Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Infect Immun ; 87(12)2019 12.
Article in English | MEDLINE | ID: mdl-31548326

ABSTRACT

The type IV pilus (Tfp) of nontypeable Haemophilus influenzae (NTHI) mediates adherence, colonization, motility, and biofilm formation, and the major protein subunit, PilA, is a promising vaccine candidate. Thus, it is crucial to understand how Tfp expression is regulated within the microenvironments of the human nasopharynx, which NTHI colonizes asymptomatically, and the more distal regions of the respiratory tract where NTHI-induced diseases occur. Here, we examined the effects of coculture of NTHI with human airway epithelial cells and heme availability on Tfp expression at temperatures typical of the human nasopharynx (34°C) or warmer anatomical sites during infection (37°C). Tfp expression was estimated by pilA promoter activity, pilA gene expression, and relative abundances of PilA and pilin protein. The results revealed that at both temperatures, NTHI cocultured with airway epithelial cells demonstrated significantly greater expression of pilA, PilA/pilin protein, and likely, fully assembled Tfp than NTHI cultured on an abiotic surface. Because NTHI is a heme auxotroph, we hypothesized that availability of heme from host cells might be a signal for Tfp expression. Thereby, we cultured NTHI in iron-limited medium, and we observed that supplementation with heme significantly increased pilA promoter activity. Collectively, our data suggested that NTHI Tfp expression was stimulated by soluble factor(s) released by epithelial cells, which are present in all microenvironments of the respiratory tract. The expression of this target antigen under conditions that mimic the human airway strongly supports the rationale for the use of PilA as a vaccine immunogen to prevent NTHI-induced diseases of the respiratory tract.


Subject(s)
Fimbriae Proteins/biosynthesis , Fimbriae Proteins/immunology , Fimbriae, Bacterial/immunology , Haemophilus influenzae/immunology , Nasopharynx/immunology , Bacterial Adhesion/genetics , Bacterial Vaccines/immunology , Cells, Cultured , Coculture Techniques , Epithelial Cells/immunology , Epithelial Cells/metabolism , Fimbriae Proteins/genetics , Fimbriae, Bacterial/metabolism , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Heme/metabolism , Humans , Nasopharynx/microbiology , Promoter Regions, Genetic/genetics , Respiratory System/cytology
2.
Mol Biotechnol ; 43(2): 138-47, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19507071

ABSTRACT

Periodontal disease caused by the gram-negative oral anaerobic bacterium Porphyromonas gingivalis is thought to be initiated by the binding of P. gingivalis fimbrial protein to saliva-coated oral surfaces. To assess whether biologically active fimbrial antigen can be synthesized in edible plants, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein, fimA (amino acids 266-337), was cloned behind the mannopine synthase promoter in plant expression vector pPCV701. The plasmid was transferred into potato (Solanum tuberosum) leaf cells by Agrobacterium tumefaciens in vivo transformation methods. The fimA cDNA fragment was detected in transformed potato leaf genomic DNA by PCR amplification methods. Further, a novel immunoreactive protein band of ~6.5 kDa was detected in boiled transformed potato tuber extracts by acrylamide gel electrophoresis and immunoblot analysis methods using primary antibodies to fimbrillin, a monomeric P. gingivalis fimbrial subunit. Antibodies generated against native P. gingivalis fimbriae detected a dimeric form of bacterial-synthesized recombinant FimA(266-337) protein. Further, a protein band of ~160 kDa was recognized by anti-FimA antibodies in undenatured transformed tuber extracts, suggesting that oligomeric assembly of plant-synthesized FimA may occur in transformed plant cells. Based on immunoblot analysis, the maximum amount of FimA protein synthesized in transformed potato tuber tissues was approximately 0.03% of total soluble tuber protein. Biosynthesis of immunologically detectable FimA protein and assembly of fimbrial antigen subunits into oligomers in transformed potato tuber tissues demonstrate the feasibility of producing native FimA protein in edible plant cells for construction of plant-based oral subunit vaccines against periodontal disease caused by P. gingivalis.


Subject(s)
Fimbriae Proteins/biosynthesis , Food, Formulated , Plants, Genetically Modified/metabolism , Protein Engineering/methods , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Fimbriae Proteins/physiology , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL