Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Biol Res ; 56(1): 26, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37211600

ABSTRACT

Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.


Subject(s)
Electroacupuncture , Neuralgia , Animals , Rats , Dendritic Spines/metabolism , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Neuralgia/metabolism , Neuralgia/therapy , rac1 GTP-Binding Protein/metabolism , Rats, Sprague-Dawley , Signal Transduction , Spinal Nerves/metabolism
2.
Biol. Res ; 56: 26-26, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1513738

ABSTRACT

Previous studies have shown that peripheral nerve injury can lead to abnormal dendritic spine remodeling in spinal dorsal horn neurons. Inhibition of abnormal dendritic spine remodeling can relieve neuropathic pain. Electroacupuncture (EA) has a beneficial effect on the treatment of neuropathic pain, but the specific mechanism remains unclear. Evidence has shown that slit-robo GTPase activating protein 3 (srGAP3) and Rho GTPase (Rac1) play very important roles in dendritic spine remodeling. Here, we used srGAP3 siRNA and Rac1 activator CN04 to confirm the relationship between SrGAP3 and Rac1 and their roles in improving neuropathic pain with EA. Spinal nerve ligation (SNL) was used as the experimental model, and thermal withdrawal latency (TWL), mechanical withdrawal threshold (MWT), Western blotting, immunohistochemistry and Golgi-Cox staining were used to examine changes in behavioral performance, protein expression and dendritic spines. More dendritic spines and higher expression levels of srGAP3 were found in the initial phase of neuropathic pain. During the maintenance phase, dendritic spines were more mature, which was consistent with lower expression levels of srGAP3 and higher expression levels of Rac1-GTP. EA during the maintenance phase reduced the density and maturity of dendritic spines of rats with SNL, increased the levels of srGAP3 and reduced the levels of Rac1-GTP, while srGAP3 siRNA and CN04 reversed the therapeutic effects of EA. These results suggest that dendritic spines have different manifestations in different stages of neuropathic pain and that EA may inhibit the abnormal dendritic spine remodeling by regulating the srGAP3/Rac1 signaling pathway to alleviate neuropathic pain.


Subject(s)
Animals , Rats , Electroacupuncture , Neuralgia/metabolism , Neuralgia/therapy , Spinal Nerves/metabolism , Signal Transduction , Rats, Sprague-Dawley , rac1 GTP-Binding Protein/metabolism , Dendritic Spines/metabolism , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism
3.
Nat Commun ; 13(1): 7113, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402789

ABSTRACT

NRAS-mutated melanoma lacks a specific line of treatment. Metabolic reprogramming is considered a novel target to control cancer; however, NRAS-oncogene contribution to this cancer hallmark is mostly unknown. Here, we show that NRASQ61-mutated melanomas specific metabolic settings mediate cell sensitivity to sorafenib upon metabolic stress. Mechanistically, these cells are dependent on glucose metabolism, in which glucose deprivation promotes a switch from CRAF to BRAF signaling. This scenario contributes to cell survival and sustains glucose metabolism through BRAF-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2/3 (PFKFB2/PFKFB3). In turn, this favors the allosteric activation of phosphofructokinase-1 (PFK1), generating a feedback loop that couples glycolytic flux and the RAS signaling pathway. An in vivo treatment of NRASQ61 mutant melanomas, including patient-derived xenografts, with 2-deoxy-D-glucose (2-DG) and sorafenib effectively inhibits tumor growth. Thus, we provide evidence for NRAS-oncogene contributions to metabolic rewiring and a proof-of-principle for the treatment of NRASQ61-mutated melanoma combining metabolic stress (glycolysis inhibitors) and previously approved drugs, such as sorafenib.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Sorafenib/pharmacology , Cell Line, Tumor , Mutation , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Glycolysis/genetics , Glucose/metabolism , Stress, Physiological , Phosphofructokinase-2/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
4.
Phytomedicine ; 100: 154065, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35358932

ABSTRACT

BACKGROUND: Doxorubicin (DOX) is a highly effective chemotherapeutic that is effective for various tumours. However, the clinical application of DOX has been limited by adverse reactions such as cardiotoxicity and heart failure. Since DOX-induced cardiotoxicity is irreversible, drugs to prevent DOX-induced cardiotoxicity are needed. PURPOSE: This study aimed to investigate the effect of total flavonoids of Selaginella tamariscina (P.Beauv.) Spring (TFST) on doxorubicin-induced cardiotoxicity. METHODS: The present study established DOX-induced cardiotoxicity models in C57BL/6 mice treated with DOX (cumulative dose: 20 mg/kg body weight) and H9c2 cells incubated with DOX (1 µM/l) to explore the intervention effect and potential mechanism of TFST. Echocardiography was performed to evaluate left ventricular functions. Heart tissue samples were collected for histological evaluation. Myocardial injury markers and oxidative stress markers were examined. Mitochondrial energy metabolism pathway associated proteins PPARα/PGC-1α/Sirt3 were detected. We also explored the effects of TFST on endoplasmic reticulum (ER) stress and apoptosis. To further investigate the protective mechanism of TFST, we used the specific small interfering RNA MFN2 (siMFN2) to explore the effect of MFN2 on TFST against DOX-induced cardiotoxicity in vitro. Flow cytometry detected reactive oxygen species, mitochondrial membrane potential and apoptosis. Cell mitochondrial stress was measured by Seahorse XF analyser. RESULTS: Both in vivo and in vitro studies verified that TFST observably alleviated DOX-induced mitochondrial dysfunction and ER stress. However, these effects were reversed after transfected siMFN2. CONCLUSION: Our results indicated that TFST ameliorates DOX-induced cardiotoxicity by alleviating mitochondrial dysfunction and ER stress by activating MFN2/PERK. MFN2/PERK pathway activation may be a novel mechanism to protect against DOX-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Selaginellaceae , Animals , Apoptosis , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Endoplasmic Reticulum Stress , Flavonoids/pharmacology , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/pharmacology , Mice , Mice, Inbred C57BL , Mitochondria , Myocytes, Cardiac , Oxidative Stress
5.
Free Radic Biol Med ; 183: 75-88, 2022 04.
Article in English | MEDLINE | ID: mdl-35318101

ABSTRACT

Myocardial dysfunction is associated with an imbalance in mitochondrial fusion/fission dynamics in patients with diabetes. However, effective strategies to regulate mitochondrial dynamics in the diabetic heart are still lacking. Nicotinamide riboside (NR) supplementation ameliorated mitochondrial dysfunction and oxidative stress in both cardiovascular and aging-related diseases. This study investigated whether NR protects against diabetes-induced cardiac dysfunction by regulating mitochondrial fusion/fission and further explored the underlying mechanisms. Here, we showed an evident decrease in NAD+ (nicotinamide adenine dinucleotide) levels and mitochondrial fragmentation in the hearts of leptin receptor-deficient diabetic (db/db) mouse models. NR supplementation significantly increased NAD+ content in the diabetic hearts and promoted mitochondrial fusion by elevating Mfn2 level. Furthermore, NR-induced mitochondrial fusion suppressed mitochondrial H2O2 and O2•- production and reduced cardiomyocyte apoptosis in both db/db mice hearts and neonatal primary cardiomyocytes. Mechanistically, chromatin immunoprecipitation (ChIP) and luciferase reporter assay analyses revealed that PGC1α and PPARα interdependently regulated Mfn2 transcription by binding to its promoter region. NR treatment elevated NAD+ levels and activated SIRT1, resulting in the deacetylation of PGC1α and promoting the transcription of Mfn2. These findings suggested the promotion of mitochondrial fusion via oral supplementation of NR as a potential strategy for delaying cardiac complications in patients with diabetes.


Subject(s)
Diabetes Mellitus , GTP Phosphohydrolases , Mitochondria, Heart , Mitochondrial Dynamics , Animals , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Hydrogen Peroxide/metabolism , Mice , Mitochondria, Heart/physiology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Pyridinium Compounds , Sirtuin 1/genetics , Sirtuin 1/metabolism
6.
Exp Eye Res ; 215: 108901, 2022 02.
Article in English | MEDLINE | ID: mdl-34933001

ABSTRACT

The purpose of this study was to evaluate the neuroprotective effects of omega-3 polyunsaturated fatty acid (ω3-PUFA) supplementation in a mouse model of OPA1-associated autosomal dominant optic atrophy (ADOA). The blood level of arachidonic acid (AA) and eicosapentaenoic acid (EPA) served to adjust the treatment dosage (AA/EPA = 1.0-1.5). Eight-month-old mice were allocated to four groups (n = 20/group): the ω3-PUFA-treated Opa1enu/+, untreated Opa1enu/+, ω3-PUFA-treated wild-type and untreated wild-type groups. Treated mice received the ω3-PUFAs, EPA and docosahexaenoic acid (DHA; 5:1 ratio) by daily gavage for 4 months based on the measured AA/EPA ratio. Blood, retina and optic nerve (ON) fatty acid levels were determined by gas chromatography, and the retina and ON were histologically examined. Western blotting and/or immunohistochemistry was performed to analyse retinal mediators involved in Opa1-mutation-mediated apoptosis, inflammation and oxidative stress. Increased EPA and reduced AA levels were primarily observed predominantly in the blood and retinal tissues, and a similarly high EPA level tended to be observed in the ONs of ω3-PUFA-treated mice. Retinal ganglion cell and ON axonal densities were higher in both mouse strains upon ω3-PUFA treatment than in the corresponding untreated groups. Caspase-3 expression analysis showed fewer apoptotic retinal cells in both groups of treated mice. Decreases in inflammatory microglia and astrocytes activation and proapoptotic Bcl-2-associated X protein (Bax) expression were noted in the treated groups, with no difference in the antioxidant superoxide dismutase-2 expression. ω3-PUFA supplementation had neuroprotective effects on the retinas of Opa1enu/+ and wild-type mice via blockade of microglia and astrocytes activation and suppression of Bax and caspase-3. Our findings indicated that inhibition of oxidative stress may not be involved in ω3-PUFA-mediated neuroprotection. These novel findings support the use of ω3-PUFAs as a beneficial therapy in the occurrence of ADOA, posing the basis for future clinical trials to confirm these observations.


Subject(s)
Fatty Acids, Omega-3 , Neuroglia , Neuroprotective Agents , Optic Atrophy, Autosomal Dominant , Animals , Apoptosis , Arachidonic Acid/metabolism , Caspase 3/metabolism , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Omega-3/pharmacology , GTP Phosphohydrolases/metabolism , Mice , Neuroglia/metabolism , Neuroglia/pathology , Neuroprotection , Neuroprotective Agents/pharmacology , Optic Atrophy, Autosomal Dominant/drug therapy , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/metabolism , Optic Atrophy, Autosomal Dominant/pathology , Retina/metabolism , bcl-2-Associated X Protein/metabolism
7.
Curr Biol ; 32(3): 497-507.e4, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34875229

ABSTRACT

Sensing and signaling of cell wall status and dynamics regulate many processes in plants, such as cell growth and morphogenesis, but the underpinning mechanisms remain largely unknown. Here, we demonstrate that the CrRLK1L receptor kinase FERONIA (FER) binds the cell wall pectin, directly leading to the activation of the ROP6 guanosine triphosphatase (GTPase) signaling pathway that regulates the formation of the puzzle piece shape of pavement cells in Arabidopsis. The extracellular malectin domain of FER binds demethylesterified pectin in vivo and in vitro. Both loss-of-FER mutations and defects in pectin demethylesterification caused similar changes in pavement cell shape and ROP6 GTPase signaling. FER is required for the activation of ROP6 by demethylesterified pectin and physically and genetically interacts with the ROP6 activator, RopGEF14. Thus, our findings elucidate a signaling pathway that directly connects the cell wall pectin to cellular morphogenesis via the cell surface receptor FER.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , GTP Phosphohydrolases/metabolism , Morphogenesis , Pectins/metabolism , Phosphotransferases/metabolism , Signal Transduction/physiology
8.
Curr Biol ; 32(3): 508-517.e3, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34875231

ABSTRACT

During growth and morphogenesis, plant cells respond to mechanical stresses resulting from spatiotemporal changes in the cell wall that bear high internal turgor pressure. Microtubule (MT) arrays are reorganized to align in the direction of maximal tensile stress, presumably reinforcing the local cell wall by guiding the synthesis of cellulose. However, how mechanical forces regulate MT reorganization remains largely unknown. Here, we demonstrate that mechanical signaling that is based on the Catharanthus roseus RLK1-like kinase (CrRLK1L) subfamily receptor kinase FERONIA (FER) regulates the reorganization of cortical MT in cotyledon epidermal pavement cells (PCs) in Arabidopsis. Recessive mutations in FER compromised MT responses to mechanical perturbations, such as single-cell ablation, compression, and isoxaben treatment, in these PCs. These perturbations promoted the activation of ROP6 guanosine triphosphatase (GTPase) that acts directly downstream of FER. Furthermore, defects in the ROP6 signaling pathway negated the reorganization of cortical MTs induced by these stresses. Finally, reduction in highly demethylesterified pectin, which binds the extracellular malectin domains of FER and is required for FER-mediated ROP6 activation, also impacted mechanical induction of cortical MT reorganization. Taken together, our results suggest that the FER-pectin complex senses and/or transduces mechanical forces to regulate MT organization through activating the ROP6 signaling pathway in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , GTP Phosphohydrolases/metabolism , Morphogenesis , Pectins/metabolism , Phosphotransferases/genetics , Signal Transduction/physiology
9.
EMBO Rep ; 22(9): e51954, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34296790

ABSTRACT

Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria-targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER-located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2-dependent ER-mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER-targeted Mfn2 or an artificial ER-mitochondria tether, indicating that manipulation of ER-mitochondria contacts could be used to treat pathologic conditions involving Mfn2.


Subject(s)
Endoplasmic Reticulum , GTP Phosphohydrolases , Endoplasmic Reticulum/metabolism , Energy Metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
10.
Biofactors ; 47(4): 551-569, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33878238

ABSTRACT

Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.


Subject(s)
Aging/genetics , Alkyl and Aryl Transferases/genetics , Ataxia/genetics , GTP Phosphohydrolases/genetics , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Muscle Weakness/genetics , Niemann-Pick Disease, Type C/genetics , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Aging/metabolism , Alkyl and Aryl Transferases/metabolism , Animals , Ataxia/metabolism , Ataxia/pathology , Energy Metabolism/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Humans , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Proteins/metabolism , Muscle Weakness/metabolism , Muscle Weakness/pathology , Mutation , Niemann-Pick C1 Protein/genetics , Niemann-Pick C1 Protein/metabolism , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Signal Transduction , Ubiquinone/genetics , Ubiquinone/metabolism
11.
Biomed Pharmacother ; 139: 111612, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33915505

ABSTRACT

AIM AND OBJECTIVE: To study the effect of Gupi Xiaoji Prescription (GXP) on hepatitis B virus(HBV)-related liver cancer through network pharmacology coupled with in vitro experiments and explore their related mechanisms. MATERIALS AND METHODS: Gupi Xiaoji Prescription's chemical constituents and the action targets of its six medicinal components were identified using several databases. These included the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), the Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM), and the Traditional Chinese Medicine Integrated Database (TCMID), while GeneCards and OMIM were used to compile relevant liver cancer disease targets. Pathway enrichment of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), analysis of potential targets, and analysis of the enriched pathways in literature were executed in R. The Hepatocellular carcinoma (HCC)-derived HepG2.2.15 cell line stably expresses and replicates HBV. In vitro experiments with HepG2.2.15 were used to verify GXP's effects on HBV-related liver cancer, while the human liver cancer cell line HepG2 was used as the control. RESULTS: 171 active ingredients and 259 potential drug targets were screened from GXP, involving 181 pathways in vitro. These assays identified Polyphyllin I as an effective GXP component. Notably, GXP inhibited cell proliferation and metastasis in a concentration-dependent manner (P < 0.01). In comparison with the vehicle group, the fluorescence intensity of each drug group was significantly weakened (P < 0.01), while the drug group Mitofusins 1(MFN1) and protein expression level of Mitofusins 2 (MFN2) increased significantly. The protein expression level of Mitochondrial fission protein 1 (FIS1) and Optic Atrophy 1 (OPA1) also showed significant decreases (P < 0.01). Molecular docking revealed Fructus saponins I's high affinity with FIS1, MFN1, MFN2, and OPA1. CONCLUSION: The network pharmacology results indicate that Gupi Xiaoji Prescription may treat liver cancer by regulating mitochondrial division and fusion of key genes to disrupt liver cancer cells' energy metabolism. In vitro experiments also verified that GXP could inhibit the proliferation and migration of HepG2.2.15 cells by up-regulating MFN1 and MFN2, down-regulating the expression of FIS1 and OPA1 in addition to damaging mitochondria. Consistent with network pharmacology and molecular docking results, Polyphyllin I may be the most active compound of the formula's components. It also shows that Traditional Chinese medicine (TCM) plays a significant, targeted role in the treatment of HBV-related liver cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Hepatitis B/complications , Hepatitis B/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/etiology , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , GTP Phosphohydrolases/metabolism , Hepatitis B/metabolism , Humans , Liver Neoplasms/metabolism , Medicine, Chinese Traditional , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Molecular Docking Simulation , Protein Interaction Maps
12.
Phytother Res ; 35(1): 415-423, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32914548

ABSTRACT

Clostridium difficile toxin A (TcdA) impairs the intestinal epithelial barrier, increasing the mucosa permeability and triggering a robust inflammatory response. Lathyrus sativus diamino oxidase (LSAO) is a nutraceutical compound successfully used in various gastrointestinal dysfunctions. Here, we evaluated the LSAO (0.004-0.4 µM) ability to counter TcdA-induced (30 ng/mL) toxicity and damage in Caco-2 cells, investigating its possible mechanism of action. LSAO has improved the transepithelial electrical resistance (TEER) score and increased cell viability in TcdA-treated cells, significantly rescuing the protein expression of Ras homolog family members, A-GTPase (RhoA-GTPase), occludin, and zonula occludens-1 (ZO-1). LSAO has also exhibited an anti-apoptotic effect by inhibiting the TcdA-induced expression of Bcl-2-associated X protein (Bax), p50 nuclear factor-kappa-B (p50), p65nuclear factor-kappa-B (p65), and hypoxia-inducible transcription factor-1 alpha (HIF-1α), and the release of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) in the cell milieu. Our data showed that LSAO exerts a protective effect on TcdA-induced toxicity in Caco-2 cells, placing itself as an interesting nutraceutical to supplement the current treatment of the Clostridium difficile infections.


Subject(s)
Amine Oxidase (Copper-Containing)/pharmacology , Bacterial Toxins/toxicity , Enterotoxins/toxicity , GTP Phosphohydrolases/metabolism , Lathyrus/enzymology , Signal Transduction/drug effects , rhoA GTP-Binding Protein/metabolism , Caco-2 Cells , Dietary Supplements , Humans , Interleukin-6/metabolism , NF-kappa B/metabolism , Permeability/drug effects , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zonula Occludens-1 Protein/metabolism
13.
Ann Hepatol ; 22: 100281, 2021.
Article in English | MEDLINE | ID: mdl-33220464

ABSTRACT

INTRODUCTION AND OBJECTIVES: Hepatic fibrosis is characterized by the accumulation of extracellular matrix which includes the accumulation of α-smooth muscle actin (α-SMA), collagen type I (COL1α1), as well as remodeling induced by metalloproteinases and tissue inhibitor of metalloproteinase (TIMPs), where hepatic stellate cells (HSCs) play a central role. In addition, the transcription factor SNAI1 (which participates in epithelial-mesenchymal transition, EMT) and mitofusin 2 (MFN2, a mitochondrial marker) plays an important role in chronic liver disease. Turnera diffusa (TD), a Mexican endemic plant, has been shown to possess antioxidant and hepatoprotective activity in vitro. We treated human HSC (LX2 cells) with a methanolic extract of Turnera diffusa (METD) to evaluate the mechanism involved in its hepatoprotective effect measured as fibrosis modulation, EMT, and mitochondrial markers. MATERIALS AND METHODS: HSC LX-2 cells were treated with METD (100 and 200ng/mL) alone or combined with TGF-ß (10ng/mL) at different time points (24, 48, and 72h). α-SMA, COL1α1, MMP2, TIMP1, SNAI1, and MFN2 mRNAs and protein levels were determined by real-time quantitative PCR and Western Blot analysis. RESULTS: We found that METD decreases COL1α1-mRNA, α-SMA, and TIMP1 protein expression in LX2 cells treated with and TGF-ß. This treatment also decreases MFN2 and TIMP1 protein expression and induces overexpression of MMP2-mRNA. CONCLUSIONS: Our results suggest that a methanolic extract of Turnera diffusa is associated with an antifibrotic effect by decreasing profibrotic and mitochondrial markers together with the possible induction of apoptosis through SNAI1 expression in activated HSC cells.


Subject(s)
Hepatic Stellate Cells/drug effects , Liver Cirrhosis/prevention & control , Plant Extracts/pharmacology , Turnera , Actins/metabolism , Cell Culture Techniques , Collagen Type I, alpha 1 Chain/metabolism , GTP Phosphohydrolases/metabolism , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Matrix Metalloproteinase 2/metabolism , Mitochondrial Proteins/metabolism , Snail Family Transcription Factors/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism
14.
Oxid Med Cell Longev ; 2020: 2415269, 2020.
Article in English | MEDLINE | ID: mdl-32934760

ABSTRACT

Calenduloside E (CE) is a natural triterpenoid saponin isolated from Aralia elata (Miq.) Seem., a well-known traditional Chinese medicine. Our previous studies have shown that CE exerts cardiovascular protective effects both in vivo and in vitro. However, its role in myocardial ischemia/reperfusion injury (MIRI) and the mechanism involved are currently unknown. Mitochondrial dynamics play a key role in MIRI. This study investigated the effects of CE on mitochondrial dynamics and the signaling pathways involved in myocardial ischemia/reperfusion (MI/R). The MI/R rat model and the hypoxia/reoxygenation (H/R) cardiomyocyte model were established in this study. CE exerted significant cardioprotective effects in vivo and in vitro by improving cardiac function, decreasing myocardial infarct size, increasing cardiomyocyte viability, and inhibiting cardiomyocyte apoptosis associated with MI/R. Mechanistically, CE restored mitochondrial homeostasis against MI/R injury through improved mitochondrial ultrastructure, enhanced ATP content and mitochondrial membrane potential, and reduced mitochondrial permeability transition pore (MPTP) opening, while promoting mitochondrial fusion and preventing mitochondrial fission. However, genetic silencing of OPA1 by siRNA abolished the beneficial effects of CE on cardiomyocyte survival and mitochondrial dynamics. Moreover, we demonstrated that CE activated AMP-activated protein kinase (AMPK) and treatment with the AMPK inhibitor, compound C, abolished the protective effects of CE on OPA1 expression and mitochondrial function. Overall, this study demonstrates that CE is effective in mitigating MIRI by modulating AMPK activation-mediated OPA1-related mitochondrial fusion.


Subject(s)
AMP-Activated Protein Kinases/metabolism , GTP Phosphohydrolases/metabolism , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/enzymology , Oleanolic Acid/analogs & derivatives , Saponins/therapeutic use , Animals , Apoptosis/drug effects , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Cell Line , Gene Silencing/drug effects , Homeostasis/drug effects , Male , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Mitochondrial Dynamics/drug effects , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Rats, Sprague-Dawley , Saponins/pharmacology , Signal Transduction/drug effects
15.
Theranostics ; 10(20): 9083-9099, 2020.
Article in English | MEDLINE | ID: mdl-32802180

ABSTRACT

Rationale: Malignant ascites caused by cancer cells results in poor prognosis and short average survival time. No effective treatment is currently available for malignant ascites. In this study, the effects of lentinan (LNT)-functionalized selenium nanoparticles (Selene) on malignant ascites were evaluated. Furthermore, the mechanism of Selene targeting mitochondria of tumor cells were also investigated. Methods: Selene were synthesized and characterized by TEM, AFM and particle size analysis. The OVCAR-3 and EAC cells induced ascites models were used to evaluate the effects of Selene on malignant ascites. Proteomic analysis, immunofluorescence, TEM and ICP-MS were used to determine the location of Selene in tumor cells. Mitochondrial membrane potential, ROS, ATP content, and caspase-1/3 activity were detected to evaluate the effect of Selene on mitochondrial function and cell apoptosis. Immunofluorescence, Co-IP, pull-down, duolink, Western blot, and FPLC were used to investigate the pathway of Selene targeting mitochondria. Results: Selene could effectively inhibit ascites induced by OVCAR-3 and EAC cells. Selene was mainly located in the mitochondria of tumor cells and induced apoptosis of tumor cells. The LNT in Selene was involved in caveolae-mediated endocytosis through the interaction between toll-like receptor-4 (TLR4) and caveolin 1 (CAV1). Furthermore, the Selene in the endocytic vesicles could enter the mitochondria via the mitochondrial membrane fusion pathway, which was mediated by TLR4/TNF receptor associated factor 3 (TRAF3)/mitofusin-1 (MFN1) protein complex. Conclusion: Selene is a candidate anticancer drug for the treatment of malignant ascites. And TLR4/TRAF3/MFN1 may be a specific nano-drug delivery pathway that could target the mitochondria.


Subject(s)
GTP Phosphohydrolases/metabolism , Lentinan/pharmacology , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Nanoparticles/chemistry , Selenium/pharmacology , TNF Receptor-Associated Factor 3/metabolism , Toll-Like Receptor 4/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caveolae/drug effects , Caveolae/metabolism , Cell Line, Tumor , Endocytosis/drug effects , Female , Humans , Lentinan/chemistry , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Proteomics/methods , Reactive Oxygen Species/metabolism , Selenium/chemistry , Signal Transduction/drug effects
16.
Biochem Biophys Res Commun ; 531(2): 250-255, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32800336

ABSTRACT

Obesity has become a global health issue, which can cause metabolic abnormalities systemically leading to increased morbidity of series diseases. At present, researches have presented obesity is a high-risk factor for colitis, and berberine shows positive therapeutic effect on colitis. Thus, we explored the beneficial effects and potential mechanisms of berberine on obesity-exacerbated colitis in this article. High-fat diet (HFD) exacerbated dextran sulfate sodium (DSS) induced colitis mice model was applied, the results showed that HFD promoted DSS-induced weight loss and inflammatory manifestations in intestine. The results of cytokines in serum and mRNA expression of inflammatory indicators in colon showed that HFD increased all their levels evidently, and the outcomes of Western blot analyses presented that HFD downregulated the MFN2 expression, inhibited the phosphorylation of AMPK as well as upregulated the BIP/Grp78 expression, while berberine could significantly reverse all these situations. In vitro, we stimulated Caco-2 cells with palmitic acid (PA) to replicate the lipotoxicity damage in the intestine, and the results presented that intervention therapy of berberine effectively enhanced the MFN2 expression, inhibited the mRNA levels of inflammatory factors, and reversed the PA induced protein level changes of AMPK and BIP/Grp78. In general, we proposed that berberine could regulate MFN2 to alleviate obesity exacerbated colitis.


Subject(s)
Berberine/therapeutic use , Colitis/complications , Colitis/drug therapy , GTP Phosphohydrolases/metabolism , Obesity/complications , Animals , Berberine/pharmacology , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate , Diet, High-Fat , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Energy Metabolism/drug effects , Male , Mice, Inbred C57BL , Mice, Obese , Palmitic Acid/pharmacology
17.
BMC Plant Biol ; 20(1): 355, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32727361

ABSTRACT

BACKGROUND: Infection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown. RESULTS: In this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves. CONCLUSIONS: Our results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.


Subject(s)
Plant Leaves/metabolism , Plant Leaves/virology , Plant Proteins/metabolism , Potyvirus/pathogenicity , Solanum tuberosum/virology , Cell Nucleus/metabolism , Cell Nucleus/virology , GTP Phosphohydrolases/metabolism , Host-Pathogen Interactions , Nuclear Proteins/metabolism , Plant Diseases/virology , Ploidies , Proteome/metabolism , Solanum tuberosum/metabolism , Viral Proteins/metabolism
18.
Biochem Biophys Res Commun ; 527(3): 631-637, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32423808

ABSTRACT

GTPases are molecular switches, which regulate a variety of cellular processes such as cell polarity, gene transcription, microtubule dynamics, cell-cycle etc. In this paper, we characterize a Ca2+-binding protein from Entamoeba histolytica (EhCaBP6) as a novel GTPase. We locate the active site for GTP hydrolysis within the C-terminal domain of EhCaBP6, although it requires full length protein for its complete range of activity. Using NMR studies, we observe that GTP binding induces conformational change in EhCaBP6. The identification of this novel and unusual Ca2+-dependent GTPase is important to elucidate the unconventional cell cycle of E. histolytica.


Subject(s)
Calcium-Binding Proteins/metabolism , Entamoeba histolytica/metabolism , GTP Phosphohydrolases/metabolism , Protozoan Proteins/metabolism , Calcium-Binding Proteins/chemistry , Entamoeba histolytica/chemistry , Entamoebiasis/parasitology , GTP Phosphohydrolases/chemistry , Guanosine Triphosphate/metabolism , Humans , Molecular Docking Simulation , Protein Conformation , Protozoan Proteins/chemistry
19.
Biochem J ; 476(17): 2463-2486, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31431479

ABSTRACT

Cellular senescence is an endpoint of chemotherapy, and targeted therapies in melanoma and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and an enhanced mitochondrial energy metabolism supports resistance to therapy in melanoma cells. Herein, we assessed the mitochondrial function of therapy-induced senescent melanoma cells obtained after exposing the cells to temozolomide (TMZ), a methylating chemotherapeutic agent. Senescence induction in melanoma was accompanied by a substantial increase in mitochondrial basal, ATP-linked, and maximum respiration rates and in coupling efficiency, spare respiratory capacity, and respiratory control ratio. Further examinations revealed an increase in mitochondrial mass and length. Alterations in mitochondrial function and morphology were confirmed in isolated senescent cells, obtained by cell-size sorting. An increase in mitofusin 1 and 2 (MFN1 and 2) expression and levels was observed in senescent cells, pointing to alterations in mitochondrial fusion. Silencing mitofusin expression with short hairpin RNA (shRNA) prevented the increase in mitochondrial length, oxygen consumption rate and secretion of interleukin 6 (IL-6), a component of the SASP, in melanoma senescent cells. Our results represent the first in-depth study of mitochondrial function in therapy-induced senescence in melanoma. They indicate that senescence increases mitochondrial mass, length and energy metabolism; and highlight mitochondria as potential pharmacological targets to modulate senescence and the SASP.


Subject(s)
Cellular Senescence , Energy Metabolism , GTP Phosphohydrolases/metabolism , Melanoma, Experimental/metabolism , Mitochondria/metabolism , Neoplasm Proteins/metabolism , Animals , GTP Phosphohydrolases/genetics , Gene Silencing , Interleukin-6/genetics , Interleukin-6/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/genetics , Neoplasm Proteins/genetics , Temozolomide/pharmacology
20.
Int J Biol Sci ; 15(7): 1533-1545, 2019.
Article in English | MEDLINE | ID: mdl-31337982

ABSTRACT

Aims: Berberine (BBR) improves beta-cell function in Type 2 diabetes (T2D) because of its anti-apoptotic activity, and our laboratory developed a new preparation named Huang-Gui Solid Dispersion (HGSD) to improve the oral bioavailability of BBR. However, the mechanism by which BBR inhibits beta-cell apoptosis is unclear. We hypothesized that the Group VIA Ca2+-Independent Phospholipase A2 (iPLA2ß)/Cardiolipin(CL)/Opa1 signaling pathway could exert a protective role in T2D by regulating beta-cell apoptosis and that HGSD could inhibit ß-cell apoptosis through iPLA2ß/CL/Opa1 upregulation. Methods: We examined how iPLA2ß and BBR regulated apoptosis and insulin secretion through CL/Opa1 in vivo and in vitro. In in vitro studies, we developed Palmitate(PA)-induced apoptotic cell death model in mouse insulinoma cells (MIN6). iPLA2ß overexpression and silencing technology were used to examine how the iPLA2ß/CL/Opa1 interaction may play an important role in BBR treatment. In in vivo studies, db/db mice were used as a diabetic animal model. The pancreatic islet function and morphology, beta-cell apoptosis and mitochondrial injury were examined to explore the effects of HGSD. The expression of iPLA2ß/CL/Opa1 was measured to explore whether the signaling pathway was damaged in T2D and was involved in HGSD treatment. Results: The overexpression of iPLA2ß and BBR treatment significantly attenuated Palmitate- induced mitochondrial injury and apoptotic death compared with Palmitate-treated MIN6 cell. In addition, iPLA2ß silencing could simultaneously partly abolish the anti-apoptotic effect of BBR and decrease CL/Opa1 signaling in MIN6 cells. Moreover, HGSD treatment significantly decreased beta-cell apoptosis and resulted in the upregulation of iPLA2ß/CL/Opa1 compared to those of the db/db mice. Conclusion: The results indicated that the regulation of iPLA2ß/CL/Opa1 by HGSD may prevent beta-cell apoptosis and may improve islet beta-cell function in Type 2 diabetic mice and in palmitate-treated MIN6 cells.


Subject(s)
Apoptosis , Berberine/pharmacology , Cardiolipins/metabolism , Diabetes Mellitus, Type 2/metabolism , GTP Phosphohydrolases/metabolism , Group VI Phospholipases A2/metabolism , Animals , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Gene Silencing , Glucose Tolerance Test , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Male , Medicine, Chinese Traditional , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Palmitates , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL