBD), and Tarui and Lafora diseases] are caused by intracellular accumulation of insoluble inclusions, called PG bodies (PBs), which are chiefly composed of malconstructed glycogen. We developed an APBD patient skin fibroblast cell-based assay for PB identification, where the bodies are identified as amylase-resistant periodic acid-Schiff's-stained structures, and quantified. We screened the DIVERSet CL 10 084 compound library using this assay in high-throughput format and discovered 11 dose-dependent and 8 non-dose-dependent PB-reducing hits. Approximately 70% of the hits appear to act through reducing glycogen synthase (GS) activity, which can elongate glycogen chains and presumably promote PB generation. Some of these GS inhibiting hits were also computationally predicted to be similar to drugs interacting with the GS activator protein phosphatase 1. Our work paves the way to discovering medications for the treatment of PB-involving GSD, which are extremely severe or fatal disorders.


Subject(s)
Fibroblasts/enzymology , Glycogen Storage Disease , Glycogen Synthase/metabolism , Nervous System Diseases , Adult , Drug Evaluation, Preclinical/methods , Female , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/drug therapy , Glycogen Storage Disease/enzymology , Humans , Male , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Nervous System Diseases/enzymology
14.
J Drugs Dermatol ; 16(8): s125-s128, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28810000

ABSTRACT

There is compelling evidence that Infrared A (IRA) from natural sunlight contributes to photoaging of human skin by inducing the expression of matrix metalloproteinase-1 (MMP-1) expression in human dermal fibroblasts. Corresponding mechanistic studies have shown that IRA does so by increasing the production of reactive oxygen species in irradiated cells. In the present study, we therefore asked if treatment of primary human skin fibroblasts with a blueberry-derived antioxidant matrix (BerrimatrixTM), which is employed as an active ingredient in commercially available skin care products that are topically applied, can prevent IRA-induced MMP-1 expression in these cells. In this in vitro study, we have found that this antioxidant containing matrix is well tolerated by fibroblast over a broad concentration range and that it efficiently prevents IRA-induced MMP-1 mRNA expression. It may thus be speculated that topical application of this antioxidant containing matrix may be efficient in protecting human skin against IRA-induced wrinkle formation.

J Drugs Dermatol. 2017;16(8 Suppl 2):s125-128.

.


Subject(s)
Antioxidants/pharmacology , Blueberry Plants , Fibroblasts/drug effects , Skin/drug effects , Cell Survival , Cells, Cultured/drug effects , Cells, Cultured/enzymology , Cells, Cultured/radiation effects , Fibroblasts/enzymology , Fibroblasts/radiation effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Humans , Infrared Rays , Matrix Metalloproteinase 1/metabolism , Plant Extracts/chemistry , Skin/radiation effects
15.
Pharm Biol ; 55(1): 1984-1991, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28728492

ABSTRACT

CONTEXT: The search for bioactive compounds from botanical sources is attracting much interest. However, differences in chemical composition may occur within the same species depending on different geographical origins. OBJECTIVES: We evaluated the properties on skin enzymes and cells of extracts from sulla legume crop Hedysarum coronarium L. (Fabaceae), collected at two Italian sites near Pisa and Ventimiglia, for possible dermatological and cosmetic applications. MATERIAL AND METHODS: Plant aerial portions were extracted in MTBE/ethyl acetate/acetone, obtaining two extracts named Pisa sulla extract (PSE) and Ventimiglia sulla extract (VSE). Extracts were subjected to chemical characterization, LC-MS/MS analysis and biological assays. RESULTS: PSE showed stronger antiradical scavenging and higher phenolic and flavonoid contents with respect to VSE. LC-MS/MS analysis revealed similar composition for the two extracts, but PSE was richer in condensed tannins and flavonoids, principally rhoifolin, quercetin, naringenin and derivatives. PSE induced stronger inhibition on collagenase and elastase by in vitro enzyme assays, possibly due to higher levels of condensed tannins and quercetin. ELISA bioassay on human dermal fibroblasts revealed stronger PSE induction of collagen production. Determination of glycerol release from adipocytes disclosed stronger stimulation of lipolysis by PSE, allegedly ascribed to higher charge of quercetin and derivatives. In summary, the higher richness in phenolics of PSE is strictly related to stronger bioactivity. DISCUSSION AND CONCLUSIONS: Data indicate that aerial H. coronarium material is suitable for the development of dermatological and cosmeceutical products, but the geographical origin is an important factor for maximally exploiting the biological properties of this species.


Subject(s)
Fabaceae , Phenols/pharmacology , Plant Extracts/pharmacology , Skin/drug effects , Skin/enzymology , Cells, Cultured , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/enzymology , Humans , Italy/epidemiology , Phenols/chemistry , Phenols/isolation & purification , Plant Components, Aerial , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Skin/cytology
16.
Free Radic Biol Med ; 110: 176-187, 2017 09.
Article in English | MEDLINE | ID: mdl-28603085

ABSTRACT

Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q10, but due to its highly lipophilic nature, Q10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney.


Subject(s)
Antioxidants/pharmacology , Epithelial Cells/drug effects , Kaempferols/pharmacology , Kidney Tubules, Proximal/drug effects , Polyphenols/pharmacology , Ubiquinone/biosynthesis , Animals , Carbon Isotopes , Cell Line , Epithelial Cells/cytology , Epithelial Cells/enzymology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/enzymology , HEK293 Cells , HL-60 Cells , Hep G2 Cells , Humans , Isotope Labeling , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/enzymology , Mice , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Sirtuin 3/genetics , Sirtuin 3/metabolism
17.
Arthritis Res Ther ; 19(1): 76, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28399896

ABSTRACT

BACKGROUND: The recent findings of cancer-specific metabolic changes, including increased glucose and glutamine consumption, have provided new therapeutic targets for consideration. Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients exhibit several tumor cell-like characteristics; however, the role of glucose and glutamine metabolism in the aberrant proliferation of these cells is unclear. Here, we evaluated the role of these metabolic pathways in RA-FLS proliferation and in autoimmune arthritis in SKG mice. METHODS: The expression of glycolysis- or glutaminolysis-related enzymes was evaluated by real-time polymerase chain reaction (PCR) and Western blotting, and the intracellular metabolites were evaluated by metabolomic analyses. The effects of glucose or glutamine on RA-FLS cell growth were investigated using glucose- or glutamine-free medium. Glutaminase (GLS)1 small interfering RNA (siRNA) and the GLS1 inhibitor compound 968 were used to inhibit GLS1 in RA-FLS, and compound 968 was used to study the effect of GLS1 inhibition in zymosan A-injected SKG mice. RESULTS: GLS1 expression was increased in RA-FLS, and metabolomic analyses revealed that glutamine metabolism was increased in RA-FLS. RA-FLS proliferation was reduced under glutamine-deprived, but not glucose-deprived, conditions. Cell growth of RA-FLS was inhibited by GLS1 siRNA transfection or GLS1 inhibitor treatment. Treating RA-FLS with either interleukin-17 or platelet-derived growth factor resulted in increased GLS1 levels. Compound 968 ameliorated the autoimmune arthritis and decreased the number of Ki-67-positive synovial cells in SKG mice. CONCLUSIONS: Our results suggested that glutamine metabolism is involved in the pathogenesis of RA and that GLS1 plays an important role in regulating RA-FLS proliferation, and may be a novel therapeutic target for RA.


Subject(s)
Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Fibroblasts/pathology , Glutaminase/metabolism , Synoviocytes/pathology , Animals , Arthritis, Experimental/enzymology , Arthritis, Rheumatoid/enzymology , Blotting, Western , Cell Proliferation/physiology , Female , Fibroblasts/enzymology , Gene Knockdown Techniques , Glutamine/metabolism , Immunohistochemistry , Mice , Real-Time Polymerase Chain Reaction , Synoviocytes/enzymology
18.
Oncol Rep ; 37(3): 1842-1848, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28098879

ABSTRACT

Acute myeloid leukemia and head and neck squamous cell carcinomas are the major causes of mortality and morbidity in Fanconi anemia (FA) patients. Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, have been implicated in tumor invasion and metastasis. Various cytokines, mitogens, growth factors, inducers and inhibitors control MMP activities. We investigated the roles of these in the regulation of MMP-2 and MMP-9 in human immortalized fibroblasts from FA. Human FA immortalized fibroblast cell lines FA-A:PD220 and FA-D2:PD20 were grown in minimum essential medium (MEM) supplemented with 15% fetal bovine serum (FBS) and antibiotics in 24-well tissue culture plates. At near confluence, the cells were washed with phosphate­buffered saline (PBS) and incubated in serum-free media with the following: phorbol 12-myristate 13-acetate (PMA) at 10-100 ng/ml; tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) at 0.1-25 ng/ml; lipopolysaccharide (LPS) at 10-100 µg/ml; epigallocatechin gallate (EGCG) and doxycycline (Dox) at 10-100 µM without and with PMA; a nutrient mixture (NM) without and with PMA at 10-1,000 µg/ml; actinomycin-D and cyclohexamide at 2 and 4 µM; retinoic acid and dexamethasone at 50 µM. After 24 h, media were removed and analyzed for MMP-2 and MMP-9 by zymography. Both FA cell lines expressed only MMP-2 and responded similarly to cytokines, mitogens, inducers and inhibitors. PMA potently stimulated MMP-9 and had a moderate effect on MMP-2. TNF-α showed variable effects on MMP-2 and significantly enhanced MMP-9. IL-1ß enhanced MMP-2 slightly and MMP-9 significantly. LPS had a moderate stimulatory effect on MMP-2 and no effect on MMP-9. EGCG, Dox and NM, without and with PMA, downregulated MMP-2 and MMP-9 expression. Actinomycin-D, retinoic acid and dexamethasone also had inhibitory effects on MMP-2. Our results showed that cytokines, mitogens and inhibitors modulated FA fibroblast MMP-2 and MMP-9 expression, suggesting the clinical use of MMP inhibitors, particularly such potent and non-toxic ones as the NM and its component EGCG in the management of FA cancers.


Subject(s)
Cytokines/pharmacology , Enzyme Activators/pharmacology , Fanconi Anemia/enzymology , Fibroblasts/enzymology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Carcinogens/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cattle , Cells, Cultured , Doxycycline/pharmacology , Fanconi Anemia/drug therapy , Fanconi Anemia/pathology , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Regulation, Enzymologic/drug effects , Humans , Interleukin-1beta/pharmacology , Lipopolysaccharides/pharmacology , Tetradecanoylphorbol Acetate/pharmacology , Tretinoin/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
19.
Rejuvenation Res ; 20(2): 103-110, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27396912

ABSTRACT

Lysyl oxidase-like 1 (LOXL1) is an amino-oxidase involved in maturation of elastic fibers. Its downregulation has been associated with elastic fibers repair loss in aging aorta, lung, ligament, and skin. Several evidences of LOXL1 epigenetic silencing by promoter methylation were reported in cancer and cutis laxa syndrome. We hypothesized that this mechanism could be implicated in skin aging process, as far as elastic fibers are also concerned. Anti-DNMT3A chromatin immunoprecipitation was conducted with nuclear extracts from skin fibroblasts isolated from young and elderly individuals, and showed a higher level of DNMT3A protein binding to the LOXL1 promoter in older cells concomitantly to the decrease of LOXL1 mRNA expression and the increase of LOXL1 promoter methylation. Using luciferase reporter assay driven by LOXL1 promoter in HEK293 cells, we demonstrated that LOXL1 transcriptional activity was dramatically reduced when a recombinant DNMT3A was concomitantly overexpressed. LOXL1 promoter transcriptional activity was restored in the presence of a broad-spectrum inhibitor of DNMT activity, 5-aza-2'-deoxycytidine. Finally, to assess whether the interplay between DNMT3A and LOXL1 promoter could be targeted to increase LOXL1 mRNA expression level, an Origanum majorana extract was selected among 43 plant extracts as a new inhibitor of human DNMT3A activity to restore LOXL1 secretion without cytotoxicity in aged skin fibroblasts.


Subject(s)
Aging/genetics , Amino Acid Oxidoreductases/genetics , Cellular Senescence/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Fibroblasts/enzymology , Promoter Regions, Genetic , Skin/cytology , Amino Acid Oxidoreductases/metabolism , Cellular Senescence/drug effects , Child , Child, Preschool , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/drug effects , DNA Methyltransferase 3A , Female , HEK293 Cells , Humans , Infant , Origanum/chemistry , Plant Extracts/pharmacology , Protein Binding/drug effects , Protein Binding/genetics
20.
J Med Food ; 19(11): 1057-1064, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27845865

ABSTRACT

Gastrodia elata Blume (GEB), a traditional herbal medicine, has been used to treat a wide range of neurological disorders (e.g., paralysis and stroke) and skin problems (e.g., atopic dermatitis and eczema) in oriental medicine. This study was designed to investigate the antioxidant ability of GEB and its antiaging effect on human dermal fibroblast cells (HDF). The total phenolic and flavonoid contents of GEB were 21.8 and 0.43 mg/g dry weight (DW), respectively. The ergothioneine content of GEB was 0.41 mg/mL DW. The DPPH and ABTS radical scavenging activities of GEB at 5 and 10 mg/mL approximately ranged between 31% and 44%. The superoxide dismutase activity of GEB at 10 and 25 mg/mL was 57% and 76%, respectively. GEB increased procollagen type 1 (PC1) production and inhibited matrix metalloproteinase-1 (MMP-1) production and elastase-1 activity in UVA-irradiated HDF. PC1 messenger RNA (mRNA) levels decreased upon UVA irradiation, but recovered in response to high doses of GEB in HDF. On the contrary, GEB significantly decreased MMP-1 and elastase-1 mRNA levels, which were markedly induced in UVA-irradiated HDF. Collectively, these results suggest that GEB has sufficient antioxidant ability to prevent the signs of skin aging in UVA-irradiated human skin cells, suggesting its potential as a natural antiaging product.


Subject(s)
Antioxidants/pharmacology , Gastrodia/chemistry , Plant Extracts/pharmacology , Skin Aging/drug effects , Skin/drug effects , Skin/radiation effects , Cell Line , Cell Survival/drug effects , Collagen Type I/metabolism , Enzyme Activation/drug effects , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/radiation effects , Humans , Matrix Metalloproteinase 1/metabolism , Pancreatic Elastase/metabolism , RNA, Messenger/metabolism , Skin/cytology , Skin/enzymology , Skin Aging/pathology , Superoxide Dismutase/metabolism , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL