Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.430
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Pharmacol Res ; 204: 107194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663526

ABSTRACT

Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.


Subject(s)
Anti-Bacterial Agents , Flavonoids , Gastrointestinal Microbiome , Lincomycin , MAP Kinase Signaling System , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Swine , MAP Kinase Signaling System/drug effects , Lincomycin/pharmacology , Mice , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Male , Intestines/drug effects , Intestines/pathology
2.
J Ethnopharmacol ; 330: 118195, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641080

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY: This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS: SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS: Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION: Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.


Subject(s)
Antineoplastic Agents, Phytogenic , Colorectal Neoplasms , Flavonoids , Glycyrrhiza , Mice, Nude , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , Glycyrrhiza/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Flavonoids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Allosteric Regulation/drug effects , Mice , Mice, Inbred BALB C , Apoptosis/drug effects , Male
3.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38442806

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Subject(s)
Atherosclerosis , Crataegus , Phospholipases A2, Secretory , Plaque, Atherosclerotic , Mice , Animals , Crataegus/chemistry , Quercetin/therapeutic use , Phospholipases A2, Secretory/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tandem Mass Spectrometry , Atherosclerosis/metabolism , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Flavonoids/therapeutic use , Lipoproteins, LDL/metabolism , Signal Transduction , Cholesterol/metabolism , Mice, Knockout , Apolipoproteins E/genetics
4.
Eur J Pharmacol ; 969: 176427, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38428662

ABSTRACT

Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Mice , Animals , Ischemic Stroke/drug therapy , Reperfusion Injury/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/metabolism , Inflammation/drug therapy , Brain Ischemia/metabolism , Microglia , Infarction, Middle Cerebral Artery/metabolism
5.
Phytomedicine ; 128: 155535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537442

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE: To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS: Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS: The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION: Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.


Subject(s)
Flavonoids , Pulmonary Arterial Hypertension , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Pulmonary Arterial Hypertension/drug therapy , Animals , Hypertension, Pulmonary/drug therapy , Oxidative Stress/drug effects , Vascular Remodeling/drug effects , Biological Products/pharmacology , Biological Products/therapeutic use , Medicine, Chinese Traditional/methods
6.
J Med Food ; 27(4): 301-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377551

ABSTRACT

Baicalin has been acknowledged for its anti-inflammatory properties. However, its potential impact on osteoarthritis (OA) has not yet been explored. Therefore, our study aimed to examine the effects of Baicalin on OA, both in laboratory and animal models. To evaluate its efficacy, human chondrocytes affected by OA were treated with interleukin-1ß and/or Baicalin. The effects were then assessed through viability tests using the cell counting kit-8 (CCK-8) method and flow cytometry. In addition, we analyzed the expressions of various factors such as FOXO1, autophagy, apoptosis, and cartilage synthesis and breakdown to corroborate the effects of Baicalin. We also assessed the severity of OA through analysis of tissue samples. Our findings demonstrate that Baicalin effectively suppresses inflammatory cytokines and MMP-13 levels caused by collagenase-induced osteoarthritis, while simultaneously preserving the levels of Aggrecan and Col2. Furthermore, Baicalin has been shown to enhance autophagy. Through the use of FOXO1 inhibitors, lentivirus-mediated knockdown, and chromatin immunoprecipitation, we verified that Baicalin exerts its protective effects by activating FOXO1, which binds to the Beclin-1 promoter, thereby promoting autophagy. In conclusion, our results show that Baicalin has potential as a therapeutic agent for treating OA (Clinical Trial Registration number: 2023-61).


Subject(s)
Cartilage, Articular , Flavonoids , Forkhead Box Protein O1 , Osteoarthritis , Animals , Humans , Apoptosis , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Chondrocytes , Flavonoids/pharmacology , Flavonoids/therapeutic use , Forkhead Box Protein O1/drug effects , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Homeostasis , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism
7.
J Complement Integr Med ; 21(1): 113-122, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38353268

ABSTRACT

OBJECTIVES: Desmodium triquetrum DC (Fabaceae) is a plant commonly used in Indian traditional medicine to treat allergies. Asthma is a severe condition, with an estimated 300 million deaths annually, which could increase to 400 million by 2025. Flavonoids, a class of compounds found in many plants, have been found to have beneficial effects in treating asthma. In this study, researchers focused on three flavonoids, Baicalein, Naringin, and Neohesperidin, derived from Desmodium triquetrum DC, to investigate their potential as a treatment for asthma. METHODS: The study used an aerosolized ovalbumin-induced asthma model to evaluate the effects of the flavonoids on various substances in bronchoalveolar lavage fluid, including total differential leukocyte, nitrite, nitrate, TNF, IL-4, and IL-13. The researchers also measured the levels of myeloperoxidase and malondialdehyde in the lungs. RESULTS: The results showed that ovalbumin-induced airway hyper-responsiveness led to a significant increase in pro-inflammatory cytokine levels. However, the flavonoids significantly decreased the severity of airway inflammation. Histopathology results also supported the effectiveness of the flavonoids. These findings suggest that these flavonoids could be a supplementary and alternative treatment for asthma by inhibiting the pro-inflammatory pathway. CONCLUSIONS: The findings suggest that the isolated compounds have the potential to act cumulatively to decrease the levels of the tested cytokines, normalize eosinophil and activated lymphocyte counts, and significantly reduce MPO and MDA. This indicates a possible respiratory mechanism of action for the drugs.


Subject(s)
Asthma , Flavonoids , Animals , Mice , Ovalbumin/adverse effects , Ovalbumin/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Asthma/chemically induced , Asthma/drug therapy , Lung/metabolism , Lung/pathology , Cytokines , Inflammation/drug therapy , Mice, Inbred BALB C , Disease Models, Animal
8.
Eur J Pharmacol ; 969: 176452, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38417609

ABSTRACT

Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.


Subject(s)
Flavonoids , Neoplasms , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Apoptosis , Cell Proliferation , Autophagy , Neoplasms/drug therapy
9.
J Neurosurg Sci ; 68(1): 109-116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38299491

ABSTRACT

BACKGROUND: This pilot study in post-stroke patients evaluated the effects of supplementation with Pycnogenol® on alterations in cognitive functions (COFU) over a period of 6 months, starting 4 weeks after the stroke. METHODS: The effects of supplementation - possibly acting on residual brain edema, on global cognitive function, attention and on mental performance - were studied. A control group used standard management (SM) and the other group added Pycnogenol®, 150 mg daily to SM. RESULTS: 38 post-stroke patients completed the 6-month-study, 20 in the Pycnogenol® group and 18 in the control group. No side effects were observed with the supplement. The tolerability was very good. The patients included into the two groups were comparable for age, sex and clinical distribution. There were 2 dropouts in the control group, due to non-medical problems. Main COFU parameters (assessed by a cognitive questionnaire) were significantly improved (all single items) with the supplement compared to controls (P<0.05). Additional observations indicate that Pycnogenol® patients experienced significantly less mini-accidents (including falls) than controls (P<0.05). The incidences of (minor) psychotic episodes or conflicts and distress and other problems including rare occurrence of minor hallucinations, were lower with the supplementation than in controls (P<0.05). Single observations concerning daily tasks indicated a better effect of Pycnogenol® compared to controls (P<0.05). Plasma free radicals also decreased significantly with the supplement in comparison to controls (P<0.05). Globally, supplemented subjects had a better recovery than controls. CONCLUSIONS: In post-stroke subjects, Pycnogenol® supplementation resulted in better recovery outcome and faster COFU 'normalization' after the stroke in comparison with SM; it can be considered a safe, manageable post-stroke, adjuvant management possibly reducing local brain edema. Nevertheless, more patients and a longer period of evaluation are needed to confirm these results.


Subject(s)
Brain Edema , Humans , Pilot Projects , Brain Edema/drug therapy , Cognition , Plant Extracts/therapeutic use , Plant Extracts/pharmacology , Flavonoids/pharmacology , Flavonoids/therapeutic use , Dietary Supplements , Registries
10.
J Ethnopharmacol ; 326: 117884, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38350502

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY: This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS: In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS: EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κß and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS: Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.


Subject(s)
Arthritis, Experimental , Opuntia , Rats , Animals , Cytokines/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/analysis , Glutaminase , Piroxicam/therapeutic use , Molecular Docking Simulation , Rats, Sprague-Dawley , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Ethanol/chemistry , Inflammation/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Flavonoids/therapeutic use
11.
J Ethnopharmacol ; 326: 117919, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38364933

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Apocyni Veneti Folium (AVF), a popular traditional Chinese medicine (TCM), is known for its effects in soothing the liver and nerves and eliminating heat and water. It is relevant from an ethnopharmacological perspective. Pharmacological research has confirmed its benefits on antihypertension, antihyperlipidemia, antidepression, liver protection, immune system boosting, antiaging, and diabetic vascular lesions. Previous studies have shown that flavonoids, the active ingredients, have a hepatoprotective effect. However, the exact mechanism has not been clarified. AIM OF THE STUDY: This study aimed to identify the active flavonoids in AVF and their corresponding targets for liver injury. Multiple methods were introduced to confirm the targets. MATERIAL AND METHODS: AVF compounds were analyzed using liquid chromatography-mass spectrometry (LC-MS). Then, network pharmacology was utilized to screen potential hepatoprotection targets of the compounds. An enzyme activity assay was performed to determine the effect of the compounds on the targets. Biolayer interferometry (BLI) was applied to confirm the direct interaction between the compounds and the targets. RESULTS: A total of 71 compounds were identified by LC-MS and 19 compounds and 112 shared targets were screened using network pharmacology. These common targets were primarily involved in the TNF signaling pathway, cancer pathways, hepatitis B, drug responses, and negative regulation of the apoptotic process. Flavonoids were the primary pharmacological substance basis of AVF. The cyclooxygenase 2 (COX2) protein was one of the direct targets of flavonoids in AVF. The enzyme activity assay and BLI-based intermolecular interactions demonstrated that the compounds astragalin, isoquercitrin, and hyperoside exhibited stronger inhibition of enzyme activity and a higher affinity with COX2 compared to epigallocatechin, quercetin, and catechin. CONCLUSIONS: COX2 was preliminarily identified as a target of flavonoids, and the mechanism of the hepatoprotective effect of AVF might be linked to flavonoids inhibiting the activity of COX2. The findings can establish the foundation for future research on the traditional hepatoprotective effect of AVF on the liver and for clinical studies on liver disorders.


Subject(s)
Drugs, Chinese Herbal , Flavonoids , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/analysis , Cyclooxygenase 2 , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Liver , Molecular Docking Simulation
12.
J Ethnopharmacol ; 326: 117941, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38387684

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY: To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS: Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS: After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION: Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.


Subject(s)
Cardiovascular Diseases , Iron Overload , Plants, Medicinal , Cardiovascular Diseases/drug therapy , Plants, Medicinal/metabolism , Plant Extracts/therapeutic use , Iron Overload/drug therapy , Myocytes, Cardiac/metabolism , Iron/metabolism , Flavonoids/therapeutic use
13.
Phytomedicine ; 126: 155416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394726

ABSTRACT

BACKGROUND: Scutellaria baicalensis Georgi is a well-known herb in traditional Chinese medicine that is frequently prescribed for various gastrointestinal conditions, including ulcerative colitis (UC). Its primary active constituent, baicalin, has poorly water solubility that reduces its efficacy. PURPOSE: To enhance the aqueous solubility of baicalin by optimising its extraction process. We compared the modulatory effects of isolated water-soluble baicalin and water-insoluble baicalin on UC, and delved deeper into the potential mechanisms of water-soluble baicalin. METHODS: We successfully extracted a more hydrophilic baicalin directly from an aqueous S. baicalensis Georgi extract through the process of recrystallisation following alcoholic precipitation of the aqueous extract obtained from S. baicalensis Georgi, eliminating the need for acid additives. This specific form of baicalin was conclusively identified by UV, IR, atomic absorption spectroscopy, elemental analysis, 1H NMR, 13C NMR, and ESI-HRMS. We subsequently compared the regulatory effects of baicalin on UC before and after optimisation, employing 16S rDNA sequencing, bile acid-targeted metabolomics, and transcriptome analysis to elucidate the potential mechanism of water-soluble baicalin; and the key genes and proteins implicated in this mechanism were verified through RT-PCR and western blotting. RESULTS: A new form of baicalin present in the aqueous solution of S. baicalensis Georgi was isolated, and its structural characterisation showed that it was bound to magnesium ions (baicalin magnesium) and exhibited favorable water solubility. Baicalin magnesium offers enhanced therapeutic benefits over baicalin for UC treatment, which alleviated the inflammatory response and oxidative stress levels while improving intestinal mucosal damage. Further investigation of the mechanism revealed that baicalin magnesium could effectively regulate bile acid metabolism and maintain intestinal microecological balance in UC mice, and suppress the activation of the nuclear factor-kappa B and peroxisome proliferator-activated receptor α signalling pathways, thereby playing a therapeutic role. CONCLUSIONS: Baicalin magnesium has good water solubility, which solves the bottleneck problem of water insolubility in the practical applications of baicalin. Moreover, baicalin magnesium exhibits therapeutic potential for UC significantly better than baicalin.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Mice , Animals , Colitis, Ulcerative/drug therapy , Magnesium , Flavonoids/pharmacology , Flavonoids/therapeutic use , Water
14.
Int J Mol Sci ; 25(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397018

ABSTRACT

Among diverse cancers, pancreatic cancer is one of the most aggressive types due to inadequate diagnostic options and treatments available. Therefore, there is a necessity to use combination chemotherapy options to overcome the chemoresistance of pancreatic cancer cells. Plumbagin and xanthohumol, natural compounds isolated from the Plumbaginaceae family and Humulus lupulus, respectively, have been used to treat various cancers. In this study, we investigated the anticancer effects of a combination of plumbagin and xanthohumol on pancreatic cancer models, as well as the underlying mechanism. We have screened in vitro numerous plant-derived extracts and compounds and tested in vivo the most effective combination, plumbagin and xanthohumol, using a transgenic model of pancreatic cancer KPC (KrasLSL.G12D/+; p53R172H/+; PdxCretg/+). A significant synergistic anticancer activity of plumbagin and xanthohumol combinations on different pancreatic cancer cell lines was found. The combination treatment of plumbagin and xanthohumol influences the levels of B-cell lymphoma (BCL2), which are known to be associated with apoptosis in both cell lysates and tissues. More importantly, the survival of a transgenic mouse model of pancreatic cancer KPC treated with a combination of plumbagin and xanthohumol was significantly increased, and the effect on BCL2 levels has been confirmed. These results provide a foundation for a potential new treatment for pancreatic cancer based on plumbagin and xanthohumol combinations.


Subject(s)
Naphthoquinones , Pancreatic Neoplasms , Propiophenones , Mice , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Plant Extracts/pharmacology , Propiophenones/pharmacology , Propiophenones/therapeutic use , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Pancreatic Neoplasms/drug therapy , Apoptosis , Proto-Oncogene Proteins c-bcl-2
15.
J Ethnopharmacol ; 325: 117893, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38336184

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Erzhu Jiedu Recipe (EZJDR) is a formula of traditional Chinese medicine (TCM) for treating hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). However, its effective components and the mechanism of action remain unclear. AIM OF THE STUDY: To explain how the active compounds of EZJDR suppress the growth of hepatoma cells. METHODS: UHPLC-Q-Exactive Orbitrap HRMS was used to identify the chemical constituents of EZJDR and their distribution in the serum and liver of mice. Together with experimental investigations, network pharmacology unraveled the molecular mechanism of components of EZJDR underlying the inhibited Hep3B cells. RESULTS: A total of 138 compounds which can be divided into 18 kinds of components (such as sesquiterpenoids, diterpenoids, anthraquinones, flavonoids and so on) were found in the aqueous extract of EZJDR. Of these components, the tricyclic-diterpenoids exhibited a highest exposure in the serum (74.5%) and liver (94.7%) of mice. The network pharmacology revealed that multiple components of EZJDR interacted with key node genes involved in apoptosis, proliferation, migration and metabolism through various signaling pathways, including ligand binding and protein phosphorylation. In vitro experiments demonstrated that 6 tricyclic-diterpenoids, 2 anthraquinones and 1 flavonoid inhibited the viability of Hep3B cells, with IC50 values ranging from 3.81 µM to 37.72 µM. Dihydrotanshinone I had the most potent bioactivity, arresting the S phase of cell cycle and inducing apoptosis. This compound changed the expression of proteins, including Bad, Bax, Bcl-2, Bal-x, caspase3 and catalase, which were associated with mitochondria-mediated apoptotic pathways. Moreover, dihydrotanshinone I increased the levels of p21 proteins, but decreased the phosphorylated p53, suggesting accumulation of p53 protein prevented cell cycle progression of Hep3B cells with damaged DNA. CONCLUSIONS: These results suggested that multiple components of EZJDR-diterpenoid, anthraquinone and flavonoid-could be the effective material for the treatment of HBV-HCC. This research provided valuable insights into the molecular mechanism of action underlying the therapeutic effects of EZJDR.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Drugs, Chinese Herbal , Furans , Liver Neoplasms , Phenanthrenes , Quinones , Humans , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Tumor Suppressor Protein p53 , Chromatography, High Pressure Liquid , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anthraquinones/therapeutic use , Diterpenes/therapeutic use
16.
J Ethnopharmacol ; 325: 117739, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is the dry roots and rhizomes of Glycyrrhiza uralensis Fisch., Glycyrrhiza glabra L. and Glycyrrhiza inflata Bat., which was first recorded in Shengnong's herbal classic. Licorice flavonoid (LF) is the main compound isolated from licorice with an indispensable action in treating gastric ulcer (GU). However, the underlying mechanisms need to be further explored. AIM OF THE STUDY: This study aimed to investigate and further elucidate the mechanisms of LF against ethanol-induced GU using an integrated approach. MATERIALS AND METHODS: The anti-GU effects of LF were evaluated in an ethanol-induced gastric injury rat model. Then, the metabolomics approach was applied to explore the specific metabolites and metabolic pathways. Next, the network pharmacology combined with metabolomics strategy was employed to predict the targets and pathways of LF for GU. Finally, these predictions were validated by molecular docking, RT-qPCR, and western blotting. RESULTS: LF had a positive impact on gastric injury and regulated the expression of GU-related factors. Upon serum metabolomics analysis, 25 metabolic biomarkers of LF in GU treatment were identified, which were primarily involved in amino acid metabolism, carbohydrate metabolism, and other related processes. Subsequently, a "components-targets-metabolites" network was constructed, revealing six key targets (HSP90AA1, AKT1, MAPK1, EGFR, ESR1, PIK3CA) that may be associated with GU treatment. More importantly, KEGG analysis highlighted the importance of the PI3K/AKT pathway including key targets, as a critical route through which LF exerted its anti-GU effects. Molecular docking analyses confirmed that the core components of LF exhibited a strong affinity for key targets. Furthermore, RT-qPCR and western blotting results indicated that LF could reverse the expression of these targets, activate the PI3K/AKT pathway, and ultimately reduce apoptosis. CONCLUSION: LF exerted a gastroprotective effect against gastric ulcer induced by ethanol, and the therapeutic mechanism may involve improving metabolism and suppressing apoptosis through the PI3K-AKT pathway.


Subject(s)
Glycyrrhiza , Stomach Ulcer , Animals , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Apoptosis , Ethanol , Flavonoids/pharmacology , Flavonoids/therapeutic use , Signal Transduction
17.
Molecules ; 29(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257323

ABSTRACT

Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.


Subject(s)
Cannabidiol , Cannabis , Hallucinogens , Neuroinflammatory Diseases , Terpenes/pharmacology , Cannabinoid Receptor Agonists , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
18.
Curr Mol Pharmacol ; 17: e18761429263063, 2024.
Article in English | MEDLINE | ID: mdl-38284731

ABSTRACT

Gynecological cancers are serious life-threatening diseases responsible for high morbidity and mortality around the world. Chemotherapy, radiotherapy, and surgery are considered standard therapeutic modalities for these cancers. Since the mentioned treatments have undesirable side effects and are not effective enough, further attempts are required to explore potent complementary and/or alternative treatments. This study was designed to review and discuss the anticancer potentials of baicalin against gynecological cancers based on causal mechanisms and underlying pathways. Traditional medicine has been used for thousands of years in the therapy of diverse human diseases. The therapeutic effects of natural compounds like baicalin have been widely investigated in cancer therapy. Baicalin was effective against gynecological cancers by regulating key cellular mechanisms, including apoptosis, autophagy, and angiogenesis. Baicalin exerted its anticancer property by regulating most molecular signaling pathways, including PI3K/Akt/mTOR, NFκB, MAPK/ERK, and Wnt/ß-catenin. However, more numerous experimental and clinical studies should be designed to find the efficacy of baicalin and the related mechanisms of action.


Subject(s)
Breast Neoplasms , Flavonoids , Genital Neoplasms, Female , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Genital Neoplasms, Female/drug therapy , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects
19.
J Ethnopharmacol ; 324: 117749, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38219880

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Obesity has become a public burden worldwide due to its booming incidence and various complications, and browning of white adipose tissue (WAT) is recognized as a hopeful strategy to combat it. Blossom of Citrus aurantium L. var. amara Engl. (CAVA) is a popular folk medicine and dietary supplement used for relieving dyspepsia, which is recorded in the Chinese Materia Medica. Our previous study showed that blossom of CAVA had anti-obesity potential, while its role in browning of WAT was still unclear. AIM OF THE STUDY: This study aimed to characterize the constituents in flavonoids from blossom of CAVA (CAVAF) and to clarify the anti-obesity capacities especially the effects on browning of WAT. MATERIALS AND METHODS: Gradient ethanol eluents from blossom of CAVA were obtained by AB-8 macroporous resin. 3T3-L1 cells and pancreatic lipase inhibition assay were employed to investigate the potential anti-obesity effects in vitro. HPLC and UPLC/MS assays were performed to characterize the chemical profiles of different eluents. Network pharmacology and molecular docking assays were used to reveal potential anti-obesity targets. Furthermore, high-fat diet (HFD)-induced mice were constructed to explore the anti-obesity actions and mechanisms in vivo. RESULTS: 30% ethanol eluents with high flavonoid content and great inhibition on proliferation of 3T3-L1 preadipocytes and pancreatic lipase activity were regarded as CAVAF. 19 compounds were identified in CAVAF. Network pharmacology analysis demonstrated that AMPK and PPARα were potential targets for CAVAF in alleviating obesity. Animal studies demonstrated that CAVAF intervention significantly decreased the body weight, WAT weight, serum TG, TC and LDL-C levels in HFD-fed obese mice. HFD-induced insulin resistance and morphological changes in WAT and brown adipose tissue were also markedly attenuated by CAVAF treatment. CAVAF supplementation potently inhibited iWAT inflammation by regulating IL-6, IL-1ß, TNF-α and IL-10 mRNA expression in iWAT of mice. Furthermore, the gene expression levels of thermogenic markers including Cyto C, ATP synthesis, Cidea, Cox8b and especially UCP1 in iWAT of mice were significantly up-regulated by CAVAF administration. CAVAF intervention also markedly increased the expression levels of PRDM16, PGC-1α, SIRT1, AMPK-α1, PPARα and PPARγ mRNA in iWAT of mice. CONCLUSION: CAVAF treatment significantly promoted browning of WAT in HFD-fed mice. These results suggested that flavonoid extracts from blossom of CAVA were probably promising candidates for the treatment of obesity.


Subject(s)
Citrus , Flavonoids , Mice , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Diet, High-Fat/adverse effects , AMP-Activated Protein Kinases/metabolism , Molecular Docking Simulation , PPAR alpha , Adipose Tissue, White , Obesity/metabolism , Ethanol/pharmacology , Citrus/chemistry , RNA, Messenger , Lipase , Mice, Inbred C57BL
20.
Phytomedicine ; 124: 155296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176276

ABSTRACT

BACKGROUND: Diabetes belongs to the most prevalent metabolic diseases worldwide, which is featured with insulin resistance, closely associated with obesity and urgently needs to be treated. Baicalin, belonging to natural flavonoids, has been reported to inhibit oxidative stress or inflammatoin. PURPOSE: This study investigated the properties of baicalin on modulating abnormal glucolipid metabolism, as well as the underlying in-vitro and in-vivo mechanisms. METHODS: Insulin-resistant (IR)-HepG2 cells were stimulated by dexamethasone (20 µM) and high glucose (50 mM) for 48 h and incubated with or without baicalin or metformin for another 16 h. Male C57BL/6 J mice were fed with a high-fat diet (HFD, 60 % kcal% fat) during the total 14 weeks. Obese mice were then administered with baicalin (50 and 100 mg/kg) or vehicle solution everyday through oral gavage during the last 4-week period. Moreover, baicalin metabolisms in vitro and in vivo were determined using UPLC/MS/MS to study its metabolism situation. RESULTS: Exposure to dexamethasone and high glucose damaged the abilities of glycogen synthesis and glucose uptake with elevated oxidative stress and increased generation levels of advanced glycation end-products (AGEs) in HepG2 cells. These impairments were basically reversed by baicalin treatment. Four-week oral administration with baicalin ameliorated hyperglycemia and dyslipidemia in HFD-induced obese and pre-diabetic mice. Downregulation of IRS/PI3K/Akt signaling pathway accomplished with reduced GLUT4 expression and enhanced GSK-3ß activity was observed in insulin resistant HepG2 cells as well as liver tissues from pre-diabetic mice; and such effect was prevented by baicalin. Moreover, baicalin and its matabolites were detected in IR-HepG2 cells and mouse plasma. CONCLUSION: The study illustrated that baicalin alleviated insulin resistance by activating insulin signaling pathways and inhibiting oxidative stress and AGEs production, revealing the potential of baicalin to be a therapeutic natural flavonoid against hepatic insulin and glucose-lipid metabolic disturbance in pre-diabetes accompanied with obesity.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Prediabetic State , Male , Mice , Animals , Glucose/metabolism , Insulin/metabolism , Prediabetic State/drug therapy , Mice, Obese , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Tandem Mass Spectrometry , Mice, Inbred C57BL , Flavonoids/therapeutic use , Signal Transduction , Liver , Obesity/drug therapy , Obesity/metabolism , Dexamethasone/pharmacology , Diet, High-Fat/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL